
 

 1  

Proceedings of the ASME 2018 International Design Engineering Technical Conferences &  
Computers and Information in Engineering Conference 

IDETC/CIE 2018 
August 26-29, 2018, Quebec City, Canada 

DETC2018-85698 

HUMAN VALIDATION OF COMPUTER VS HUMAN GENERATED DESIGN SKETCHES 

 

 

 
 

 

ABSTRACT 

The objective of this work is to explore the perceived 

visual and functional characteristics of computer generated 

sketches, compared to human created sketches. In addition, 

this work explores the possible biases that humans may have 

towards the perceived functionality of computer generated 

sketches. Recent advancements in deep generative design 

methods have allowed designers to implement computational 

tools to automatically generate large pools of new design 
ideas. However, if computational tools are to co-create ideas 

and solutions alongside designers, their ability to generate not 

only novel but also functional ideas, needs to be explored. 

Moreover, since decision-makers need to select those creative 

ideas for further development to ensure innovation, their 

possible biases towards computer generated ideas need to be 

explored.  In this study, 619 human participants were recruited 

to analyze the perceived visual and functional characteristics 

of 50 human created 2D sketches, and 50 2D sketches 

generated by a deep learning generative model (i.e., computer 

generated). The results indicate that participants perceived the 
computer generated sketches as more functional than the 

human generated sketches. This perceived functionality was 

not biased by the presence of labels that explicitly presented 

the sketches as either human or computer generated. 

Moreover, the results reveal that participants were not able to 

classify the 2D sketches as human or computer generated with 

accuracies greater than random chance. The results provide 

evidence that supports the capabilities of deep learning 

generative design tools and their potential to assist designers 

in creative tasks such as ideation. 

 

Keywords: deep generative model, crowdsourcing, 

functionality, bias, sketches.   

INTRODUCTION 
“Creativity… is an indispensable quality for 

engineering and given the growing scope of the challenges 

ahead and the complexity and diversity of the technologies of 

the 21st century, creativity will grow in importance” [1] 
Creative ideas can be extremely successful on the market, 

resulting in significant payoffs to sponsoring organizations 

and stakeholders [2]. Hence, a great deal of effort has been 

given to developing methods that promote the generation and 

selection of creative and innovative ideas. Thanks to the recent 

advancements in generative design, topology optimization, 

and deep learning algorithms, designers are increasingly 

benefiting from integrating computational tools into the design 

process [3]. Researchers argue that as these computational 

tools become more efficient at creating novel and functional 

ideas, they will foster designers’ creativity. Hence, both 
computers and designers will co-create solutions that surpass 

each of their independently created ideas [4]. 

Deep learning algorithms (e.g., Generative Adversarial 

Networks [5] and Recurrent Neural Networks [6]) are being 

implemented to automatically generate new design ideas [7,8]. 

Similarly, Mass-Collaborative Product Development (MCPD) 

is gaining popularity within the design community as a 

method to develop new and creative products [3,9]. MCPD 

takes advantage of crowdsourcing methods to generate a 

larger pool of new and novel ideas [10,11]. Though an idea 

needs to be new and novel in order to be considered creative, 
it also has to meet its intended functionality and be useful 

[12,13]. During the latter stages of the design process, 

designers create CAD models and implement advanced 
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numerical methods to test the functionality of their design 

ideas. However, during the early stages of the design process, 
designers use their experience and domain knowledge to 

ensure their new ideas are relevant to the design problem at 

hand. In the literature,  experts have been used to evaluate and 

screen crowdsourced ideas (i.e., human generated ideas) [10]. 

Likewise, crowdsourcing methods have been implemented to 

assess the ability of generative computational tools to produce 

new design ideas [7,8]. However, the functionality of 2D 

sketch ideas produced by computational tools has not been 

explored. During the early stages of the design process, rough 

2D sketches are typically the primary communication source 

of ideas [14]. Hence, if computational tools are to co-create 

new products and solutions alongside designers, their ability to 
produce not only novel, but also functional ideas, needs to be 

explored.  

The ability to generate creative ideas is an insufficient 

condition for innovation [15]  because decision-makers need 

to not only generate, but also select creative ideas for 

innovation to occur. However, decision-makers can be biased, 

which can have a direct impact on the screening and selection 

of ideas [16,17]. As designers are increasingly integrating 

computational tools into the design process, their possible bias 

towards computer generated ideas needs to be explored. 

