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A B S T R A C T

Introduction: Many chronic disorders have genomic etiology, disease progression, clinical presentation, and re-
sponse to treatment that vary on a patient-to-patient basis. Such variability creates a need to identify character-
istics within patient populations that have clinically relevant predictive value in order to advance personalized
medicine. Unsupervised machine learning methods are suitable to address this type of problem, in which no a
priori class label information is available to guide this search. However, it is challenging for existing methods
to identify cluster memberships that are not just a result of natural sampling variation. Moreover, most of the
current methods require researchers to provide specific input parameters a priori.
Method: This work presents an unsupervised machine learning method to cluster patients based on their genomic
makeup without providing input parameters a priori. The method implements internal validity metrics to algo-
rithmically identify the number of clusters, as well as statistical analyses to test for the significance of the results.
Furthermore, the method takes advantage of the high degree of linkage disequilibrium between single nucleotide
polymorphisms. Finally, a gene pathway analysis is performed to identify potential relationships between the
clusters in the context of known biological knowledge.
Datasets and results: The method is tested with a cluster validation and a genomic dataset previously used in
the literature. Benchmark results indicate that the proposed method provides the greatest performance out of
the methods tested. Furthermore, the method is implemented on a sample genome-wide study dataset of 191
multiple sclerosis patients. The results indicate that the method was able to identify genetically distinct patient
clusters without the need to select parameters a priori. Additionally, variants identified as significantly different
between clusters are shown to be enriched for protein-protein interactions, especially in immune processes and
cell adhesion pathways, via Gene Ontology term analysis.
Conclusion: Once links are drawn between clusters and clinically relevant outcomes, Immunochip data can be
used to classify high-risk and newly diagnosed chronic disease patients into known clusters for predictive value.
Further investigation can extend beyond pathway analysis to evaluate these clusters for clinical significance of
genetically related characteristics such as age of onset, disease course, heritability, and response to treatment.

1. Introduction

With advancements in genome-wide association study (GWAS) tech-
niques and the advent of low cost genotyping arrays, researchers have
developed a significant interest in applying Machine Learning (ML)
methods to mine knowledge from patients’ genomic makeup [1,2].
This knowledge has allowed researchers to improve gene annota

tion and discover relationships between genes and certain biological
phenomena [3,4].

The fields of personalized and stratified medicine benefit greatly
from ML. For example, many cases in the field of pharmacogenetics
have identified genetic variants with clinically actionable impacts on
drug response and metabolism [5,6]. Moreover, many chronic disor-
ders (e.g., asthma, diabetes, Crohn’s disease) have genomic etiology,
clinical presentation, and response to treatment that vary on a patient-
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to-patient basis. Such variability reveals a need to identify character-
istics within patient populations that have clinically relevant insights.
For example, Multiple Sclerosis (MS) is a chronic inflammatory disorder
in which progressive autoimmune demyelination and neuron loss occur
in the central nervous system. MS varies from patient-to-patient in ge-
nomic etiology, disease progression, clinical presentation, and response
to treatment. Hence, MS patients, like other chronic autoimmune pa-
tients, could benefit from ML methods that advance personalized medi-
cine.

Machine learning methods are commonly classified into supervised
and unsupervised methods. Supervised methods, such as Support Vector
Machines [7] and Random Forests [8,9], have been extensively used
in the field of bioinformatics. These methods classify new objects to a
determinate set of discrete class labels while minimizing an empirical
loss function (e.g., mean square error). However, supervised methods
require the use of a training set that contains a priori information of sev-
eral objects’ class labels. In contrast, unsupervised methods do not re-
quire a training set that contains a priori information of objects’ class
labels as input. Unsupervised methods are able to detect potentially in-
teresting and new cluster structures in a dataset. Moreover, they can be
implemented when class label data is unavailable. Hence, if the objec-
tive of a study is to discover the class labels that best describe a set of
data, unsupervised machine learning should be implemented in place of
supervised methods [2]. However, it is challenging for existing unsuper-
vised ML methods to identify object memberships that are due to the un-
derlying cluster structures in the dataset, rather than the results of nat-
ural sampling variation [10]. Moreover, most current methods require
researchers to provide certain input parameters a priori (e.g., number of
clusters in the dataset), which can limit their applicability.

In light of the limitations of existing methods and the need to
advance personalized medicine, an unsupervised machine learning
method to cluster patients based on their genomic similarity is pre-
sented. The method integrates statistical analysis that accounts for fam-
ily-wise-error rate, allowing the method to identify clusters resulting
from the underlying structure of the data and not just due to random
chance. Moreover, the method takes advantage of the high degree of
linkage disequilibrium between Single Nucleotide Polymorphisms (SNP)
by pruning correlated nearby SNPs, which helps reduce redundant vari-
ants in the dataset. Finally, a gene pathway analysis shows the poten-
tial relationships between the clusters in the context of known biological
knowledge. The proposed method is capable of clustering patients based
on their genomic similarity without a priori information. Moreover, it is
capable of identifying the significant variants (i.e., SNPs) between pa-
tient sub-groups within a cohort with a common disorder. Successfully
identifying distinct genetic subtypes of patients within genomic datasets
demonstrates the potential of this method to advance personalized med-
icine of complex diseases with heritable components, especially autoim-
mune disorders which have many shared susceptibility loci [11].

