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When to Provide Feedback? Exploring Human-Co-Robot 

Interactions in Engineering Environments 

Abstract 

Co-robots are robots that work alongside their human counterparts towards the successful 

completion of a task or set of tasks. In the context of engineering education, co-robots have the 

potential to aid students towards the successful completion of an engineering assignment by 

providing students with real-time feedback regarding their performance, technique, or safety 

practices. However, determining when and how to provide feedback that advances learning 

remains an open research question for human-co-robot interactions. Towards addressing this 

knowledge gap, this work describes the data types available to both humans and co-robots in the 

context of engineering education. Furthermore, this works demonstrates how these data types can 

be potentially utilized to enable co-robot systems to provide feedback that advances students’ 

learning or task performance.  

 

The authors introduce a case study pertaining the use of a co-robot system capable of 

capturing students’ facial keypoint and skeletal data, and providing real-time feedback. The co-

robot is created using commercially available, off-the-shelf components (e.g., Microsoft Kinect) 

in order to expand the reach and potential availability of these systems in engineering education. 

This work analyzes the facial expressions exhibited by students as they received instructions 

about how to complete a task, and feedback about their subsequent performance on that task. 

This allows the authors to explore the influence that co-robot visual feedback systems have in 

changing students’ behavior while performing a task. The results suggest that students’ facial 

keypoint data is statistically significantly different, depending on the feedback provided (p-

value<0.005). Moreover, the results suggest there is a statistically significant relationship 

between students’ facial keypoint data while receiving instructions on how to complete a task, 

and their subsequent performance on that task (p-value<0.005). These findings suggest that 

students’ facial keypoint data can be utilized by a co-robot system to learn about the state 

changes in students, as they complete a task, and provide interventions when certain patterns are 

discovered that have the potential to reduce students’ learning or task performance. 

 

The outcomes of this paper contribute to advancing the National Academy of Engineering’s 

Grand Challenge of personalized learning a by demonstrating how students’ facial expression 

data can be utilized in an effective manner to advance human-co-robot interactions and improve 

the capability of co-robot systems to provide feedback that advances students’ performance. 

 

 

 

 
a http://www.engineeringchallenges.org  



 

Figure 1: Student-Co-robot Collaboration towards the Successful 
Completion of an Engineering Prototype 

1.  Introduction 

The term Collaborative robots (i.e., co-

robots) is defined as a class of robots that 

work alongside their human counterparts 

towards the completion of a common task 1. 

In the context of engineering education, co-

robots have the potential to aid students 

during tasks that may require real-time 

observation and feedback 2. Figure 1 

presents a scenario that involves a student 

(left) and a co-robot (right) working together 

in an engineering design workshop. Here, 

the task to be completed is the design of an 

engineering concept/idea/prototype, created 

using tools such as a hammer, wood, and 

other engineering laboratory equipment and materials. The primary objective of the student is to 

complete this task in a manner that optimizes performance (e.g., time to completion, usefulness 

of the prototype), while the primary objective of the co-robot is to ensure that the student 

completes the task in a safe and effective manner that results in i) tangible learning outcomes 

(e.g., improved performance) and ii) the desire to perform such tasks in the future. Measuring 

whether a student has the desire to perform similar tasks in the future is related to their affective 

state (i.e., emotions) during task performance 3.  Ekman has proposed six basic emotions that 

include happiness, sadness, disgust, surprise, fear, and anger 4. However, given the heterogeneity 

of individuals, determining how and when to provide feedback that advances students’ 

performance remains an open research question. In an effort to personalize the feedback 

provided to the students, having a “one-size-fits-all” definition of affect or performance, may not 

be well suited 5. Therefore, by observing students while they perform a task, co-robot systems 

could potentially provide interventions when certain patterns are discovered that have the 

potential to reduce students’ task performance. Facial keypoint data has been shown to correlate 

with an individual’s affective state 6, thereby potentially serving as a means for real-time 

assessment of a student’s affective state during task performance. Recent studies have shown that 

the acquisition of facial keypiont data, requires the least amount of interruption when compared 

to other data collection options such as surveys and body position mapping 7.  