Similarly, their ability to accurately decipher between human 
created sketches and computer generated sketches needs to be 

studied. In light of this, the authors of this work present a 

crowdsourcing method to explore the perceived visual and 

functional characteristics of 2D design sketches generated by a 

deep learning generative model. Moreover, this method also 

allows the authors to explore the ability of raters to distinguish 

between human and computer generated sketches and their 

possible bias toward them. 

 

LITERATURE REVIEW 
To motivate the current work, the authors explored 

previous research regarding generative design and 
crowdsourcing validation methods.  

 

Generative design   
Generative design methods have captured the interest of 

both the design research and industry communities [18–20]. In 

Chandrasegaran et al. [3], the authors present a review of 

some of the challenges and future direction for computational 

support tools used in the product design process [3]. Designers 

already have several generative design tools in their portfolio 

(e.g., Siemen’s Frustum1, Autodesk’s Nastran2), which allows 

them to iterate through several design combinations and attain 

feasible solutions for a given problem [14]. These tools take 

advantage of a mathematical approach that optimizes the 

layout of a material distribution within a given design domain, 

known as topology optimization [21–23]. Similarly, data-

mining methods have been proposed to evaluate and generate 
new product ideas [24,25]. Other techniques such as genetic 

algorithms and procedural modeling have been proposed in 

the literature as well [26–30]. For example, Huang et al. [31] 

proposed a method to automatically compute the parameters 

of procedural models from hand-drawn 2D sketches, which 
allows designers to explore modifications of their ideas.  

Recently, designers have started to integrate deep learning 

models into their generative design methods. Deep learning 

models are a class of hierarchical statistical models composed 

of multiple interconnected layers of nonlinear functions [32]. 

Design researchers have gained increased interest in deep 

learning models after studies have shown their potential in 

image recognition tasks [33,34]. Designers have gained a 

particular interest in Recurrent Neural Networks (RNN) [35–

38] and Generative Adversarial Networks (GAN) [7,8,39]. 

RNNs are deep learning models that contain multiple 

interconnected hidden layers. The hidden layers in an RNN 
are able to use information from their previous state via a 

recurrent weight layer, which allows them to have a 

recollection of their previous states [6]. This property makes 

them suitable for autocorrelated time series data in 

handwriting and speech recognition tasks [40,41]. GANs are 

deep learning generative models composed of a generator and 

a discriminator. The generator is trained to generate new 

images that are still similar enough to the ground truth images, 

and that cannot be distinguished by the discriminator. In 

contrast, the discriminator is trained to discriminate the 

generated images from the ground truth data [5]. Due to the 
interaction between the generator and discriminator, these 

deep generative models are capable of generating designs that 

are different from the human training dataset (i.e., unique at a 

pixel level), while still maintaining some degree of similarity. 

For more details on RNNs and GANs see [5,6].  

Deep generative methods have been used to help in the 

representation of the design space. For example,  Burnap et al. 

[7], trained a deep generative model with a dataset of 

automotive designs and was able to generate new design ideas 

that morphed different body types and brands of vehicles. This 

allowed them to visualize new design ideas and explore the 

design space. Dosovitskiy et al. [42] trained a deep generative 
model to generate new 2D images of chairs. Kazi et al. [14] 

implemented deep generative models into their  DreamSketch 

tool. The DreamSketch tool takes as input a rough 2D sketch 

and generates multiple augmented solutions in 3D. Similarly,  

Lun et al. [43] were able to implement deep learning 

algorithms to reconstruct 3D shapes from rough 2D sketches. 

Recently, Chen et al. [36] presented a modification of Ha and 

Eck’s Sketch-RNN model [35] that was capable of recognizing 

and generating 2D sketches from multiple classes. As the 

authors highlighted, this model has the potential to help in 

creative tasks [36]. Deep generative methods have also been 
implemented to increase the veracity of big-data pipelines by 

generating new images [8]. However, an inherent challenge of 

these generative methods is that their objective to create new 

design ideas that still maintain a degree of similarity with the 

training data used are conflicting and challenging to evaluate. 