2. Literature review

In the last decade, the field of bioinformatics has seen a significant
number of publications implementing unsupervised machine learning
methods, such as clustering algorithms [12–14]. Clustering algorithms
partition data objects (e.g., genes, patients) into groups (i.e., clusters),
with the objective of exploring the underlying structure on a dataset
[15]. In the medical field, these algorithms have been implemented to
identify sets of co-expressed genes [16], compare patients’ prognostic
performance [17], cluster patients based on their medical records [18],
and identify subgroups of patients based on their symptoms and other
variables [19].

In previous work, genomic stratification of patients (i.e., stratified
medicine) has been able to match specific therapy recommendations to

genetic subpopulations by predicting therapeutic response [5,6]. How-
ever, most of these studies implemented class label data (i.e., response
to treatment) to cluster patients. In clinical datasets, class label informa-
tion is not widely available for convenient patient clustering. Unsuper-
vised machine learning methods can be used in such cases to identify
clusters within the dataset. Further investigation of genetic subgroups
within a cohort of patients can offer a better clinical prediction of age
of onset, disease course, heritability, and response to therapy, leading to
improved outcomes [20].

2.1. Hierarchical clustering algorithms

Agglomerative hierarchical clustering algorithms are one of the most
frequently used algorithms in the biomedical field [21,22]. Researchers
have found that hierarchical clustering algorithms tend to perform bet-
ter than other algorithms (e.g., k-means, partitioning around Medoids,
Markov clustering) when tested o n multiple biomedical datasets [23].
The objective of any agglomerative hierarchical clustering algorithm is
to cluster a set of n objects (e.g., patients, genes) based on an n×n simi-
larity matrix. These clustering algorithms have grown in popularity due
to their capability to simultaneously discover several layers of cluster-
ing structure, and visualize these layers via tree diagrams (i.e., dendro-
gram) [10]. Even though these algorithms allow for easy visualization,
they still require preselecting a similarity height cut-off value in order
to identify the final number of clusters. In other words, it still requires
researchers to know a priori the number of cluster in the dataset.

Agglomerative hierarchical clustering algorithms can be imple-
mented with different linkage methods. For example, Ahmad et al. [17]
implemented the Ward’s linkage method to compare patients’ prog-
nostics performance; while Hamid et al. [19] implemented the Com-
plete linkage method to identify unknown sub-group of patients. Un-
fortunately, depending on the underlying structure of the data, differ-
ent clustering results can be obtained by implementing different linkage
methods. Ultsch and Lötsch [24] demonstrated that neither the Single
nor Ward’s linkage methods provided similar clustering results when
tested with the Fundamental Clustering Problem Suite (FCPS) datasets
[25]. Their results reveal that these linkage methods were able to cor-
rectly cluster all the objects in only a subset of the FCPS datasets. Sim-
ilarly, Clifford et al. [26] discovered that while testing multiple simu-
lated GWAS datasets, the linkage methods of Median and Centroid were
the only ones to consistently be outperformed by the Single, Complete,
Average, Ward’s, and McQuitty methods. In light of these, Ultsch and
Lötsch [24] proposed the use of emergent self-organizing map to visual-
ize clustering of high-dimensional biomedical data into two-dimensional
space. Even though, their method allowed for better visualization, it still
required preselecting the number of clusters as well as other parameters
to perform correctly (e.g., toroid grid size) [24].

2.2. Parameter selection in clustering algorithms

In order to avoid preselecting input parameters a priori (e.g., the
number of clusters), researchers have implemented cluster validation
metrics. For example, Clifford et al. (2011) [26] proposed a method
that aimed to capture the clustering outcome of multiple combinations
of linkage method and similarity metric based on the Silhouette index
[27]. The Silhouette index was used to rank the results of the cluster-
ing combinations, and select the best cluster set (i.e., cluster set with
largest average Silhouette index). Similarly, Pagnuco et al. [16] pre-
sented a method that implemented several linkage methods and imple-
mented modified versions of the Silhouette and Dunn indices [28] to
select the final clustering results. Both the Silhouette and Dunn indices
served as internal cluster validation metrics (i.e., no external informa-
tion needed) to guide the selection of the final cluster set. However, the
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Silhouette index has been shown to have a stronger correlation with ex-
ternal cluster validation metrics, such as the Rand Index, than the Dun
index [28,30].

The methods of Clifford et al. and Pagnuco et al. did not require se-
lecting the number of clusters a priori due to the internal cluster valida-
tion metrics implemented. These metrics allow for algorithmic selection
of the number of clusters. Nonetheless, the computational complexity of
testing all potential clusters increases linearly with the number of ob-
jects in the dataset. Other studies have implemented model-based clus-
tering methods to overcome these limitations. For example, Sakellariou
et al. [29] implemented an Affinity Propagation [30] algorithm to iden-
tify relevant genes in microarray datasets. Shen et al. [31] implemented
an Expectation-Maximization algorithm [32] to cluster genes based on
an integration of multiple genomic profiling datasets. However, models
based methods make underlying assumptions that might not be applica-
ble in certain datasets [33].

Recently, Khakabimamaghani and Ester [34] presented a Bayesian
biclustering method to identify clusters of patients. They benchmarked
their method against the multiplicative Non-negative Matrix Factoriza-
tion (NMF) algorithm proposed by Lee and Seung [35]. Their results
revealed that their Bayesian biclustering method was more effective
in patient stratification than the NMF. While this Bayesian bicluster-
ing method did not require selecting the number of clusters a priori, it
did require selecting parameters for prior probability distributions. The
capability of biclustering algorithms to discover related gene sets un-
der different experimental conditions, have made them popular within
the bioinformatics community [36]. One of the first works in this area
was presented by Cheng and Church [37]. They proposed an iterative
greedy search biclustering algorithm to cluster gene expression data.
Even though their method did not require selecting the number of clus-
ters a priori, it did require the selection of hyperparameters (e.g., maxi-
mum acceptable error).