 

This paper presents data types captured by both the co-robot (i.e., facial keypoint data, 

skeletal data) and student (i.e., visual performance feedback), and a method that demonstrates 

how each of these data types can be utilized in an effective manner to advance human-co-robot 

interactions.  

 

 



2.  Literature Review 

2.1 Sensing Systems and Information Exchange 

Interactions between humans and co-robots depend on the acquisition and processing of data 

communicated (intentionally or unintentionally) by the human or co-robot. In order for a co-

robot to know when and how to provide feedback to students during engineering-related 

activities, it must first be able to sense its environment. While this may be a trivial problem for 

humans, co-robot sensing is a non-trivial problem and is an active area of research 8–17. Off-the-

shelf sensing systems, such as the Microsoft Kinect, have been successfully employed in the 

field of robotics and machine learning for sensing and navigation tasks. From an engineering 

design perspective, the Microsoft Kinect sensor has been utilized as a 3D scanner for capturing 

digital representations of engineered artifacts 18,19. Specifically relating to co-robot sensing, Choi 

and Christensen propose an RGB-D object sensing and tracking approach that utilizes GPUs to 

efficiently identify objects 20. For co-robot tasks that extend beyond sensing objects, Burns and 

Samanta propose an approach for co-robots to sense humans, based on a Carmine depth sensing 

system coupled with open-source middleware (i.e., NITE from OpenNI) 21. For tasks involving 

human-co-robot interactions, Morato et al. propose the use of multiple Kinect sensors to achieve 

safe human-robot collaboration during assembly tasks 22. The Kinect sensing system has also 

been employed in the MobilAR platform to augment a user’s perception of their environment 23. 

Research into sensors and sensing systems is extensive and cuts across a wide range of domains 
24–30.  

  

While advancements in sensing systems have enabled co-robot systems to sense objects and 

humans in an environment, a knowledge gap exists in terms of how co-robot systems synthesize 

the data captured by its sensors in an effort to help provide their human counterparts with 

meaningful feedback during a task or set of tasks. In this work, the authors employ the Microsoft 

Kinect sensor to capture students’ skeletal and facial keypoint data, and demonstrate how this 

data can be utilized to help co-robots understand students’ behavior.  

 

2.2 Co-Robot Feedback and Decision Making Methods 

Research into how and when co-robots decide to make decisions or provide feedback is an 

active area of scientific inquiry 31–39. A hierarchical decision-making approach to co-robot 

feedback requires the co-robot system to elicit feedback from its human counterpart. Kaupp et al. 

use probabilistic models to determine when co-robots should query humans for information 40. 

Cao et al. propose a hierarchical decision-making model, wherein the role of each co-robot in a 

group, is assigned by its human supervisor, based on each co-robot’s report of resources needed 
41. In each of these approaches, the request for information by the co-robot from its human 

counterpart, risks the interruption of the task being performed.  



Figure 2: Visual Data Captured and Presented by a Co-robot 
During Student Task Completion 

In this work, the acquisition of information by the co-robot from its human counterpart is 

achieved automatically by constantly acquiring facial keypoint and skeletal data that can then be 

used to make inferences about the complexity of the task and the performance characteristics 

needed in order to successfully complete the task. There have been several works that aim to 

make co-robot data acquisition and intervention more seamless. For example, Rani et al. propose 

to enhance human decision-making outcomes by designing co-robots that can detect human 

anxiety during human-robot collaborations 42. Hinds et al. investigated whether humans have 

preferences towards the visual likeness of co-robots by varying the extent to which the robot had 

human-like appearances (e.g., human, human-like, and machine-like) 43. Stanton and Stevens 

discovered that the gaze of a robot resulted in a faster response by their human counterpart, 

suggesting a correlation between robot gaze and social facilitation. However, the same work also 

found that the bodily movements of the robot did not impact participants’ behavior 44.  