While studies have implemented pixel-level Euclidean 

distance and structured similarity indices to evaluate these 

 

 

1 https://www.frustum.com 
2 https://www.autodesk.com/products/nastran/overview 
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methods, in many cases, these scores do not correlate to visual 

quality scores given by human raters [44].  
Crowdsourcing and generative design validation  

As a result of the current limitations in the evaluation 

metrics of generative models, researchers are starting to 

integrate crowdsourcing methods to evaluate their models. For 

example, Burnap et al. [7] used a crowdsourcing method to 

recruit 69 participants and assess the ability of their deep 

generative model to generate realistic designs. Their results 

showed that their model was able to generate realistic designs 

while exploring the design space. Chen et al. [36]  conducted a 

Turing test to compare the capability of 61 human raters and 

four deep learning models to recognize human vs. computer 

generated sketches. In their experiment, they tested sketches 
of object commonly found in nature (i.e., cat, pig, and rabbit). 

Their results revealed that some of the deep learning models 

outperformed the human raters in accurately distinguishing 

between human vs. computer generated sketches. Dering and 

Tucker [8] used 252 human raters to evaluate the capability of 

their proposed method to generate new 2D sketches that were 

recognized to belong to a specific class. Their results indicated 

that human raters were able to accurately recognize the 

sketches of certain classes (e.g., bottle, hammer). These 

studies have analyzed the accuracy of human raters in 

classifying new images and sketches into specific classes, and 
not necessary evaluating the sketches’ functionality.  

Another product design approach that takes advantage of 

crowdsourcing methods is Mass-Collaborative Product 

Development (MCPD). MCPD is gaining popularity within 

the design community as a new design paradigm that 

decentralizes the product development process [3,9]. MCPD 

implements crowdsourcing to assist with the generation of 

new ideas [11]. Research indicates that crowdsourcing 

methods might constitute a promising paradigm for the 

product design process [10]. Table 1 shows a summary of 

existing literature related to deep generative design tools and 

the implementation of crowdsourcing methods used to 
evaluate them. Most of the current works focus on evaluating 

the capability of deep generative models to create new 

sketches or images that can be classified to belong to a 

specific category. Though an idea needs to be new and novel 

in order to be considered creative, it also has to meet its 

intended functionality and be useful [12,13].  

 
TABLE 1. SUMMARY OF EXISTING WORKS 

Reference 
Object 

Classification 
evaluation 

Functionality 

evaluation 

Crowdsourcing 

method 

[14][42] X     

[7][8] 
[36][45] 

X   X 

[46]   X   

This work X X X 

 

 
During the later stages of the design process, designers 

create CAD models and implement advanced numerical 

methods, such as finite element analysis [47], to test the 

functionality of their design ideas. However, these methods 

are time-consuming and complex to implement. Researchers 

have started to explore how deep learning algorithms can be 

implemented to predict the ability of a 3D artifact to perform a 

function [46]. During the early stages of the design process, 

detailed 3D models are not widely available as compared to 

rough 2D sketches. Free-hand, low-fidelity 2D sketches are 

typically the primary communication source of ideas, 

especially in the early phases of the design process [14,48]. 
During these stages, designers use their experience and 

domain knowledge to ensure that generated ideas are relevant 

to the design problem. Hence, experts have been used to 

evaluate and screen crowdsourced ideas (i.e., human generated 

ideas) [10]. Similarly, crowds have been used to evaluate the 

perceptual attributes of new designs [45]. However, the 

functionality of 2D sketch ideas produced by computational 

tools has not been explored. If computational tools are to co-

create new products and solutions alongside designers, their 

capability to produce not only novel, but also functional ideas, 

needs to be explored.  
As stated by Rietzschel et al. : “idea generation is only 

part of the innovative process, and the availability of creative 

ideas is a necessary, but insufficient condition for innovation” 

[49]. This indicates that even if creative design ideas are 

generated, they will not advance innovation if they are not 

selected for further development. Unfortunately, human bias 

can have a direct impact on the screening and selection of 

ideas [50]. Studies indicate that decision-makers can 

experience ownership [51], framing [52], complexity [53], and 

even creativity biases [16]. Similarly, the human-computer 

interaction community has recognized that individuals can be 

biased towards automated systems [54]. This is known as 
Automation bias [55]. One of the factors that contribute to 

Automation bias is the trust given to automated support 

systems. This trust is the product of the humans’ perception of 

these systems as having superior analytical capabilities [56].  