2.3. Statistical significance of clustering results.

Even though the methods of Clifford et al. and Pagnuco et al. aimed
to find the optimal clustering outcome from multiple algorithms, which
resembled the consensus clustering approach (i.e., approach in which a
solution is identified by validating multiple outcomes) [38], their meth-
ods did not account for possible clustering memberships arising due to
random variation. Whether identified clusters memberships are due to
underlying cluster structures in the data or are just a result of the nat-
ural sampling variation, is a critical and challenging question that needs
to be addressed when clustering high-dimensional data [10]. To ad-
dress this question, Suzuki and Shimodaira [39] presented the pvclust R
package, which calculates probability values for each cluster using non-
parametric bootstrap resampling techniques. Even though pvclust allows
for parallelized computing, it requires significant time (i.e., 480 mins)
when implemented in genomic datasets. This is due to the large number
of resampling iterations (i.e., 10,000) required to reduce the error rate
[39]. In contrast, Ahmad et al. [17] applied a non-parametric analysis
of variance (ANOVA) Kruskal-Wallis test to compare the clusters within
a hierarchical clustering method. Similarly, Bushel et al. [40] imple-
mented a single gene parametric ANOVA test to assess the effects of
genes on hierarchical clustering results. Recently, Kimes et al. [10] pro-
posed a method based on a Monte Carlo approach to test the statistical
significance of hierarchical clustering results while controlling for fam-
ily-wise-error rate. However, family-wise-error rate can also be controlled
while applying repetitive statistical tests by implementing a Bonferroni
correction [41].

2.4. Integrating domain knowledge into clustering algorithms

Other frequently used clustering algorithms in the bioinformatics
field are k-means and fuzzy c-means. However, these algorithms require
initial random assignments of the clusters, which can produce inconsis-
tent results [26]. Hence, they might fail to converge to the same results,
even after multiple initiations using the same dataset [21]. In light of
these limitations, Tari et al. [21] proposed the “GO Fuzzy c-means” clus-
tering algorithm. Their method resembles the fuzzy C-mean algorithms
[42] and implements Gene Ontology annotation [43] as biological do-
main knowledge to guide the clustering procedure. Even though this
method assigned genes to multiple clusters, which could have improved
the biological relevance of the results, it was not capable of discriminat-
ing the cluster memberships that were assigned due to random chance.
While the algorithm parameters selected in this study might have been
reasonable for the dataset analyzed, the authors highlighted that future
studies would need to experimentally determine these parameters. Sim-
ilarly, Khakabimamaghani and Ester [34] integrated domain knowledge
via the selection of parameters for prior probability distributions. How-
ever, their results reveal that the selection of these parameters had a di-
rect impact on their clustering results. When analyzing the effects of pri-
ors, the authors indicate that “final selected priors favor better sample clus-
tering over better gene clustering” [34]. These findings reveal that the pa-
rameters need to be carefully selected since they can bias their method
towards better sample clustering rather than better gene clustering re-
sults.

Researchers can implicitly integrate domain knowledge to their
methods by judiciously selecting the input data of their algorithms [2].
Genomic datasets may include relevant features as well as correlated
and non-informative features. The presence of correlated and non-in-
formative features might obscure relevant patterns and prevent an al-
gorithm from discovering the underlying cluster structure of a dataset
[19]. Genomic data is generally high-dimensional because the number
of features is frequently greater than the number of samples. Addition-
ally, genetic variants are commonly correlated with other variants in
close proximity on DNA. Therefore, when clustering genomic data, it is
important to prune non-informative and correlated features [2,9].

Highly correlated SNPs are said to be in Linkage Disequilibrium
(LD). This characteristic makes it challenging for unsupervised ML algo-
rithms to discover relevant cluster structures in the dataset. GWA stud-
ies present significant associations as tag SNPs, implying a true causal
SNP can be found within the LD block of a tagged location [11]. LD
pruning refers to removing highly correlated SNPs within LD blocks.
For example, Yazdani et al. [44] identified a subset of informative SNPs
based on a correlation coefficient. Similarly, Goldstein et al. [9], im-
plemented several correlation coefficient cut-off values (e.g., 0.99, 0.9,
0.8, 0.5) to remove SNPs with high LD. They achieved this by using the
toolsets for Whole-Genome Association and Population-Based Linkage
Analyses (PLINK) [45], resulting in a reduction of up to 76% of the orig-
inal dataset. This reduction decreased the computational complexity of
their method [9]. However, researchers have not agreed yet on a stan-
dard correlation coefficient cut-off value that can be applied to every
genomic dataset to reduce complexity without incurring in significant
information loss.

Table 1 shows a summary of the current clustering methods in the
field of bioinformatics applied to genomics data. It can be shown that
multiple methods prune the SNPs of their datasets based on the degree
of LD between nearby SNPs. This is done in order to guide their clus-
tering search and remove potentially non-informative features. How-
ever, the vast majority of existing methods still require preselecting the
number of clusters and other parameters a priori (e.g., prior probability
distributions, toroid grid size). Moreover, the current methods do not
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Table 1
Summary of current methods.

