CE 311 Exam 3
October 14, 2016

You are allowed to have the AISC manual, drawing equipment, and a calculator, only. The AISC manual may contain handwritten notes but may not contain attached sheets nor may any photocopied materials be added to the AISC manual.

Bonus Questions (0.1 points): Beer Slogans – Past and Present
Identify the beer brand by its slogan (some are old, some are new)

1. Head for the mountains. **BUSCH**
2. The beer that made Milwaukee famous. **SCHUTZ**
3. The Coldest Tasting Beer In The World **COORS LIGHT**
4. Tastes great, less filling **MILLER LITE**
5. The One and Only. **NEWCASTLE BROWN**
6. It’s BEER. Hooray beer! **RED STRIPE**
7. Reassuringly expensive **STELLA ARTOIS**
8. Out of the darkness comes light. **GUINNESS**
9. The one beer to have when you’re having more than one **SCHAEFFER**
10. When you’re out of **SCHUTZ**, you’re out of beer.

11. (0.1 points) How many gallons of beer are contained in a standard US beer barrel? **31**
1. (5 points) The structure below is an arch. The axial force in member AB is:
 a. 3.00 kips
 b. 7.00 kips
 c. 7.62 kips
 d. None of the above

 Given: Reactions, as shown.

 $\sqrt{3^2 + 7^2} = \sqrt{9 + 49} = \sqrt{58}$

 B/C not funicular

2. (10 points) Circle the correct P_{u}/Ω for A992 W12x210 column

 A. 1790 kips FOR $KL = 6'$
 B. 1350 kips FOR $KL = 18'$
 C. 1680 kips FOR $KL = 10'$ \(\text{(`For } KL = 18'\)}/3\)
 D. 450 kips

 $KL_{eq} = \frac{18}{18} = 10'$

 Contrast (vs. $KL = 6'$)
3. (30 points). Select the lightest A992 W16, per ASD, for an applied load \(P = 200 \) kips.

Given:

Hint: A W16 should not be expected to be very efficient for this application, as there are no intermediate braces for the weak axis.

\[
\text{Guess } \frac{F_{ec}}{A} = 15 \text{ ksi} \implies A = 13.3 \text{ in}^2
\]

\[
\implies \text{W16x45} \quad \left(A=13.3 \text{ in}^2, \frac{F_{y}}{F_{y}} = 1.57 \right)
\]

\[
\frac{kL}{A} = \frac{144}{1.57} = 91.7 \implies \frac{F_{ec}}{A} = 16.16 \text{ ksi} \quad \text{ (TABLE 4-22)}
\]

\[
\implies \frac{P_{o}}{A} = (13.3 \text{ in}^2)(16.16 \text{ ksi}) = 215 \text{k}
\]

\[
\frac{P_{o}}{A} > P \quad \text{OK}
\]

Go lighter?

W16x40? \((11.8 \text{ in}^2)(16.16 \text{ ksi}) = 190 \text{k} \quad \text{No}

\text{Lightest} \quad \text{W16x45}
4. (35 points) Select the lightest A992 W8 shape for column grid location B2, between the foundation and the 2nd floor. Two-story building, shown.

 Story Heights: 20'
 All connections are simple pins. The floors act as rigid diaphragms.
 The column is subjected to axial forces, only.
 - Roof Dead Load Pressure = 25 psf. This includes every dead load on the roof (framing, decking, roofing material, etc.).
 - 2nd Floor Dead Loads: W16x26 Fill Beams and W18x35 Girders, as shown, supporting a 4-inch-thick concrete (γ = 150 lb/ft³) slab.
 - Live Load, AFTER Applying the Live Load Reduction Factor: 80 psf. (it has already been applied. Do not apply it again).
 - Snow Load: 100 psf (location: Arctic Circle)

Dead Pressures - 2nd Fler

 Slab: \(\frac{1}{2} \times (150) = 50 \text{psf} \)
 Fills: \(\frac{26 \text{psf}}{6.5'} = 4 \text{psf} \)
 Girders: \(\frac{35 \text{psf}}{26'} = 1.35 \text{psf} \)
 \(KL = 20' \)

\(\Rightarrow W8 \times 48 \)

\(\frac{P_n}{A} = 159 \text{k} @ KL = 20' \)

\(D = 0.75(L+S) = 145.6 \text{k} \)

\(C_{ow} \times S.W = (40') \times (48 \text{psf}) = 1.9 \text{k} \)

\(\Rightarrow [P = 148 \text{k}] < [\frac{P_n}{A} = 159 \text{k}] \)
5. (20 points). Determine the maximum normal stress in the parabolic arch.

Given: Parabolic arch with fixed supports, a uniformly-distributed load of \(w = 1 \text{ kip/ft} \), and a maximum arch height of 5'. The cross-section is 10" x 10" stone.

\[w = 1 \text{ kip/ft} \]

\[\text{Parabolic Arch} \]

\[8 \text{ feet} \]

\[5 \text{ feet} \]

\[\text{Cross Section} \]

\[10" \times 10" \]

\[\text{Cut @ B} \]

\[F_h \]

\[F_v = 4k \]

\[P = \sqrt{4^2 + 1.6^2} = 4.308 \text{ k}\]

\[\frac{wA}{t} = 10^{3}\text{psi} \]

\[\sigma_{\text{max}} = 0.0431 \text{ksi} = 43.1 \text{psi} \]