For example, the results by Dzindolet et al. [57] indicate that 

participants expected an automated support system to 

outperform the human system in a visual detection task. These 

studies on Automation bias focus on safety and automation 

aids, and not directly on decision-makers bias towards 

sketches generated by deep generative design tools. Hence, as 

designers are increasingly integrating computational tools into 
the design process, their possible bias towards computer 

generated ideas and ability to accurately decipher between 

human and computer generated ideas need to be explored.   

As a result of existing knowledge gaps, the authors of this 

work present a crowdsourcing method to recruit human rater 

and explore the perceived functionality of 2D design sketches 

generated via a deep learning generative model. The perceived 
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functionality (i.e., the perception of how likely design sketches 

will perform a given function) of these computer generated 
sketches is compared against the perceived functionality of 

human generated sketches. Additionally, the ability of raters to 

distinguish between human and computer generated sketches, 

and their possible bias is explored.  In this work, the term 

‘sketch’ is used to mean a low-fidelity, rough 2D drawing 

representation of an idea. 

 

RESEARCH QUESTIONS 
The objective of this work is to explore the perceived 

visual and functional characteristics of computer generated 

sketches, compared to human created sketches. In addition, 

this work explores the possible biases that humans may have 
towards the functionality of computer generated sketches. 

Specifically, the hypotheses and research questions (RQ) this 

work aims to test and address are presented next:  

 

RQ1: How does the perceived functionality of 2D 

computer generated sketches compare to the functionality of 

human generated sketches?  

RQ2: Are individuals’ perceived functionality of 2D 

sketches biased towards computer generated sketches? 

RQ3: Are individuals capable of accurately distinguishing 

between 2D human generated sketches and computer 

generated sketches? 

The authors hypothesize that (h1): the perceived 

functionality of 2D sketches generated by a deep learning 

generative model is not significantly different from the 

perceived functionality of the 2D human generated sketches 

used to train the model. This hypothesis is founded on 

research that reveals that generative models can produce new 

2D sketches that still maintain a degree of similarity with the 

2D sketches used to train the model [7]. Testing this 

hypothesis will allow the authors to address RQ1. The 

hypothesis can be mathematically expressed as: 

(h1)  ho:  𝑃𝐹̅̅ ̅̅
𝐶  = 𝑃𝐹̅̅ ̅̅

𝐻      vs     ha:  𝑃𝐹̅̅̅̅
𝐶  ≠ 𝑃𝐹̅̅ ̅̅

𝐻      

Where,  

𝑃𝐹̅̅̅̅
𝐶 is the average perceived functionality of the 2D 

sketches generated by a deep learning generative model. 

𝑃𝐹̅̅̅̅
𝐻 is the average perceived functionality of the 2D 

human generated sketches used to train the deep learning 

generative model. 

Moreover, following RQ2, the authors hypothesize that 

(h2): individuals’ perceived functionality of 2D computer 

generated sketches is biased in comparison to their perceived 

functionality of human generated sketches. That is, individuals 
will perceive the functionality of the 2D sketches as greater 

when the sketches are explicitly presented as computer 

generated (i.e., with a label that says: “computer generated,” 

see Fig. 1). The research that indicates that humans perceive 

automated systems as having superior capabilities [56,57] 

supports this hypothesis, which can be mathematically 

expressed as: 

 

(h2)  ho: 𝑃𝐹̅̅̅̅
𝐶  = 𝑃𝐹̅̅ ̅̅

𝐶∗     vs     ha:  𝑃𝐹̅̅̅̅
𝐶 < 𝑃𝐹̅̅̅̅

𝐶∗            

Where,  

𝑃𝐹̅̅̅̅
𝐶∗ is the average perceived functionality of the 2D 

sketches  explicitly presented as computer generated 

 Finally, since deep learning generative models have been 

shown to generate human readable 2D sketches that were 

recognized to belong to a specific category [8], the authors 

hypothesize that (h3): individuals would not accurately 

distinguish between 2D sketches generated by a deep learning 

generative model and the 2D human generated sketches used 

to train the model. Testing this hypothesis will allow the 

authors to answer RQ3. This hypothesis can be 

mathematically expressed as: 

 (h3)  ho:  𝑃𝐶̅̅̅̅ = 0.5     vs     ha:  𝑃𝐶̅̅̅̅ ≠ 0.5              

Where,  

𝑃𝐶̅̅̅̅  represents the average accuracy of the raters when 

classifying the 2D  sketches as human or computer generated. 

