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Develop systems capable of 
providing personalized feedback and

predicting students’ performance.



Affect-sensitive system can provide personalized 
feedback based on students’ affective state
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Affect-sensitive system can provide personalized 
feedback based on students’ affective state



Affect-sensitive system can provide personalized 
intervention  based on students’ affective state
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f(x)= Sad
Classification Model

Confused
Due to the limitations of current affect-sensitive 
systems and the heterogeneity of students, we 
developed an individual-task model to predict 

students’ performance prior to the start of a task
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f(x)= 

Facial Expression Facial Keypoint data

Individual-tasks model
Intervention

Student iTask t

The proposed individual-task model takes into 
consideration task and individuals’ differences. 



Method to predict students’ performance prior to the 
start of a task by using their facial keypoints 
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Data Acquisition & Features Extraction:
Facial Keypoint Data and Procrustes Analysis 

Standard video of 
students reading the 
instructions of a task 

is captured

[640 x 800 pixels]

From the videos, facial 
keypoints are extracted 

and normalized

𝑭 = [𝜇1, 𝜎1, … 𝜎68, … 𝜃]

time
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Data Acquisition & Features Extraction:
Task performance

[Dering  and Tucker, 2017]
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Model Building & Tuning: 
Support Vector Machines (SVM) and Grid search

[Kotsiantis  2007]

Performance of a student i on a given task t is assumed to be a 
binary variable.
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Model Evaluation: 
Leave-one-out Cross Validation
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Band Saw Drill Press

40 freshmen engineering students enrolled in 
EDGSN 100 Introduction to Engineering Design 

at the Pennsylvania State University
(18 to 19 years of age, 27.5% females) 

https://cmusatyalab.github.io/openface/

Case Study:  Engineering Lab Environment

OpenFace facial behavior analysis toolkit 

(68 facial keypoint coordinates ) 

Cut the line in the middle Drill a hole in the center

Task Performance : Below or Above average completion time

40 students x 2 Task =80 videos
(-5 due to technical difficulties)

(average of all students 
given that task)

https://cmusatyalab.github.io/openface/
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Results and Discussion
Facial Keypoint data improves model’s accuracy

No information
rate : 58.67%
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Limitation and Future Works:
Sample size and diverse number of tasks

Implement in a Co-Robot

Test for the effects of this systems on students’
learning and performance

Deep Learning algorithms

Consider the autocorrelation components 
of students’ facial expression over time

This work highlights the potential of using 
students’ unique facial keypoint data to predict 
their performance prior to the start of task and 

to advance personalized systems in 
engineering lab environments



Thank you!
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