Papers LD Pruning Automatic selection of k* Statistical tests performed No selection of parameters required ǂ

[9,11,19,21] X
[40] X X
[16,26,29,31,34,35,37] X
[10,17,39,46], X
This work X X X X

* k is the parameter defining the number of cluster in the dataset.
ǂ No parameters or hyperparameters are required to be known or selected a priori by researchers (e.g., prior probability, toroid grid size).

commonly implement statistical analysis to test for the significance of
their results, or to account for possible family-wise-error rates.

In light of the aforementioned limitations, an unsupervised ma-
chine learning method is presented in this work that seeks to identify
sub-groups within cohorts of patients afflicted with the same disease.
This is done by clustering patients based on their genomic similarity
without the need of a priori input parameters. The method presented
in this work takes advantage of LD between SNPs by pruning corre-
lated SNPs. In addition, it automatically selects the number of clusters
by implementing an internal validation metric. The method ensembles
the clustering outcomes of multiple linkage methods via a majority vote
approach. Subsequently, it tests for statistical significance among re-
sults while accounting for family-wise-error rate. Finally, a gene pathway
analysis is performed to support the potential medical significance of
the results.

3. Method

An unsupervised machine learning method is presented that does not
require selection of input parameters a priori. The method can help iden-
tify patient cluster structures within genomic data and potentially dis-
cover valuable differences between them. This knowledge can be used
to advance personalized medicine of complex diseases with heritable
components, especially autoimmune disorders which have many suscep-
tibility loci. Fig. 1 shows an outline of the method presented in this
work.

3.1. Linkage disequilibrium pruning

Pruning SNPs based on LD serves as a feature reduction step. Thus,
in the proposed method, SNPs that are strongly correlated to other
nearby SNPs are pruned, as previously done in the literature. The de-
gree of LD between SNPs is assessed by calculating the correlation coef-
ficients based on a sliding window method. In this method, cut-off val

Fig. 1. Outline method.

ues of (i) 0.999, (ii) 0.99, (iii) 0.9, (iv) 0.8 and (v) 0.5 are employed.
Previous studies have shown these cut-off values provide a balance be-
tween error reduction and information loss [9]. Hence, five subsets of
patients’ genomic data containing different sets of SNPs (i.e., features)
are generated. The subsets generated serve as input for the hierarchical
clustering step.

3.2. Hierarchical clustering

The objective of the unsupervised machine learning method pre-
sented in this work is to cluster patients based on their genomic similar-
ity. Patients’ genomic similarity can be evaluated using a wide range of
distance metrics [26]. The selection of the appropriate distance metric
is driven by the type of data under analysis (e.g., ratio, interval, ordinal,
nominal or binary scale). For example, the Euclidian distance is appro-
priated for ratio or interval scale data, while the Manhattan distance for
ordinal scale data [47].

Subsequently, the method presented in this work employs an ag-
glomerative hierarchical clustering algorithm. Hierarchical clustering
algorithms are frequently used with only one linkage method, which
can limit their ability to identify underlying cluster structures in certain
datasets [24]. Hence, in this work, multiple linkage methods are imple-
mented. The linkage methods used in this work have been shown to con-
sistently outperform other methods when tested with simulated GWAS
datasets [26]. The cluster results obtained by implementing different
linkage methods are ensemble in the subsequent steps. This ensemble
takes advantage of the performance of multiple linkage methods. More-
over, it helps identify the underlying structure of the data, since the en-
semble approach will favor cluster structures identified by the majority
(i.e., via a majority vote approach) of the linkage methods. Specifically,
the authors propose to implement:

(i) Single Linkage (or Minimum Linkage).
(ii) Complete Linkage (or Maximum Linkage).

(iii) Average Linkage (or Unweighted Pair Group Method with Arithmetic
Mean, UPGMA).

(iv) Ward’s Linkage.
(v) McQuitty Linkage (or Weighted Pair Group Method with Arithmetic

Mean, WPGMA).

3.3. Parameter selection

Once the agglomerative hierarchical algorithm is implemented, the
Silhouette index is employed as an internal validity metric. This in-
dex has been used in previous studies to rank the results of multiple
clustering algorithms outcomes and guide the selection of final clusters
[16,26]. Nonetheless, in this method, the index is used to select the
number of clusters for all combinations of LD pruning data subsets (see
Section 3.1) and linkage methods (see Section 3.2). The number of clus-
ters that provides the largest average Silhouette index value in each of
the combinations is selected.

The computational complexity of testing all possible numbers of
clusters increases linearly as the number of objects in a dataset in
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creases. This can be a challenge in datasets that contain a large number
of objects, even with parallelized computing. In this work, an optimiza-
tion approach is presented to identify the number of clusters that max-
imizes the average Silhouette index. The mathematical formulation of
this optimization problem is as follows:

(1)

(2)

(3)

(4)

(5)

(6)

where,

SI: is the average Silhouette index of the clusters set K
K: is the set of clusters obtained with the hierarchical clustering algo-
rithm for a given number of k disjoint clusters
ηi: is the number of objects that belongs to cluster Ci, for

S(x):is the Silhouette of object x, for x ∈ Ci
a(x): is the average similarity of object x with all other objects that be-
long to the same cluster of x (i.e., Ci)
b(x): is the average similarity of object x with the objects from the near-
est clusters Cw, forw∈setofcluster{K},i≠w.