For educators seeking to design practical co-robot systems that they can deploy in their 

classrooms, the above studies are insightful, as they suggest that less time should be spent on the 

physical design and movement of co-robot systems. Instead, more time should be spent on 

creating a visually-engaging interaction between humans and co-robots. The method section 

presented next, therefore, focuses on the acquisition of facial and body cues by a co-robot system 

from its human counterpart (i.e., in the form of facial keypoint and skeletal data), and its human 

counterpart’s capture of the visual representation displayed by the co-robot system (i.e., in the 

form of an avatar representation of the student that includes reward and penalty visualizations). 

Moreover, this work presents how this data can potentially be utilized in an effective manner to 

advance human-co-robot interactions.  

 

3. Method 

The method presented in this work outlines 

how a student’s facial keypoint and skeletal 

data can be captured by a co-robot system, and 

subsequently utilized to provide feedback to 

students that advance their learning or task 

performance. In this work, the authors assume 

no predefined classification of affective states 

(e.g., as in the case of works such as Ekman 4). 

Instead, the affective state of a student is 

assumed to be on a continuous scale that is 

captured using facial keypoint data. Instead of 

mapping affective states into predefined 

categories, such as happiness, anger, etc., the 

authors explore the variation between students’ 

facial keypoint data, while holding the task being performed constant. For example, Figure 2 



presents a time series representation of a student hammering on a table. The co-robot takes as 

input, this video data, primarily focusing on the facial keypoints and body movement of the 

student. In Figure 2, a skeletal representation of the student (bottom right) can be seen, which 

represents the visual feedback that the co-robot system displays back to the student, with the 

color of the skeletal image varying, depending on how well the student is performing a task. In 

this work, the co-robot is created using a commercially available, off-the-shelf Microsoft Kinect 

sensor in order to expand the reach and potential availability of these systems in engineering 

education. The capability of the co-robot to provide real-time visual feedback (e.g., via a 

mounted display, see Figure 1) enables researchers to study the differences in facial expressions 

exhibited by students as they received instructions on how to perform a task and feedback of 

their subsequent performance on that task. This knowledge can enable co-robots systems to 

improve the timing and context of their feedback. Additionally, it enables co-robots systems to 

provide interventions when certain patterns are discovered that have the potential to reduce a 

student’s task performance.  

3.1. Data Acquisition 

 3.1.1. Facial Keypoint Data  

 

The multimodal Microsoft Kinect sensor mounted on the co-robot (see Figure 1) coupled 

with the Kinect Software Development Kit (SDK)45 allows it to collect a student’s facial 

keypoint data. Table 1 shows the 10 facial keypoints from a student’s face that is captured by the 

sensor. The facial keypoint values are measured on a range from 0-1, indicating a relative weight 

from an Action Unit. This approach resembles the Facial Action Coding System 46, in which 

expert observers manually code the facial displays of an individual. These facial displays are 

referred to as Action Units 47. The Microsoft Kinect’s algorithms allow it to automatically 

capture these Action Units with the use of video and depth data 48. 

 
Table 1.  Facial keypoint data collected by the Microsoft Kinect 

1 Upper Lip Raised 6 Jaw Lowered 

2 Left Lip Stretched 7 Right  Brow Lowered 

3 Right Lip Stretched 8 Left  Eyelid Closed 

4 Left  Brow Lowered 9 Right Eyelid Closed 

5 Left Lip Corner Depressor 10 Right Lip Corner Depressor 

 

Figure 3 shows a set of actors displaying particular Action Units (AU) that relate to the facial 

keypoints that can be captured by the Microsoft Kinect sensor. Therefore, if a student has his/her 

eyes closed (e.g., similar to the second actor shown from right to left in Figure 3), the Right 

Eyelid Closed and Left Eyelid Closed facial keypoint values will shows as 1; while 0 if the eyes 

are completely open. An advantage of these facial keypoint data, captured by the Microsoft 



 

Figure 4. Representation of a human skeletal data, from Tucker & Kumara 2015  2 .  

Kinect sensor, is that they are robust against movement of students’ faces and variations of 

students’ facial structure 49. This is an essential attribute that allows collecting students’ facial 

data from a wider population even in environments where students move constantly (e.g., 

engineering laboratory environments). 