CASE STUDY 
In order to address the previous research questions and 

test the proposed hypotheses, a case study in which 2D boat 

sketches generated by humans and a deep generative model 
were presented to raters recruited via a crowdsourcing 

platform.  

 

Dataset of 2D sketches 
For this case study, the Quick, Draw! dataset was 

implemented [58]. This dataset was acquired by Google via 

the Quick, Draw! game1. In this game, individuals are asked to 

draw a specific object within 20 seconds. The objects include 

but are not limited to: alarm clocks, bats, jackets, rabbits, and 

boats. For this case study, a total of 132,270 boat sketches 

were used as a training dataset for the Sketch-RNN2 algorithm 

presented by  Ha and Eck [35]. The algorithm generates new 
2D sketches by implementing a Recurrent Neural Network 

(RNN) based on a Variational AutoEncoder (VAE) framework  

[59]. Fig. 1 shows some of the human and computer generated 

boat sketches used in this work.  
 

 

1 https://quickdraw.withgoogle.com 
2https://magenta.tensorflow.org/sketch-rnn-demo 
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FIGURE 1. EXAMPLE OF HUMAN AND COMPUTER 
GENERATED BOAT SKETCHES 

 

Crowdsourcing 
In this work, Amazon Mechanical Turk1 (AMT) was used 

as the crowdsourcing platform to recruit raters. AMT has been 

previously used to evaluate the output of deep generative 

models [7,8]. Moreover, AMT has established itself as a 

valuable tool for behavioral research since studies have found 

no significant differences in the response consistency between 

internet users and laboratory participants [60,61]. Compared to 

other crowdsourcing platforms, AMT provides the benefits of 

(i) low cost, (ii) large rater pool access, and (iii) large rater 

pool diversity [61,62]. In this work, a total of 983 raters were 

recruited to evaluate a set of 100 boat sketches. This set of 
randomly selected sketches was composed of 50 human, and 

50 computer generated boat sketches. The raters were 

compensated $0.20 for their participation. In average, the 

raters spend 869.1 seconds to complete the experiment. Only 

raters with a 90% satisfaction rate (i.e., 90% of the 

questionnaires completed by the rater have been accepted) 

were allowed to participate in this experiment. Similarly, 

participants were only allowed to take the questionnaires once. 

These constraints were set following the guidelines for 

conducting research through  AMT [61]. In addition, other 

quality assurance controls were set in place (e.g., reading time, 

control questions), which are explained in the following 
sections.  

 
    

Questionnaire 
For this work, a between-subject experiment was 

implemented to test the effects that labeling the sketches as 

either human or computer generated had on participants’ 

response (i.e., RQ2). Once the participants consented to be 

part of the experiment, they were randomly assigned to one of 

25 conditions of the questionnaire. Each condition contained 

questions regarding a unique set of eight different 2D boat 

sketches. Each set of images was composed of:  (i) 2 human 

generated and (ii) 2 computer generated sketches without a 

label, as well as (iii) 2 human generated and (iv) 2 computer 

generated sketches with a label (see Fig. 1). The instructions 

provided to the participants on how to complete the 

questionnaire are shown in Fig. 2. For quality control 

purposes, the response of participants that spent less than 10 

seconds on the instruction page was not considered for 

analysis since it is assumed that they did not read the 

instructions carefully. Subsequently, participants were 

introduced to the five questions shown in Table 2. A 7-point 

liker scale was used for questions one, two, four, and five. 

Under questions two and five, the 2D environment shown in 

Fig. 2 was presented to participants. For questions one and 
four, the same 2D environment, without the boat sketch and 

force representation, was presented. Questions one and two 

allow the authors to address the research question RQ1; while 

questions four and five address the research question RQ2. 

Finally, question three addresses the research question RQ3. 

 
TABLE 2. QUESTIONS PRESENTED TO PARTICIPANTS 

Q1:     Please evaluate the following boat sketches based on 

how well they will float in the 2D environment shown below.  