Eq. (1) represents the objective function that needs to be maximized
(i.e., the average Silhouette index). Eq. (2), shows the mathematical rep-
resentation of the average Silhouette index, while Eq. (3) shows the sil-
houette of a given object x. Both Eqs. (4) and (5) represent the elements
that constitute the Silhouette index of a given object x [27]. Finally, Eq.
(6) constrains the search for the number of clusters to be greater than 1
and less than the total number of objects n (i.e., the maximum number
of clusters). Since the objective function is non-linear with respect to the
parameter k (i.e., number of clusters), this optimization problem needs
to be solved with a non-linear optimization algorithm. In the literature,
there are several algorithms suitable to solve this type of optimization
problem [48]. Nonetheless, the method is not constrained to any spe-
cific optimization algorithm.

Once the number of clusters is identified in all datasets combination,
the results are aggregated into a final cluster set via a majority vote ap-
proach. Table 2 shows an example of this consensus clustering approach
in which patient i is assigned to the final cluster 1 since the majority of
the cluster results assigned that patient to that given cluster. Similarly,
patient n is assigned to the final cluster 2, since the majority of clusters
assigned this patient to this cluster.

Table 2
Example of consensus clustering.

No.
LD
pruning

Linkage
method

Patient i
cluster

Patient
n
cluster

1 1 Single 1 2
2 0.99 Single 1 2
3 0.90 Single 1 1
4 0.8 Single 1 2
5 0.5 Single 2 1
… … …
24 0.8 McQuitty 2 2
25 0.5 McQuitty 1 2
Final Cluster 1 2

3.4. Statistical significance

After the final patient clusters are discovered, a single SNP ANOVA
test is performed to reveal the SNPs that are statistically significantly
different between the clusters of patients. This step helps validate that
the clusters generated are different by at least one associated SNP. To
account for family-wise-error-rate a Bonferroni correction is applied by
dividing the alpha value by the number of tested SNPs. In the case that
no SNPs are found to be statistically significantly different, it can be
concluded that the resulting patients’ clusters might have arisen due to
random chance.

3.5. Gene pathway analysis

The set of SNPs significantly associated with differences between pa-
tient clusters can be explored via Gene Ontology (GO) enrichment and
mutational burden on molecular pathways. By assigning each SNP to a
gene and performing a gene network analysis, (e.g., via STRING-DB soft-
ware [49]), visualizations of gene networks and estimations of signifi-
cant enrichment along GO terms could provide evidence for potential
biological significance. The significance is assessed by comparing the
number of evidence-based relationships between selected genes to the
number expected in a set of randomly selected genes. If an enrichment is
established, the related genes are examined by their molecular function,
biological relevance, and known associations to the disease from GWA
studies. While pathway analysis does not provide the rigor of direct ex-
periment or clinical trial, it remains valuable in determining whether se-
lected genes are functionally relevant to the disease studied, as opposed
to being a function of other factors such as ethnicity.

4. Application

The performance of the proposed method is first tested on the
datasets presented in the Fundamental Clustering Problem Suite (FCPS)
[25]. The FCPS contains 10 different datasets designed to assess the
performance of unsupervised machine learning algorithms on particu-
lar clustering challenges (e.g., outliers, undefined cluster boundaries).
The ground truth data of cluster membership are used to test the per-
formance of the method in identifying clusters resulting from the un-
derlying structures in the data and not just from random variation.
To measure this performance, the Rand index [50] validation metric
is employed. Moreover, the performances of other existing methods in
the literature are benchmarked with the same datasets. All the bench-
mark analyses were performed on a 12 Core i7 3.4GHz Intel™ com-
puter with 62.8GB of RAM and Ubuntu 16.04 LTS. The benchmark
methods were implemented in R v.3.4 [51] with the used of the pack
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ages mclust v.5.3 [52], apcluster v.1.4.4 [53], DatabionicSwarm v.0.9.8
[54,55], NNLM v.0.4.1 [35], and biclust v.1.2.0 [56].

Two genomic datasets are used to compare the performance of the
proposed method against other state of the art methods in the litera-
ture. The benchmark methods include those that do not require provid-
ing the number of cluster a priori. I.e., Clifford et al. [26]: hierarchical
clustering algorithm with silhouette index, Sakellariou et al. [29]: Affin-
ity Propagation clustering algorithm, Shen et al. [31]: Expectation Max-
imization clustering algorithm, and Cheng and Church [37]: Iterative
Greedy Search Biclustering algorithm. Frist, the microarray gene expres-
sion data of patients with lymphoblastic and acute myeloid leukemia
from Golub et al. [57] was implemented. The dataset is publically avail-
able at the Broad Institute and has been previously used to test the per-
formance of clustering algorithms [23,58]. The dataset is composed of
microarray gene expression data of 999 genes for 27 patients with acute
lymphoblastic leukemia and 11 patients with acute myeloid leukemia.

Lastly, a dataset of patients diagnosed with MS is employed. DNA
samples from 191 Multiple Sclerosis (MS) patients consented via the
Pennsylvania State University PRIDE protocol at Hershey Medical Cen-
ter were subjected to the Immunochip assay (Illumina). Allelic varia-
tions were measured at previously described susceptibility loci for mul-
tiple immune-mediated disorders [59,60]. The Y chromosome data were
filtered out of the dataset to simplify comparisons in a predominantly fe-
male cohort. Mitochondrial markers were discarded for analysis as well.
Genotype calling was done with Illumina GenomeStudio v.2011.1 (www.
illumina.com), and genotype markers were excluded if their GenTrain
score was less than 0.8, or if their call rate across the cohort was less
than 0.99. Finally, the MS dataset was filtered such that only variants
within coding regions (i.e., exons), were considered. Therefore, the MS
dataset was composed of 191 patients and 25,482 SNPs.

