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Grand Engineering Challenges of the 21st century: 
Development of Personalized Learning [Vest 2008]
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Advance systems capable of 
providing personalized feedback and
predicting individuals’ performance.

. 



Individuals communicate their affective states 
through verbal and non-verbal cues.

Verbal: 
• Content
• Intonation
• Pace

Non-Verbal:
• Facial Expression
• Body Movement
• Gestures
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Current methods still have several limitations
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Sonalkar et al. (2011) X X X

Balters & Steinert (2015) X* X X

Behoora & Tucker  (2015) X X X

Bezawada et al. (2017) X X X

This Work X X X
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Affect-sensitive systems tend  to label an individual’s 
affective states into  discrete categories.

[Calvo  & Mello 2010]
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Ekman’s Basic Emotions

[Ekman &Friesen 1978 ]



General models limit the capability to provide 
appropriate and personalized feedback 

Interesting

f(x)= Fear

Facial Expression Facial Keypoint data

General model
Intervention
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Advance personalized system capable to take into 
account Task and Individual characteristics
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1. Classify affective states into discrete categories
2. Affected by Individual differences in facial 

expression
3. Variation  between tasks and individuals
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f(x)= 

Facial Expression Facial Keypoint data

Individual-tasks model
Intervention

Individual iTask t

The proposed individual-task model takes into 
consideration tasks and individuals differences. 



Machine Learning method to predict individuals’ 
performance by using their facial keypoints 
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Display

SensorParticipant

Data Acquisition: 
Performance and Facial Keypoint Data

Performance data

Facial Keypoint data
1 Upper Lip Raise 6 Jaw Lower 

2 Left Lip Stretch 7 Right  Brow Lower 

3 Right Lip Stretch 8 Left  Eyelid Closed 

4 Left  Brow Lower 9 Right Eyelid Closed 
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Left Lip Corner 

Depressor 10 

Right Lip Corner 

Depressor 
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Model Building: 
Support Vector Machines (SVM)

[Kotsiantis  2007]

Performance of an individual i on a given task t is assumed to be a 
binary variable, where:

Yit= 1, if individual i correctly performed a task t

Yit=0, otherwise. 

For , 
i ϵ set of individuals {I}
t ϵ set of tasks {T}
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Model Evaluation: 
Leave-one-out Cross Validation



Case Study in a
Physically-Interactive Application 
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-31 Participants (µ=19.9 σ=1.2, 18-22 years old)
-12 task
-372 Data tuples  (i.e., 31*12)
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Results and Discussion: 
Participants’ Facial Keypoints  data is significantly 
different depending on their performance

The MANOVA results: 
Wilks’ Lambda= 0. 9427
p-value=0.017  
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Results and Discussion: 
Individual-tasks model outperform the General model

77.15%

52.69%
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Results and Discussion: 
Some Facial Keypoints plays a more central role
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Limitation and Future Works:
Time evolution of Facial Keypoints and different tasks. 

This work highlights the potential of using 
individuals’ unique facial keypoint data to 

predict their performance and to
advance personalized systems
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