Q2:    Please evaluate the following boat sketches based on 

how well they will move from point A (left) to point B 

(right) when a force is applied in the 2D environment as 

shown below. 

Q3: Please classify the following sketches as human-

generated (drawn by a person) or computer-generated (drawn 
by a computer).   

Q4:   Please evaluate the following computer and human 

generated boat sketches based on how well they will float in 

the 2D environment shown below. 

Q5:   Please evaluate the following computer and human 

generated boat sketches based on how well they 

will move from point A (left) to point B (right) when a force is 

applied in the 2D environment as shown below. 
 

 

1 https://www.mturk.com 

In this section, you will be shown 2D boat sketches and asked 
to evaluate them from 1 to 7 based on how well they 

will float in a 2D environment as the one 
shown below.  Additionally, you will be asked to evaluate them 
based how well they will move from point A to point B when a 
force is applied in the same direction, as shown below (like the 
force from a motor that results in a boat being propelled 
forward).  

 

 
FIGURE 2. INSTRUCTION PAGE FROM 

QUESTIONNAIRE 

 

 

 

 

 

 

https://www.mturk.com/
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On questions four and five, participants were shown 2 

human generated and 2 computer generated boat sketches with 
their respective labels as shown in Fig. 1. While for questions 

one, two, and three a different set of 2 human and 2 computer 

generated sketches without labels were presented. For each 

question one through five, the 2D boat sketches were 

presented in a random order. That is, the first sketch on 

question one might have been the fourth sketch on question 

two. Furthermore, in question three, there was an additional 

image that explicitly asked participants to select the “human-

generated” option. This was for quality control purposes. 

Participants that did not correctly answer this control question 

were excluded from the analysis. This was done to filter out 

participants that “clicked through” the questionnaire.  

 
RESULTS AND DISCUSSION 

After filtering the participants based on their response to 

the quality control question and time spent reading the 

instructions, the responses of only 619 participants (49.6% 

females) were used in this work. The age of the participants 

ranged from 18 to 76 years of age (μ= 35.95, σ=11.44). In this 

work, an alpha level of 0.01 is used to test the statistical 

significance of the results. Table 3 shows the summary 
statistics for the participants’ response to Q1, Q2, Q4, and Q5. 

 
TABLE 3. SUMMARY STATISTICS FOR Q1, Q2, Q4, AND 

Q5 

 

Computer generated Human generated 

 
µ median σ µ median σ 

Q1 5.13 6 1.64 4.41 5 1.94 

Q2 5.03 5 1.62 4.34 5 1.83 

Q4 4.99 5 1.6 4.13 4 1.91 

Q5 4.97 5 1.59 4.13 4 1.8 
 

 

Inter-rater reliability 

The inter-rater reliability of participants’ response to the 

conditions of the questionnaire was assessed via Cronbach’s 

alpha [63]. Fig. 3 shows the Cronbach’s alpha distribution for 

the different conditions of the questionnaire (i.e., sets of 

images). The results indicate that on average, participants’ 
responses had a Cronbach’s alpha of 0.828 (σ= 0.053). The 

results reveal that participants’ responses were more consistent 

when evaluating certain sets of images (i.e., conditions) 

(Cronbach’s alpha range= [0.739-0.916]). Overall, the 

Cronbach’s alpha indicates an acceptable inter-rater reliability 

(i.e., >0.7) [64]. This indicates that in general participants 

showed consensus in their responses. 

 

RQ1: Perceived functionality of sketches 

Figure 4 shows a plot of the participants’ responses to 

questions one (Q1) and questions two (Q2). The results 

indicate that for Q1, the average response of the computer 
generated sketches was significantly greater than the average 

response of the human generated sketches (t-value: 10.02, p-

value<0.001). Similarly, for Q2 the average response for the 

computer generated sketches was significantly greater than the 

average response of the human generated sketches (t-value: 

9.88, p-value<0.001). This reveals that the participants 

perceived the sketches generated by the deep generative model 

as more likely to float and move compared to the human 

generated sketches. Hence, indicating that the perceived 

functionality of 2D computer generated sketches was greater 

than the functionality of human generated sketches. Fig. 5 
shows the three human and computer generated sketches that 

on average were perceived as the most likely and less likely to 

move and float. These sketches do not show any major pattern 

that may provide evidence of their perceived functionally. 

