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A B S T R A C T

Natural fibre composites are being utilized increasingly in high-performance, structurally demanding applica-
tions, in part because of their material properties and in part because they are a more sustainable choice
compared to other engineering materials. However, there is a current lack in understanding of best practices for
strength modelling of natural fibre composites. This study aims to understand how well common failure criteria
predict strength in multidirectional flax fibre composite laminates. Four failure criteria are compared to ex-
perimental data from tension and compression tests of flax composite laminates with five different layups.
Parametric optimization is performed on each criterion in order to determine the optimal strength, stiffness, and
interaction parameters. In conclusion, the Hashin and Puck failure theories are recommended because they have
the smallest error compared to experimental data. Values for parallel-to-fibre shear strength are also presented,
and they are found to be comparable to the shear strength of conventional glass fibre composites with similar
matrix materials.

1. Introduction

Natural fibre composites are being utilized increasingly in high-
performance, structurally demanding applications, in part because of
their material properties and in part because they are a more sustain-
able choice than other engineering materials, such as mined or petro-
leum-based materials. Natural fibre composites have excellent specific
strength and stiffness properties, meaning that they are very strong and
very stiff, but also lightweight (Shah, 2014). This has made natural fi-
bres especially attractive for multi-megawatt wind turbine blades be-
cause of how critical a blades mass is for blade and turbine design. In
addition, through natural fibre composites, the potential exists for
blades to be carbon neutral and based on renewable resources.

The use of natural fibres in composite materials has been studied
extensively (Saheb and Jyoti, 1999; Mohanty et al., 2002; Faruk et al.,
2012). From 2000 to 2007, over 500 patents were filed and over 150
articles were written on the subject of natural fibre composites
(Faruk et al., 2012). However, the strength and failure properties of
these composites have been less studied. In particular, the field lacks a
framework for strength of multidirectional natural fibre composites,
and strength of the composites under complex stress states.

When modelling a material in a finite element software, it is
common to use failure criteria to predict failure of the material when
exposed to complex loading conditions. Failure criteria consider all
stress tensor components to predict failure in combined loading

scenarios, including those that result from multidirectional composite
laminates. At present, however, in the industry for conventional glass
and carbon fibre composites, there is disagreement on the best practice
for the treatment of composite failure (Sun et al., 1996). In such fibre-
reinforced composites, it is well known that fibres follow a random
distribution pattern within the matrix (Wang et al., 2016), and that the
resulting composite mechanical properties are also a randomly dis-
tributed (Mahesh et al., 2002). In the literature, there are numerous
criteria which have been proposed for strength modelling in composite
materials. These include the Tsai–Hill criterion (Hill, 1948), the
Tsai–Wu criterion (Tsai and Wu, 1971), the Hashin criterion
(Hashin, 1980), and the Puck criterion (Puck and Schurmann, 1998).

The use of parametric optimization in combination with failure
theories has been used previously (Koh and Clouston, 2017) to report
shear strength and interaction parameters of laminated wood, which
are difficult to determine experimentally and not widely reported in the
literature. A similar method has also been used to present best-fit failure
theories for wood laminates (Koh, 2016), and a comparison has been
made to demonstrate the difference between using parameters from the
literature and parameters from the optimization algorithm. The use of
parametric optimization in combination with failure theories allows a
framework for understanding the strength of all multidirectional ma-
terials, and thus is also well suited for composite laminates.

This study aims to understand how well common failure criteria
predict strength in multidirectional flax fibre composite laminates. Four
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failure criteria are compared to experimental data from tension and
compression tests of flax composite laminates with five different layups.
Parametric optimization is performed on each criterion in order to
determine the optimal strength, stiffness, and interaction parameters.
The study concludes with remarks on which failure theories are best
suited for computational modelling of multidirectional flax fibre com-
posites, and gives recommendations for best practices.