 

 
Figure 3.  Representation of Facial Keypoint data, from  Ekman 1978 46 

3.1.2. Visual Feedback Data  

 

Besides capturing facial data, the Microsoft Kinect sensor allows the co-robot to capture 

students’ skeletal data while performing a task. This data enables the robot to assess a student’s 

performance on a task and subsequently provide visual feedback to the student about his/her 

performance. The Microsoft Kinect sensors capture data from a student’s body joints, which 

consist of X, Y, and Z positions, relative to a fixed reference point (i.e., the location of the Kinect). 

Figure 4 shows a representation of a student’s skeletal data in which the first instance of data 

captured for the Left Hand Node is X =2.4634, Y=2.8739, and Z=0.4105. This data allows the co-

robot to construct a three-dimensional representation of a student’s skeletal system while 

performing a task. If the co-robot is trained with ground truth data acquired from multiple 

students correctly and incorrectly performing a series of physical tasks (e.g., hammering a nail, 

cutting wood), the co-robot would be capable of determining (i.e., through the use data mining 

algorithms), what type of task the students is performing. Furthermore, the co-robot will also be 

able to determine whether a student’s actions deviate from the movements historically associated 

with correctly performing a given task.   

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5. An example representation of a student’s 
skeletal system while performing a task in the virtual 

environment  

For every j ϵ Joints 
{1,2,…,K}  

Is (Xj,Yj,Zj)= 
(Xp,Yp,Zp) ?

End

Did not performed 
the task correctly

No

Is j= K ?
Yes

Yes

No

Performed the task 
correctly

(e.g., j highlighted 
in Red)

(e.g., j highlighted 
in Green)

 

Figure 6. Example of predefine performance model 

 

This machine learning approach of  “teaching” 

the co-robot what type of movements are required to 

correctly perform a task, involves the use of 

supervised machine learning algorithms and the use 

of ground truth data 2. Another approach is for the 

co-robot to be trained with predefines performance 

models. These performance models can consist of a 

series of if-else rules that will enable the co-robot to 

automatically assess if a student is correctly 

performing a task or not. For example, Figure 5 

illustrates a student’s skeletal system while 

performing a physical task in a virtual environment, 

with the body joints highlighted. The joints 

highlighted in red indicate the ones that do not 

comply with the predefined performance model for 

that task, while the ones in green indicate the joints that comply. The student’s skeletal data 

captured while he/she is performing a task enables the co-robot to identify if the student is 

correctly performing the task or not.  

 

Figure 6, shows an example of a predefined 

performance model consisting of a series of if-

else rules. The algorithms check if the 

coordinates position of a student’s body joints 

Xj,Yj,Zj, for j in the set of Joints {1 trough K}, 

comply with the predefined performance model 

(Xp,Yp,Zp). Therefore, for a student to perform a 

task correctly, all of his/her joints have to be 

within the area predefined by the performance 

model of that specific task. If at least one joint 

is not within the predefined area (e.g., [X1,Y1,Z1] 

≠ [Xp,Yp,Zp] ), this suggest that the student has 

not performed the tasks correctly. In the 

example shown in Figure 5, it can be seen that 

6 of the joints did not comply with the 

predefined performance model (i.e., joints highlighted in red). Therefore, in this example, the 

student did not perform the task correctly. Furthermore, the total number of joints K tracked can 

vary between sensors. Table 2 shows the student’s body joints data captured by the Microsoft 

Kinect sensor used in this work. This skeletal data enables the co-robot to assess a student’s 

performance on a task and subsequently, provide visual feedback to the student about his/her 

performance via the display mounted on the co-robot (see Figure 1). 