Nonetheless, the test results provide enough evidence to reject 

the null hypothesis number one (h1). Previous research has 

revealed that deep generative models can be implemented to 

automatically generate new design ideas. However, these new 

design ideas have to meet its intended functionality in order to 

be considered creative. The findings of this work show the 

potential of deep generative design tools and their ability to 

generate ideas that are perceived as functional. These results 
indicate that deep generative design tools could potentially 

assist in creative tasks such as ideation.  

 
FIGURE 3. CRONBACH’S ALPHA DISTRIBUTION OF THE 

CONDITIONS OF THE QUESTIONNAIRE 

 
FIGURE 4. SUMMARY OF PARTICIPANTS’ RESPONSE 

TO Q1 AND Q2 

5.13

4.41

5.03

p<0.001

4.34

p<0.001
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RQ2: Perceived functionality bias  
Figure 6 shows a plot that compares the participants’ 

responses to question one (Q1) and four (Q4), as well as 

question two (Q2) and five (Q5). As stated previously, Q1 and 

Q2 presented sketches without labels; while Q4 and Q5 

presented sketches with their respective labels. The results 

indicate that the average response on Q1 and Q4 was not 

significantly different for the computer generated sketches (t-

value: 2.017, p-value=0.043). Nonetheless, for the human 

generated sketches the average response on Q1 and Q4 was 
significantly different (t-value: 3.434, p-value<0.001). 

Similarly, for Q2 and Q5, the average response was not 

significantly different for the computer generated sketches (t-

value: 1.015, p-value=0.31). The difference was only 

significant for the human generated sketches (t-value: 2.944, 

p-value=0.003). This reveals that the participants’ response 

regarding the perceived functionality of the computer 

generated sketches did not change significantly when 

explicitly presented as computer generated. In contrast,   

participants’ perceived functionality of human generated 

sketches did change significantly. These results do not provide 
enough evidence to reject the null hypothesis number two (h2). 

They indicate that participants’ perceived functionality of the 

computer generated sketches was not biased by explicitly 

presenting them as computer generated. However, that was not 

the case for the human generated sketches. While previous 

studies have shown that individuals can be subject to 

Automation bias [56,57], they did not explore the possible bias 

decision-makers may have towards the functionality of 

computer generated sketches. In this work, the results reveal 

that the perceived functionality of computer generated 

sketches was not biased by the fact that they were explicitly 

presented as computer generated. This indicates that during 

the evaluation and screening process of new design sketches, 

the individuals’ perceived functionality of computer generated 

sketches would not be biased by the fact they were not 

generated by a human. 
 

TABLE 4. CONFUSION MATRIX OF SKETCHES 
CLASSIFICATION 

 

 

Computer Human Total 

Computer 264 269 533 (22%) 

Human 974 969 1943 (78%) 

Total 1238 (50%) 1238 (50%) 2476 (100%) 
 
 

RQ3: Distinguishing between human and computer 
generated sketches  

Table 4 presented the confusion matrix for the 

participants’ response to question three (i.e., classification of 

sketches as human or computer generated). The results 

indicate that participants were capable of achieving a 

classification accuracy of only 49.8% (95% CI= [47.81%-

51.79%]).  This accuracy was not significantly different from 

random chance (i.e., 50%) (p-value=0.588). The 2-sample 

proportion test indicates that the proportion of correctly 
classified and incorrectly classified sketches was not 

significantly different for both computer generated 

(proportion=0.213), and human generated sketches 

(proportion=0.217) (𝜒2=0.038, p-value=0.844). These results 

do not provide enough evidence to reject the null hypothesis 

number three (h3). They indicate that individuals’ cannot 

accurately distinguish between 2D human generated and 

  
FIGURE 5. SKETCHES THAT ON AVERAGE WERE PERCEIVED AS MOST LIKELY AND LESS LIKELY TO MOVE AND 

FLOAT. 