2. Methods

2.1. Materials

Unidirectional (UD) and multidirectional (MD) composite laminates
were manufactured using vacuum infusion. The fibre component is a 2-
ply, non-crimp, biaxial flax yarn fabric from Bcomp Ltd., Switzerland,
called Amplitex 5008, with an area weight of 350 g/m2. Its yarn or-
ientation is nominally +/−45° in the machine direction of the fabric,
but was measured in the present study to be +51/−52°. The polyester
stitches that hold the two plies in the fabric together were carefully
removed with tweezers so that the plies could be re-oriented for making
a UD laminate. In the case of the MD laminates, the stitches were also
removed for consistency. The applied layup for the composites con-
sisted of 4 fabric sheets placed on top of each other, resulting in a fibre
orientation of 0° for the UD laminate, and +51/−52° for the MD la-
minates. The matrix component is Huntsmans Araldite 1568 / Aradur
3489 epoxy resin, using a mix ratio of 100:28 parts by weight. The cure
cycle is 19 h at 40 °C followed by 5 h at 75 °C. The resulting 8-ply (i.e.
layup of 4 fabric sheets) laminates have planar dimensions of
400×400mm (UD) and 470× 670mm (MD), and thickness of 2.4 mm
(UD) and 2.8 mm (MD).

Composite density (ρc) was measured using Archimedes’ principle,
where 3 specimens measuring 25×25mm were cut from each plate
and weighed submerged in water. Volumetric composition of the
composites (Vf, Vm, and Vp) was calculated using measured values of
density and weight fraction (Wf), as demonstrated in Eqs. (1a)–(1c).
Density of the flax fibres (ρf) was taken to be 1.540 g/cm3 from a pre-
vious study (Madsen and Lilholt, 2003) and density of the cured epoxy
matrix was measured to be 1.14 g/cm3.
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In order to get a representation of different fibre orientations, me-
chanical test specimens were cut from the laminates at different angles.
UD specimens were cut at two angles, 0° and 90° from the UD laminate.
MD specimens were cut at three angles, 0°, 15°, and 90° from the MD
laminate. See Fig. 1 for a schematic drawing of the cut test specimens.

The tensile test specimens had rectangular dimensions (width x length)
of 15×250mm (UD) and 25×250 mm (MD), gauge section lengths of
50mm (UD and MD), and grip lengths of 50mm (UD and MD), as per
the tension testing standard IS0527-4 (Standard, 1997). Dogbone-
shaped specimens were cut for compression tests with total dimensions
of 19×136mm (UD and MD), grip lengths of 51mm with tapered tabs,
and gauge sections of 15× 14mm.

2.2. Experimental methods

Static tensile tests were performed on an Instron test machine with a
crosshead speed of 1mm/min, grip capacity of 100 kN and loadcell
capacity of 20 kN. Tests were done at room temperature. Strain was
measured with two extensometers, centred on either side of the test
specimen. Ultimate strength was determined as the recorded maximum
stress, and stiffness was determined in the strain range of 0.05% to
0.25%. Static compression tests were performed using a mechanical
combined loading fixture (Bech et al., 2011), which applies a fixed ratio
of end-to-shear loading. This fixture has proven to yield repeatable
results and acceptable failure modes in tests with glass and carbon fibre
composites (Bech et al., 2011). The fixture was mounted on an Instron
test machine. Strain gauges were used on either side of the test spe-
cimen. Specimens were strained to failure at a crosshead speed of
1mm/min. Ultimate strength was determined as the recorded max-
imum stress, and stiffness was determined in the strain range of
0.05%–0.25%.

Prior to mechanical testing, the fibre angles of the test specimens
were measured using a Fast Fourier Transform (FFT) image analysis
procedure, as shown in Fig. 2. The term ‘fibre angle’ is used to refer to
the angle of the yarn in the specimen relative to the testing direction,
and as such it does not account for the twist direction of the fibres in the
yarn (Madsen et al., 2007). First, photographs of specimens were taken
on a light table using a Sony A7R II digital camera (Fig. 2, left). It was
possible to capture all 8 plies at once by using front-light from the light
table, with individual plies being indistinguishable from one another.
Then, MATLAB’ s FFT algorithm was used to transform the photograph
into a frequency domain image (Fig. 2, middle). The reference direction
of the specimen is defined by the lengthwise specimen edge. In addition
to the detected main fibre direction frequencies, smaller contributions
from other frequencies were also detected in each image (Fig. 2, right).
These frequencies were filtered out using a high-pass filter. Finally, the
mean fibre angles were taken by averaging the two clusters that passed
through the filter.

2.3. Composite laminate analysis

From experimental data, global stresses and strains were trans-
formed into lamina stresses and strains following the assumptions of
Classical Lamination Theory (CLT), as shown in Fig. 3. It is these la-
mina-level stresses and strains that are employed in failure criteria. The
global coordinate system is defined by (σx, ϵx) where x is the testing
direction. The lamina coordinate system is defined by (σ1, ϵ1) re-
presenting the parallel-to-fibre direction and (σ2, ϵ2) representing the
perpendicular-to-fibre direction.