With the MS dataset, a 10-fold cross-validation analysis was per-
formed with the objective to test the performance of the proposed and
the benchmark methods, as well as to provide evidence regarding their
propensity of overfitting genomic datasets. In this cross-validation ap-
proach, the MS dataset was randomly partitioned into 10 subsets. Sub-
sequently, the methods were used to cluster the patients within these
subsets. The clustering results obtained from the 10 subsets were com-
pared to those from the complete dataset. The agreement between the
clusters generated with the complete MS dataset and the 10-fold subsets
is assessed with the Rand index metric. A match between the clustering
results (e.g., average Rand index of 1) will indicate that the proposed
method was not overfitting the MS dataset, thus, providing arguments of
its generalizability. Moreover, it will support that the method was iden-
tifying clusters due to underlying structures in the data and not just due
to random variations. Finally, the groups of SNPs identified by the pro-
posed method to achieve statistical significance between clusters gener-
ated were examined via gene pathway analysis.

4.1. Linkage disequilibrium pruning

For the MS dataset, the pruning of SNPs with a high LD was done
based on the correlation-coefficient cut-off values found in the litera-
ture, as proposed in Section 3.1. LD pruning was performed using the
widely used genotype analysis toolset for Whole-Genome Association
and Population-Based Linkage Analyses (i.e., PLINK) [45]. This prun-
ing resulted in a reduction of the original dataset as presented in Table
3. These percentages of SNPs removed are consistent with the results
found in previous studies.

Table 3
LD Pruning summary.

R2 cut-off
value

Number of SNPs
retained

Percentage of SNPs
removed

0.50 5460 78.57%
0.80 6849 73.12%
0.90 7421 70.88%
0.99 8666 65.99%
0.999 8691 65.89%

4.2. Hierarchical clustering

The FCPS and Golub et al. [57] datasets contain features that are
in ratio scale. Hence, to measure the similarity between the objects in
the datasets, the Euclidian distance is implemented. Genotype data can
be ordinal or additive scale, depending on whether heterozygous SNPs
are treated as a label or as a half-dosage. While additive models are
more often used for GWA studies, in this work, ordinal scale was used to
demonstrate flexibility in the described clustering method. Hence, the
genomic similarity of MS patients based on different subsets of pruned
data is evaluated using the Manhattan distance metric. The similarity
calculations and the agglomerative hierarchical algorithm with multiple
linkage methods were performed in R v.3.4 [51].

4.3. Parameter selection

The selection of the number of clusters k that maximized the average
Silhouette index was performed with a generalized simulation anneal-
ing algorithm. This algorithm was selected due to its underlying the-
ory and proven performance in problems with non-linear objective func-
tions [61,62]. The algorithm was implemented via the R package GenSA
v.1.1.6 [63]. Nonetheless, other non-linear optimization algorithms or
greedy heuristics can also be implemented. Once the number of clus-
ters in every combination of LD pruned data and linkage method are se-
lected, the clustering results are ensemble via a majority vote approach
(see Section 3.3).

4.4. Statistical significance

After the final clusters have been selected based on the average Sil-
houette metric and consensus clustering approach the statistical signifi-
cance of the results is evaluated. Clusters’ median values for each of the
p features in the MS dataset are evaluated via a single SNP non-para-
metric ANOVA Kruskal-Wallis test [46]. To account for family-wise-error
rate, a Bonferroni correction is applied to the significance alpha level of
0.05 (i.e., Bonferroni correction=0.05/p, for p=25,482).

4.5. Gene pathway analysis

Gene variants that show statistical significance are further analyzed
via a gene pathway analysis to explore their potential medical sig-
nificance. Pathway analysis starts with generating a list of genes de-
termined from the set of SNPs with strong evidence of significance
between patient clusters. Inputting the gene set via the STRING-DB
software algorithms [49] allows for convenient calculation of path-
way enrichment hypothesis tests and visualization of the gene network.
STRING-DB determines gene relationships by aggregating several data-
bases into an evidence score. Experimental evidence comes from the
BIND [64], GRID [65], HPRD [66], IntAct [67], MINT [68], and PID
[69] databases. In addition, STRING-DB pulls from the curated data-
bases KEGG [70], Gene Ontology [43], BioCarta [71], and Reactome
[72]. Interaction frequency is tested for enrichment compared to expec
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tation from a random sampling of genes, with p-values and false discov-
ery rates reported for enrichment in specific cellular processes, defined
by Gene Ontology references. After statistical testing is done, the gene
network is used as a threshold for high confidence interaction and a
k-means clustering algorithm is performed for visualization purposes.

5. Results

5.1. FCPS benchmark results

The majority of existing methods in the literature require the selec-
tion of parameters a priori (e.g., number of clusters, see Table 1). Hence,
to benchmark with multiple methods, the number of clusters provided
by the FCPS was used as input when testing these methods. Fig. 2 shows
the average Rand index obtained in the FCPS datasets by the method
proposed in this work (i.e., Proposed) and the methods benchmarked.
This plot shows that on average the proposed method outperformed
other methods, with an average Rand index of 0.852. The performance
is statistically significantly greater than the results of the methods pro-
posed by Cheng and Church, Sakellariou et al., Lee and Seung, Ultsch
and Lötsch, and Clifford et al.. Even though these results indicate that,
on average, the proposed method achieved the largest Rand index, there
is not enough evidence to conclude that it was statically significantly
greater than the Rand index achieved by the methods of Shen et al.,
Hamid et al., or Ahmad et al., at an alpha level of 0.05. This can be at-
tributed to the relatively small group of validation datasets provided in
the FCPS (i.e., 10 datasets).