Computer Generated
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Human Generated
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FIGURE 6. COMPARISON OF PARTICIPANTS’ RESPONSE TO Q1  vs. Q4 AND Q2 vs.Q5  
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computer generated sketches. Moreover, the results show that 

participants tended to classify sketches as human generated 
more frequently than computer generated. Along with the 

previous findings (i.e., h2), these results reveal that during the 

evaluation and screening process of new design sketches it 

may be helpful to avoid classifying the sketches as either 

human or computer. If decision-makers try to decipher the 

origin of a sketch, they will likely classify it as human 

generated, which may bias the evaluation and selection 

process. 

 

CONCLUSION AND FUTURE WORK 
Recent advancements in technology have allowed 

designers to implement computational tools to automatically 
generate large pools of new design ideas. Nonetheless, an idea 

needs to meet its intended functionality and be useful in order 

to be considered creative. Therefore, if computational tools are 

to co-create ideas and solutions alongside designers, their 

capability to produce not only novel, but functional ideas, 

needs to be explored. The ability to generate creative ideas is 

an insufficient condition for innovation because decision-

makers need to not only generate, but also select creative ideas 

for innovation to occur. Hence, decision-makers’ bias towards 

computer generated ideas and the ability to distinguish them 

need to be explored. In order to fill this knowledge gap, this 
work implemented a crowdsourcing method to explore the 

perceived functionality of 2D design sketches generated by a 

deep generative model. Additionally, the ability of raters to 

distinguish between human and computer generated sketches, 

and their bias toward them was explored. In summary, the 

results of this work indicated that: 

 

1. Computer generated sketches were perceived as more 

functional than the human generated sketches. 
 

2. The perceived functionality of computer generated 

sketches was not affected by explicitly presenting them 
as computer generated. 
 

3. The perceived functionality of human generated 

sketches was affected by explicitly presenting them as 

human generated. 
 

4. Individuals were not able to accurately distinguish 

between the human and computer generated sketches. 

 

The results revealed that participants perceived the 2D 

boat sketches generated by the deep generative model as more 

likely to float and move than the human generated sketches. 

These findings provide evidence that deep generative design 
tools are able to generate ideas that are perceived as 

functional. As these tools become more efficient at creating 

novel and functional ideas, researchers argue they will foster 

the designers’ creativity and help in creative tasks [4,36]. 

Moreover, the results of this work revealed that participants’ 

perceived functionality of computer generated sketches was 

not biased by explicitly presenting them as computer 

generated. In contrast, the results showed that participants’ 

perceived functionality of human generated sketches was 
significantly less on the sketches that were presented with 

labels than those presented without labels. The human-

computer interaction community has recognized that 

Automation bias can affect individuals’ perception of 

automated system’s capabilities. However, the results of this 

work did not provide enough evidence to support participants’ 

bias towards the functionality of 2D computer generated 

sketches. Finally, the results revealed that participants were 

not able to accurately classify the 2D sketches as either human 

or computer generated. These findings are in line with 

previous studies and reveal the capability of deep learning 

generative designs tools to generate new sketch ideas that are 
indistinguishable from human generated sketches [36]. 

However, the results also indicated that if decision-makers try 

to decipher the origin of a sketch, they will likely classify it as 

human generated. This inaccurate classification may impact 

the evaluation and selection process.  

While this work provides evidence that supports the 

capabilities of deep generative designs tools and their potential 

to assist designers in creative tasks, several limitations exist. 

For example, although the results indicate that participants’ 

perceived functionality of the computer generated sketches 

was statistically significantly greater than the human generated 
sketches, the practical significance of these differences (i.e., 

Q1Δ= 0.72, Q2Δ= 0.69) needs to be explored. Moreover, the 

effect of presenting the sketches with and without labels on 

participants’ perceived functionality cannot be disentangled 

from a possible order effect. This is because all the questions 

that contained sketches with labels (i.e., Q4 and Q5) were 

presented after the questions that contained sketches without 

labels (i.e., Q1 and Q2). Future work should explore how an 

individual’s attributes (e.g., gender, age, education level) 

impact his/her perceived functionality of computer generated 

ideas since studies have shown that the personality traits, risk 

attitudes, and gender of decision-makers can influence their 
selection of ideas [65–67]. Similarly, while the sketches in 

Fig. 5 do not show any major pattern that may provide 

evidence of their perceived functionally, future work should 

explore other methods to analyze the correlation between the 

visual characteristics and perceived functionally of the 

sketches. 
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