2.4. Failure criteria

Failure criteria are used in computational modelling of composite
structures to describe when a material will fail under multiple and si-
multaneous types of stresses (e.g. axial, transverse, and shear). The failure
theories presented herein are all simplified into plane stress formula-
tions, as is employed in the analysis of plates or shells.

There is considerable disagreement in the literature about what the
correct definition of failure is for composite laminates. Herein, ultimate
strength is used to define failure because this is a clearly defined point of
the measured stress-strain curves. Different definitions of failure could,

Fig. 1. Schematic drawing of the mechanical test specimens cut from the UD
laminate (left) and MD laminate (right), giving specimens with five different
fibre orientations.

R. Koh, B. Madsen Mechanics of Materials 124 (2018) 26–32

27



however, straightforwardly be implemented in the presented optimi-
zation methodology. Next follows descriptions of the failure criteria
used in the present study.

2.4.1. Tsai–Hill Criterion
Eq. (2) represents the in-plane formulation of the Tsai–Hill failure

criterion (Tsai, 1968; Hill, 1948). The Tsai–Hill theory is used widely in
composite laminate analysis. While its clear disadvantage is that it does
not consider tensile and compressive behaviour separately, it is a good
basis for comparison between other criteria because of its widespread
and historical use. The parameter σ is used to denote stress, while S is
used to denote strength. Subscripts 1 and 2 refer to parallel-to-fibre and
perpendicular-to-fibre directions, respectively, and the combined sub-
script 12 denotes shear.
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2.4.2. Tsai–Wu Criterion
Eqs. (3a) and (3b) represent the in-plane formulation of the Tsai–Wu

failure criterion (Tsai and Wu, 1971). The Tsai–Wu theory is also used
widely, especially in finite element modelling of composites. It is easy
to implement, like the Tsai–Hill criterion, but it offers the advantage of
considering tensile and compressive strengths separately. In Eq. (3),
subscripts T and C refer to tension and compression, respectively. The
parameter f12 accounts for the interaction between the normal stresses
σ1 and σ2. In this study, the optimization bounds for f12 are determined
by a stability condition which requires the surface to converge
(Clouston et al., 1998).
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2.4.3. Hashin criterion
The Hashin failure criterion (Hashin, 1980) (Eqs. (4a)–(4d)) pre-

sents a semi-empirical approach, to address the problem that the dif-
ferent phases of a composite material (typically fibre and matrix) cause
them to fail in different modes. Prior criteria had only allowed these
modes to be represented by variation in the interaction parameters.
Hashin defines four modes by which the composite could fail and
considers the stress state under which each would occur, resulting in a
piecewise failure surface. Several updates have been proposed to the
original yield theory to account for phenomenological differences in the
behaviour of different materials (e.g. the Sun criterion for matrix
compression (Sun and Tao, 1998)). In the present study, Hashin’s ori-
ginal theory is used.
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Fig. 2. Image analysis procedure to measure fibre angles in test specimens by using Fast Fourier Transform (FFT). Left: Example of specimen photograph of a MD
specimen with fibre angles of +51/−52. Centre: Scaled and centred FFT frequency domain image. Right: Histogram showing the fibre angle distribution detected by
FFT.

Fig. 3. Classical Lamination Theory is used to convert global stresses and strains (in the testing direction) into lamina stresses and strains (in the fibre direction).
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4. Compressive Matrix Mode
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2.4.4. Puck criterion
The Puck failure criterion (Eqs. (5a)–(5e)) (Puck and

Schurmann, 1998) was chosen because of its success in the World-Wide
Failure Exercise, which assessed 13 different failure theories in 125
different cases (Hinton et al., 2002). Puck’ s theory did particularly well
in the category of cases which assessed ultimate strengths of multi-
directional composite laminates. Puck’ s approach distinguishes be-
tween two main failure types: Fibre Failure (FF) and Inter-Fibre Frac-
ture (IFF). The FF failure type is subcategorized into tension and
compression modes, while IFF failure type is subcategorized into Modes
A, B, and C, which depend upon the ratio of transverse (σ2) to shear (σ12
or σ21) stress. Furthermore, Puck’ s theory is the only one considered
here which includes a degradation model, describing laminate beha-
viour after crack initiation and allowing a distinction between initial
and final failure. However, in order to be consistent with the other
failure theories, this study does not distinguish between initial failure
and final failure. Instead, only final failure is considered.