Table 2.  Student’ Joints Tracked by the Microsoft Kinect, from Lopez and Tucker 50 

1 Head 10 Left toe 

2 Neck 11 Left ankle 

3 Pelvis 12 Left knee 

4 Left wrist 13 Right knee 

5 Left elbow 14 Right ankle 

6 Left shoulder 15 Right toe 

7 Right shoulder 16 Right hip  

8 Right elbow 17 Left hip 

9 Right wrist 

   

4. Application 

A case study is presented that demonstrates how facial keypoint and skeletal data can be used 

to potentially improve human-co-robot interactions and provide feedback to students. The case 

study involves the use of a co-robot system to assist students while performing tasks on a 

physically-interactive application in a virtual environment. The co-robot system is capable of 

capturing students’ facial keypoint and skeletal data, and providing real-time visual feedback to 

students on how to perform a task. This physically-interactive application allows researchers to 

“teach” the co-robot predefined performance models for each task. Therefore, enabling the co-

robot to assess a student’s performance and provide visual feedback to students without the use 

of supervised machine learning algorithms. In physically-interactive applications, individuals are 

required to use full body motions (e.g., jump, move side to side, bend) to perform a physical task 
50. In this work, the students had to perform certain motions to pass through obstacles without 

touching them (see Figure 5). The application consisted of 12 different tasks (i.e., obstacle 

avoidance).  

This application allows the authors to demonstrate how facial keypoint and skeletal data can 

be used by a co-robot to provide real-time feedback to students in a controlled environment, 

while still maintaining some of the characteristics present in a real world application of a co-

robot system in an engendering laboratory environment. For example, this application allows the 

authors to control for the start and completion time of a task, while still providing students with 

real-time visual feedback about the characteristic of the tasks and his/her performance after 

completing the task. This enables researchers to control for the time in which a student is 

introduced to a task, the time when he/she start performing a task, and the time when the co-

robot provides the feedback to the student. This helped reduce any nuisance factor related to the 

timing of the tasks or feedback while quantifying the effects of the co-robot visual feedback on a 

student’s facial keypoint data. Data from 31 undergraduate students (males: 28, females: 3) from 

the Pennsylvania State University was collected. Students’ ages ranged from 18 to 22 years old 

(mean: 19.9 years, standard deviation: 1.2 years). The participants were from different academic 



 
Figure 7. Spider Chart of students' average facial keypoint data 

while receiving instructions on how to perform a task, grouped by 
their subsequent performance on the task, 

programs (e.g., engineering, humanities) and from different levels of studies (e.g., freshmen to 

seniors). Each participant was introduced to the application and the experimental setup, after the 

completion of the informed consent documents. 

4.1. Data Acquisition 

4.1.1. Facial Keypoint Data. 

The facial keypoint data capture by the 

co-robot allows the authors to gain a better 

understanding of the differences in facial 

expressions exhibited by students as they 

receive feedback pertaining how to perform 

a task and their subsequent performance on 

that task. The co-robot can potentially use 

this facial keypoint data to find patterns that 

will enable it to improve the timing and 

content of its feedback. The results from the 

case study suggest that students that 

correctly performed the task, exhibited 

unique patterns on their facial keypoint data 

while receiving instructions on how to 

perform the task. This pattern was found to 

be significantly different between the students that did not perform the task correctly (e.g., Fail) 

and those who did (e.g., Pass). Figure 7 shows a Spider chart of the student’s average facial 

keypoint data values while the co-robot provides them with instructions on how to perform the 

task. From Figure 7, it is evident that there are significant differences in some facial keypoint 

data between the students that correctly performed a task and those who did not. To test this 

hypothesis, a series of two-sample t–test were performed. The hypotheses tests can be express as: 

(i) 𝐻𝑜: 𝝁𝒃
𝒚,𝑷 = 𝝁𝒃

𝒚,𝑭   𝑣𝑠  𝐻𝑎: 𝝁𝒃
𝒚,𝑷 ≠ 𝝁𝒃

𝒚,𝑭 

 

Where : 

 𝝁𝒃
𝒚,𝑷 is the mean values for the facial keypoint data y while receiving instructions on 

how to perform a task. For y ϵ the set of facial keypoints, and P ϵ the set of students 

that subsequently performed the task correctly (e.g., Pass). 