Similarly, Fig. 3 shows the proportion of the FCPS datasets that
achieved a clustering result with a Rand index of 1 (i.e., perfect clus-
tering) for each of the given methods. The results reveal that the pro-
posed method was able to obtain a Rand index of 1 in 6 out of the 10
FCPS datasets. The results from the Wilcoxon tests indicate that these re-
sults are statistically significantly greater than the results of the methods
proposed by Ultsch and Lötsch, Cheng and Church, Lee and Seung, and
Sakellariou et al.. Even though the results indicate the proposed method
correctly clusters the largest percentages of datasets (i.e., 6/10), there is
not enough evidence to conclude that this proportion is statically signif-
icantly greater than the ones from the other methods benchmarked, at
an alpha level of 0.05. Nevertheless, these results provide evidence that
the method presented in this work is able to identify true clusters in a
wider range of datasets with different underlying structures.

Fig. 2. Average Rand index for FCPS datasets.

Fig. 3. The proportion of results with Rand index of 1 for FCPS datasets (i.e., perfect clus-
tering).

5.2. Genomic dataset benchmark results

Fig. 4 presents the Rand index obtained on the Golub et al. dataset
[57] by the method proposed in this work and the benchmark methods
that do not require providing the number of clusters a priori. Fig. 4 indi-
cates that the proposed method performed better than the methods pre-
sented by Clifford et al., Cheng and Church, and Sakellariou et al.

Fig. 5 shows the average Rand index obtained with the MS dataset
and the 10-fold cross-validation approach by the proposed and bench-
mark methods. The iterative greedy search Biclustering algorithm pro-
posed by Cheng and Church was not able to find any cluster structure
in the MS dataset; hence it was not included in this plot. The plot shows
that on average the proposed method outperformed the other meth-
ods, with an average Rand index of 0.969. This is statistically signifi-
cantly greater than the values obtained with the other methods bench-
marked. Moreover, the average Rand index obtained by the proposed
method was not significantly different than an average Rand index of 1
(t-value: −1.963, p-value=0.0812), at an alpha level of 0.05. This re-
veals that on average the proposed method found a perfect match be-
tween the clusters of patients obtained with the complete MS dataset
and the cross-validation subsets.

Table 4 shows the confusions matrix of the clusters obtained with
the proposed method when implementing the 10-fold cross-validation
approach. The table indicates that the proposed method was able to

Fig. 4. Rand index for Leukemia dataset.
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Fig. 5. Average Rand index for MS dataset.

Table 4
MS dataset 10-fold cross-validation confusion matrix.

Complete dataset

Cluster 1 Cluster 2

Data subsets Cluster 1 172 0
Cluster 2 7 12

group 96.33% of the patients’ in the same clusters when both the com-
plete dataset and the different data subsets were used (i.e., accuracy of
0.96), which is in line with the average Rand index of 0.969 shown in
Fig. 5. The Rand index and confusion matrix results indicate that the
proposed method identified a similar cluster structure even with differ-
ent subsets of the MS dataset. This indicates that the proposed method
was not overfitting the dataset. Furthermore, it provides evidence that
supports that the method was able to identify clusters due to the under-
lying structure of the data and not just due to random change.

The results from the pathway analysis on the set of statistically sig-
nificant different SNPs between the MS patient clusters are shown in
Fig. 6. The cluster-defining SNPs show significantly more interactions
than expected among a random sampling of genes. Out of 515 genes,
1463 interactions were found, with only 942 expected by chance (p-

Fig. 6. Gene pathway analysis results.

value: 1.04e−10), among a background set of 4938 genes present on the
Immunochip. The gene interactions in the set shown in Fig. 6 demon-
strate a high prevalence of cellular adhesion, cytokine response, and
general immune process pathways.

Table 5 shows relationships between genes based on evidence from
literature via STRING-DB [49]. The highly connected pathway depicted
contains many genes known to be involved in cell adhesion and leuko-
cyte physiology, both of which are processes dysregulated in MS [73].
Additionally, the genes selected show significant Gene Ontology term
enrichment in these categories, with false discovery rates less than 0.01.
Taken together, pathway analysis reveals that extracting significant fea-
tures between clusters may be a valid feature reduction technique for
downstream analysis. Genes known to be relevant in MS pathophysiol-
ogy (e.g., interleukin receptors, STAT transcription factors, lymphocyte
surface proteins from the CCR family) were highlighted despite no use
of supervised methods and label data, implying that the proposed unsu-
pervised method’s value is not just discovering patient clusters, but re-
ducing the dimensionality by nearly 20-fold with few samples (i.e., from
over 25,482 features to around 1500, using 191 samples).

As a secondary observation, an analysis was done on the MS dataset
after pruning samples which showed greater than 0.2 similarity in
PLINK’s Identity-By-Descent (IBD) algorithm [74]. This was done to re-
move potentially related patients from the analysis. IBD identified a to-
tal of 11 potentially related patients, from whom 10 were initially as-
signed to cluster number two. Consequently, after removing these po-
tentially related patients from the MS dataset and applying the proposed
method, the number of patients in the second cluster was reduced from
12 to 2, and no pathway enrichment was detected. However, the 120
genes detected still included T-cell relevant proteins such as STAT and
JAK, as well as members of the tumor necrosis factor and interleukin
families, supporting the claim that the method identified SNPs relevant
to the disease process even if the sample size of the smaller cluster
(n=2) constrains the power of the pathway analysis. Furthermore, the
cross-validation results indicate that the average Rand index achieved
after removing potentially related patients (i.e., 0.932) was not signifi-
cantly different than the initial cross-validation results (i.e., 0.969, see
Fig. 5) (t-value: 1.52, p-value: 0.147). This reveals that the proposed
method was able to identify the same underlying cluster structure in
the MS dataset, and identify patients with similar genomic makeup after
the removal of potentially related individuals. These results provide evi-
dence that supports that the method was able to identify clusters due to
the underlying structure of the data and not just due to random change.