In the Puck criterion, ϵ1T and ϵ1C are used to represent ultimate
strain in tension and compression, respectively, and ϵ1 is the current
strain. γ12 is shear strain, which is assumed to be equal to zero on tests
of unidirectional laminates. The parameter νf12 is the Poissons ratio for
fibres, and mσf is a mean stress magnification factor for fibres in the
transverse direction and is assumed to be equal to 1 for the tests of
unidirectional laminates. The parameter ⊥

−p( ) is the slope of the (σ1, σ12)
failure curve when < =σ 0,1 ⊥

+p( ) is the slope of the (σ1, σ12) failure curve
when σ1 > 0, and ⊥⊥

−p( ) is the slope of the (σ1, σ21) failure curve when
< =σ 01 . The parameter σ1D is a stress value for linear degradation.
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3. IFF Mode A
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4. IFF Mode B
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5. IFF Mode C
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2.5. Optimization

The FMINCON optimization solver in MATLAB was used to optimize
the various strength, strain and interaction parameters of the failure
criteria equations with respect to the experimental data. A schematic
for the parametric optimization procedure is depicted in Fig. 4. First,
the stress tensors are calculated from the experimental data using CLT,
with the measured fibre orientations in the composite laminates. During
this step, the strength properties were corrected using the rule of
mixtures to account for any difference in fibre volume fractions be-
tween UD and MD laminates. Next, the strength and other parameters
are substituted into the failure criterion which is solved for the pre-
dicted stress tensor. The fitness function minimizes the least squares
error between the predicted failure and the experimental failure for
each of the analysed fibre orientations.

3. Results

3.1. Composite properties

As shown in Table 1, the UD and MD composite laminates were
fabricated with fibre volume contents of 37% and 31%, respectively.
The higher fibre content in the UD laminate is expected due to the
better packing ability of the fibre yarns when the two plies of the fabrics
are aligned with each other. The porosity content for both composites is
below 1% indicating good materials quality. Table 1 presents also the
measured fibre angles of the test specimens. For the two UD test spe-
cimens, U1 and U2, the fibre angles are measured to be 0 and 87 de-
grees, respectively, which demonstrates that the approach of re-

Fig. 4. Schematic of parametric optimization procedure applied to fit failure
criteria to the experimental strength data.

Table 1
Physical properties of the manufactured flax composite laminates.

Composite Density Fibre volume Porosity, Test Fibre angle (°)

laminate (g/cm3) content, Vf (%) Vp (%) specimen Mean SD

Unidirectional 1.28 37 0.7 U1 0 1.0
(UD) U2 87 0.2
Multidirectional 1.26 31 0.7 M1 +51/−52 1.4/0.4
(MD) M2 +36/−66 1.9/0.3

M3 +38/−38 1.2/1.3
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orienting the two plies in the fabric was successful. For the three MD
test specimens, M1, M2 and M3, the fibre angles are measured to be
+51/−52°, +36/−66° and +38/−38°, respectively. These angles are
almost identical to the expected values based on the cutting angles of
the specimens (see Fig. 1), i.e. for M2: − =∘ ∘51 15 36°,
− − = −∘ ∘ ∘52 15 67 , and for M3: − =∘ ∘ ∘90 52 38 , − = −∘ ∘ ∘51 90 39 .

Tension and compression tests were performed on the test speci-
mens from the UD and MD composite laminates. The resulting stiff-
nesses and strengths are reported in Table 2. The variation in number of
specimens per fibre orientation is a result of optimizing the cut plan of
the laminates, and prioritizing fibre orientations in which fibre failure is
expected. Failure modes governed by fibre failure are known to have
more variation compared to composite failure modes governed by
matrix failure (Gibson, 2007). Additionally, a smaller number of spe-
cimens were tested in compression because of the greater complexity in
performing these tests. The results presented in Table 2 for tensile
properties are consistent with Madsen and Lilholt (2003) and
Madsen and Gamstedt (2013) who reviewed the subject, presenting
results from several studies of natural fibre composites. For the UD
laminate, the U1 tensile specimen has a stiffness of 20 GPa. By using a
simple rule-of-mixtures relationship, the effective stiffness of the flax
fibres can be back-calculated to be 48 GPa, which is a typical stiffness
value for flax fibres in composites (Madsen et al., 2009). Compression
properties are less studied and there is limited availability of data for
which to compare with the results in the present paper. However,
previous research has shown that compressive strength tends to be si-
milar but somewhat less than tensile strength (Bos, 2004). This trend is
consistent with the findings for the U1 and M3 test specimens, where
fibre failures were observed. In cases where matrix failure was observed
(U2 and M1), compression strength is higher than tensile strength.
Compressive stiffness is similar to tensile stiffness across all specimens.