 

 𝝁𝒃
𝒚,𝑭 is the mean values for the facial keypoint data y while receiving instructions on 

how to perform a task. For y ϵ the set of facial keypoints, and Fϵ the set of students 

that subsequently did not perform the task correctly (e.g., Fail).  

 



A Bonferroni correction for family-wise error rate is used to test for the statistical 

significance of the results (Bonferroni correction= α/m, where m is the number of tests). 

Therefore, a p-value of 0.005 (Bonferroni correction=0.05/10) on the two-sample t–test will 

provide statistically significant evidence against the null hypotheses. Table 3 present the t-

statistics and p-values of the hypotheses tests conducted. The results suggest that the facial 

keypoints values of Upper Lip Raised, Left Lip Stretched, Right Lip Stretched, Left Lip Corner 

Depressor, Right Lip Corner Depressor, Left Eyelid Closed, and Right Eyelid Closed on average 

are significantly different between the group of students that correctly performed a task and those 

who did not. The co-robot could use this new knowledge to improve the timing and content of its 

feedback, and automatically predict when a student might need a different type of feedback, 

based his/her facial keypoint data projected while receiving instructions on how to perform a task.  

Table 3. Summary statistics of the two-sample t-test results of the facial keypoint data before performing a task 

Facial Keypoints t-statistic p-value 

Upper Lip Raised 7.29 <0.005 

Jaw Lowered -1.38 0.1686 

Left Lip Stretched -8.25 <0.005 

Right Lip Stretched 3.36 <0.005 

Left Brow Lowered 0.64 0.5242 

Right Brow Lowered 0.64 0.5242 

Left Lip Corner Depressor -15.43 <0.005 

Right Lip Corner Depressor -7.05 <0.005 

Left Eyelid Closed 9.03 <0.005 

Right Eyelid Closed 7.64 <0.005 

 

4. 1.2. Visual Feedback Data 

Thanks to the capabilities of the Microsoft Kinect sensor, the co-robot can capture students’ 

skeletal data while performing a task. This data enables the co-robot to assess a student’s 

performance on a task and subsequently provide visual feedback about his/her performance. By 

analyzing students’ facial keypoint data while the co-robot provides performance feedback, the 

authors can gain a better understanding of the differences in facial expressions exhibited by 

students as they receive this feedback about their performance on a task.  

 

 



 

Figure 8. Spider Chart of students' average facial keypoint data while 
receiving performance feedback, grouped by type of feedback. 

The results from the case study suggest that 

students who received a positive performance 

feedback (e.g., Pass), exhibited unique patterns 

on their facial keypoint data, which is 

significantly different from the students who 

did not correctly perform the tasks and hence, 

received a negative performance feedback (e.g., 

Fail). Figure 8 shows a Spider chart of the 

students’ average facial keypoint data values 

while the co-robot displays a visual feedback 

about their performance on a task, grouped by 

the type of feedback provided (e.g., Fail or 

Pass). From this chart, it is clear that students’ 

facial keypoint data significant varies 

depending on the feedback provided. To test 

these hypotheses, a series of two-sample t–test 

were performed. The hypotheses tests can be 

express as: 

(ii) 𝐻𝑜: 𝝁𝒂
𝒚,𝑷 = 𝝁𝒂

𝒚,𝑭   𝒗𝒔 𝐻𝑎: 𝝁𝒂
𝒚,𝑷 ≠ 𝝁𝒂

𝒚,𝑭 

 

Where : 

 𝝁𝒂
𝒚,𝑷 is the mean values for the facial keypoint data y while receiving performance 

feedback. For y ϵ the set of facial keypoints, and P ϵ the set of students that performed 

the task correctly and received positive performance feedback (e.g., Pass).  

 

 𝝁𝒂
𝒚,𝑭 is the mean values for the facial keypoint data y while receiving performance 

feedback. For y ϵ the set of facial keypoints, and F ϵ the set of students that did not 

perform the task correctly and received negative performance feedback (e.g., Fail).  