6. Conclusion and future work

Many chronic disorders have genomic etiology, disease progression,
clinical presentation, and response to treatment that vary on a patient-

Table 5
Gene pathway analysis results.

Pathway ID Pathway description
Count in
gene set

False
discovery
rate

GO.0051249 Regulation of lymphocyte
activation

32 0.00641

GO.0002823 Negative regulation of
adaptive response

9 0.00749

GO.0006952 Defense response 73 0.00749
GO.0002694 Regulation of leukocyte

activation
33 0.00804

GO.0050865 Regulation of cell
activation

35 0.00804

GO.0002376 Immune system process 93 0.00898

8



UN
CO

RR
EC

TE
D

PR
OO

F

C. Lopez et al. Journal of Biomedical Informatics xxx (2018) xxx-xxx

to-patient basis. Such variability creates a need to identify characteris-
tics within patient populations that have clinically relevant predictive
value. Unsupervised machine learning methods are suitable to address
this type of problem, in which no class label information is available
to guide this search. However, it is challenging for existing methods to
identify cluster memberships that are due to the underlying structures
in the dataset and not just a result of natural sampling variation. More-
over, most current methods require researchers to know and provide
input parameters a priori. As a result of these limitations and the need
to advance personalized medicine, this work proposed an unsupervised
machine learning method to identify genomically distinct patients’ clus-
ter. The method presented in this work integrates statistical analysis to
test for significance of clustering results and accounts for family-wise-er-
ror rate. Moreover, the method is capable of automatically identifying
the number of clusters by implementing an internal validity metric. Sim-
ilarly, the method takes advantage of the degree of linkage disequilib-
rium between SNPs by pruning correlated nearby SNPs, as well as im-
plementing a post-clustering gene pathways analysis.

The method is tested with clustering validation datasets previously
used in the literature. The benchmark results reveal that proposed
method provides, on average, the greatest performance (i.e., average
Rand index 0.852). Moreover, results indicate that it was able to obtain
cluster results with a Rand index of 1 (i.e., perfect clustering) in 6 out
of the 10 Fundamental Clustering Problem Suite (FCPS) datasets. Simi-
larly, the method is applied to a dataset of 38 patients with leukemia,
and subsequently to a dataset of 191 Multiple Sclerosis (MS) patients.
The results indicate that the method is able to identify genetically dis-
tinct patient clusters without the need to select the number of clus-
ters or any input parameter a priori. Moreover, the cross-validation re-
sults indicate that the method presented in this work outperformed the
other methods found in the literature when it comes to data overfitting,
since the average Rand index obtained was significantly greater than the
benchmarked methods and not significantly different than 1. This per-
formance was maintained even after the removal of potentially related
patients from the dataset. This indicates that the method was identifying
clusters due to the underlying structure of the data and avoided over-
fitting the dataset. The identification of distinct genetic subtypes of pa-
tients demonstrates the potential applicability of this process to advance
personalized medicine of complex diseases with heritable components,
especially autoimmune disorders.

When applied to genomic data, the method also shows value as a fea-
ture reduction strategy. Out of over 25,482 exonic SNPs and 191 patient
samples, the clustering of patients yielded a set of SNPs which signifi-
cantly vary between clusters. These variants represent 515 genes, sev-
eral of which are known to be involved in MS (CD69, CCRX5, IL-13,
STAT3) and cell adhesion (ICAM1, LAMB4). The fact that many high-
lighted genes are components of the immune system is not surprising
due to the nature of the Immunochip assay, but the enrichment of leuko-
cyte-specific genes is evidence that the method can result in function-
ally relevant feature sets, even without class labels. Notably, 57 genes
representing over 10% of the network are involved in cytokine recep-
tor processes. This is greater than expected from random chance, as cy-
tokine receptors constitute a small percentage of all Immunochip genes.
The evidence presented in this work alone is insufficient to define ge-
netic subtypes of MS, but the specific SNP set reaching significance may
be a valuable resource in experimental studies examining immune cell
dynamics and genetics. For example, the hypothesis that these clusters
represent different subtypes of MS, can be tested by evaluating clinical
criteria such as image results and disease progression, as well as quan-
titative cytokine profiling and gene expression studies for each cluster,
compared against random groupings of patients.

This work demonstrates an iterative unsupervised machine learning
method which identifies significant patient clusters within a genomic
dataset. Future research should explore the medical significance of the

findings shown in this work. Similarly, the method from this work
should be implemented in studies collecting SNP array and gene ex-
pression microarray data from additional disease cohorts to explore its
potential benefits. Further investigation can extend beyond pathway
analysis to evaluate these clusters for clinical significance of genetically
related characteristics such as age of onset, disease course, heritabil-
ity, and response to treatment. Once links are drawn between clusters
and clinically relevant outcomes, the Immunochip can be used to clas-
sify high-risk and newly diagnosed chronic disease patients into clusters
with predictive value.
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