Given Formulae:
Normal stress $\sigma = \frac{F}{A}$, where F is the force that is normal to the cut and A is the area of the cut.
Shear stress $\tau = \frac{V}{A}$, where V is the force that is parallel to the cut and A is the area of the cut.

BONUS QUESTIONS (0.1 POINTS EACH):
Provide the date for the following world events to the tolerances specified
1. (+/- 20 years). Martin Luther puts his Ninety-Five Theses on the church door at Wittenberg, starting the Protestant Reformation.
 OCTOBER 31, 1517
2. (+/- 0 days). The Allied Forces invade Normandy: D-Day.
 JUNE 6, 1944
3. (+/- 0 years). The Austrian Archduke Franz Ferdinand is assassinated, initiating World War I.
 JUNE 28, 1914
4. (+/- 50 years). Michelangelo completes the painting of the Sistine Chapel’s ceiling.
 1512
5. (+/- 1 year). The USSR announces that it has successfully launched the world’s first manmade satellite: Sputnik I.
 OCTOBER 5, 1957
6. (+/- 0 months). Lee Harvey Oswald assassinates President Kennedy in Dallas, TX.
 NOVEMBER 22, 1963 12:30PM CST
7. (+/- 20 years). Gutenberg develops the first movable-type printing press.
 1439
8. (+/- 0 months). The Berlin Wall comes down.
 NOVEMBER 9, 1989
9. (+/- 4 years). Mao Tse Tung announces the formation of the People’s Republic of China.
 OCTOBER 1, 1949
10. (+/- 1 year). The Korean Armistice is signed, ending the active conflict of the Korean War.
 JUNE 27, 1953
1. (45 points). Given: allowable normal stress $\sigma_{allow} = 3\text{ ksi}$, allowable shear stress $\tau_{allow} = 4\text{ ksi}$
 1. Determine the minimum required pin diameter at pin C.
 2. Determine the minimum required cross-section area for bar BC.
 3. Determine the internal N, V, M acting on the cross-section at D and indicate signs

 ![Diagram of the structure with forces and moments applied](image)

 $A_x = \frac{\sum M_A}{x} = \frac{4F_c(3') - 300(5') - 150(10\cos(30))}{3} = \frac{240q(5q)}{3} = F_c = 1004\text{ lb}$

 $o = \sum F_x = A_x - \frac{3}{8}(1004) - 150\sin(30)\Rightarrow A_x = 527.3\text{ lb}$

 $o = \sum F_y = A_y + \frac{3}{8}(1004) - 300 - 150\cos(30)\Rightarrow A_y = -373.3\text{ lb}$ or 373.3 lb

 $A_x = 527.3\text{ lb} \Rightarrow \text{ Cut at D:} \Rightarrow C = 527.3\text{ lb}$

 $A_y = 373.3\text{ lb}$

 2. $1004\text{ lb} \text{ in Double Shear}$

 $\tau = \frac{V}{A} \Rightarrow A = \frac{V}{\tau} = \frac{502\text{ lb}}{2000\text{ psi}} = 0.25\text{ in}^2 \Rightarrow r = 0.200" \Rightarrow D = 0.400"$

 3. $1004\text{ lb on Cross Section}$

 $\sigma = \frac{F}{A} \Rightarrow A = \frac{F}{\sigma} = \frac{1004\text{ lb}}{3000\text{ psi}} = 0.3347\text{ in}^2$

 Answers:

 a. Minimum pin diameter: 0.400 inches
 b. Minimum cross-section area: 0.335 in2
 c. $N = 527\text{ lb}$
 $V = 373\text{ lb}$
 $M = 373\text{ ft-lb}$

 Signs
1. (20 points). A steel nail with a diameter of 0.15" was driven 1" into wood. Determine the force \(P \) that is needed to pull the nail out of the wood, then determine the normal stress that is in the nail when this force is applied.

Given:
- the maximum shear stress that the interface between wood and steel can resist is 60 psi.
- the maximum normal stress that the interface between wood and steel can resist in tension is 0 psi (this interface resists no tensile normal stress).

\[
A_n = \pi D L = 0.15 \pi \text{ in}^2
\]
\[
P = \tau A_n = (60 \text{ psi})(0.15 \pi)
= 28.27 \text{ lbs}
\]
\[
\sigma_{\text{nail}} = \frac{P}{\pi r^2} = \frac{28.27 \text{ lbs}}{\pi (0.15 \text{ in})^2} = 1600 \text{ psi}
\]

Answer

\[
P = 28.3 \text{ lbs}
\]
\[
\sigma \text{ in the nail} = 1600 \text{ psi}
\]
2. (35 points) Two pieces of wood with a cross-section of 2” x 2” are glued together at the 30° angle shown and subjected to the force P. The glue fails if the normal stress in the glue exceeds 1 ksi.

Determine the maximum force P that can be applied without glue-failure occurring.

\[
A = \frac{4''}{2\sqrt{3}} = \frac{4}{2\sqrt{3}} = \frac{2}{\sqrt{3}} \quad \text{in}^2
\]

\[
N = (1 \text{ ksi})(8 \text{ in}^2) = 8 \text{ kips}
\]

\[
\sigma = \frac{N}{A} = \frac{8}{\frac{2}{\sqrt{3}}} = \frac{8\sqrt{3}}{2} = 4\sqrt{3} \text{ ksi}
\]

\[
0 = \sum F_N = N - P \cos 60°
\]

\[
\Rightarrow 8 = P \cdot \frac{1}{2} \Rightarrow P = 16 \text{ kips}
\]

Answer:

\[
P = 16000 \text{ lbs}
\]