 

Table 4 present the t-statistics and p-values of the hypotheses tests conducted. The results 

suggest that the facial keypoints values of Upper Lip Raised, Left Lip Stretched, Left Lip Corner 

Depressor, Right Lip Corner Depressor, Left Eyelid Closed, and Right Eyelid Closed on average 

are statistically significantly different between the group of participants’ that correctly performed 

a task and received positive performance feedback, and those who did not and received negative 

performance feedback.  

 

 



Table 4. Summary statistics of the two-sample t-test results of the facial keypoint data before performing a task 

Facial Keypoints t-statistic p-value 

Upper Lip Raised -3.27 <0.005 

Jaw Lowered -0.71 0.4757 

Left Lip Stretched -6.11 <0.005 

Right Lip Stretched -0.15 0.8804 

Left Brow Lowered 0.32 0.7491 

Right Brow Lowered 0.32 0.7491 

Left Lip Corner Depressor -11.17 <0.005 

Right Lip Corner Depressor -4.68 <0.005 

Left Eyelid Closed 9.69 <0.005 

Right Eyelid Closed 12.75 <0.005 

 

The previous results suggest that students project different facial cues as they received 

instructions on how to perform a task and feedback regarding their performance after completing 

the task. Additionally, it suggests that these differences in facial cues related to how well the 

student performed on the task. As Figure 7 and 8 illustrate, there are some facial keypoints of a 

student’s face that change more significantly than others. For example, Figure 9 shows a time 

series plot of how students’ facial keypoints values of Jaw Lowered and Upper Lip Raised 

change over time. The plots show how the average values of these facial keypoints change as the 

co-robot provides instructions to the student on how to perform the task (i.e., time 0sec- 1.5sec, 

before Task Start Time),  and feedback regarding their performance after completing the task 

(i.e., time 2.5sec- 3sec, after Feedback Time). The plot illustrates how the facial keypoint of Jaw 

Lowered does not change significantly, while the facial keypoint of Upper Lip Raised does 

change significantly. This Upper Lip Raised facial keypoint on average changes significantly 

after the co-robot provides a student with performance feedback. Moreover, these changes are 

correlated to the type of performance feedback the co-robots provides. Figure 9 shows that if the 

student received a positive performance feedback (e.g., Pass) the Upper Lip Raised facial 

keypoint values increases, while it decreases if negative performance feedback (e.g., Fail) is 

provided. More importantly, it shows that while the co-robot provides instructions on how to 

perform a task, the Upper Lip Raised facial keypoint values are on average, significantly 

different for students who subsequently performed the task correctly and those who did not. The 

co-robot could use this facial keypoint data to find patterns that will enable it to improve the 

timing and content of its feedback, with the objective to maximize student’s task performance. 



 

Figure 9. Time series plot of student facial keypoint data 

 

5. Conclusions and Path forward  

Determining when and how to provide feedback that advances learning remains an open 

research question for human-co-robot interactions. The authors propose a method that seeks to 

address this knowledge gap through the design of a co-robot system that is capable of capturing 

student’s facial keypoint and skeletal data, and providing real-time feedback and instructions to 

students. The co-robot is created using a commercially available, off-the-shelf Microsoft Kinect 

sensor, in order to expand the reach and potential availability of these systems in engineering 

education. The ability of the co-robot to provide real-time visual feedback enables researchers to 

study the differences in facial expressions exhibited by students as they received instructions 

about how to perform a task and feedback regarding their subsequent performance on that task. 

The results of this work reveal that students’ facial keypoint data acquired while they perform a 

task, can be utilized by co-robot systems to learn about the state changes in humans, as they 

complete a task. This work also explores the influence that co-robot visual feedback has in 

changing students’ behavior while performing a task. The results suggest that co-robots systems 

could use students’ facial keypoint data to find patterns that will enable them to improve the 

timing and content of their feedback. Future studies should keep exploring the effects of co-

robots’ feedback and the relationship between students’ facial keypoint data and their task 

performance. Additionally, future works should focus on implementing this new knowledge to 

improve the human-co-robot interactions and the capability of co-robots to assist and improve 

the performance of students in engineering laboratory environments.  
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