For the UD laminate, the tensile strength in the 0° direction (U1
specimens) was corrected to be 235MPa (instead of 269MPa) using the
rule of mixtures, to account for the lower fibre content in the MD la-
minate of 31% (instead of 37%). This correction was made to bring UD
and MD specimens to the same volume fraction. The tensile strength in
the 90° direction (U2 specimens) was not corrected, due to the known
low sensitivity of the fibre content on strength in this direction
(Madsen and Lilholt, 2003). Due to the lack of widely accepted analy-
tical models for compression properties of composites, it was decided
not to correct the compression strength values of the UD laminate.

3.2. Failure criteria

The parameters of the four failure criteria were optimized by using a
minimization algorithm to fit the equations of the criteria to the ex-
perimental data of the UD and MD specimens. The generated optimal
parameter values, along with the mean error (fitness), are reported in
Table 3.

Fig. 5 depicts plots of each failure theory in −σ σ1 2 space. This is a
common representation of failure criteria. However, since the −σ σ1 2
space does not depict shear stress, it does not capture how well the
theories predict failure of MD composites. It is therefore most useful to
notice how well the theories fit failure of UD composites. It is clear from
the plots that the Hashin and Puck theories fit the UD specimens best,
while the Tsai–Hill and Tsai–Wu theories are quite far off. Fig. 6 depicts
plots of the theories in −σ σ2 12 space. It is often useful to look at failure
criteria in this plane because it constitutes matrix (or inter-fibre) fail-
ures. This view better depicts the fit of each theory to the failure of the
three MD specimens, together with the U2 specimens. The Tsai–Wu,
Hashin, and Puck theories all perform well in this space.

The Tsai–Hill theory gives the highest error at 19.9% and is clearly
not a good fit to experimental data because of its neglect to consider
tensile and compressive properties separately. It was chosen for this
study because of its use historically and in the industry, and chosen as a
baseline from which to compare other theories. As seen in Fig. 5, much
of the error of the Tsai–Hill failure criterion comes from parallel-to-
fibre tension and perpendicular-to-fibre compression. Matrix failure is
more closely predicted, as seen in Fig. 6, but strength is overestimated
for all cases where σ2 > 0, and underestimated in all cases where
σ2 < 0, highlighting the major drawback of the Tsai–Hill theory, which
is that it fails to consider tensile and compressive strength separately.

The Tsai–Wu theory is an improvement compared to Tsai–Hill be-
cause of its consideration for tensile and compressive properties sepa-
rately, but the Tsai–Wu theory is limited by its ellipsoidal formulation,
and thus gives very conservative strength values in tension and com-
pression parallel-to-fibres. While with the optimal parameters, it pre-
dicts matrix failure well (Fig. 6), it far under-predicts the fibre failures
(Fig. 5), leading to a high mean error of 15%. It should also be noted
that the optimal strength parameters found for this theory (see Table 3)
are far less than strengths reported in the literature for typical natural
fibre composites. Thus, importantly, if this theory was implemented

Table 2
Tensile and compression properties of the unidirectional and multidirectional
flax composite laminates.

Tensile Fibre angle Tensile properties

specimen (°) No. of Stiffness (GPa) Strength (MPa)

specimens Mean SD Mean SD

U1 0 10 20.3 1.5 269 27
U2 87 3 3.6 0.2 21 1
M1 +51/−52 8 4.5 0.1 45 1
M2 +36/−66 10 5.0 0.1 45 1
M3 +38/−38 6 7.5 0.3 109 3
Compression Fibre angle Compression properties

specimen (°) No. of Stiffness (GPa) Strength (MPa)

specimens Mean SD Mean SD

U1 0 3 16.2 0.4 −110 0
U2 87 2 4.5 0.6 −76 5
M1 +51/−52 3 4.1 0.2 −87 2
M2 +36/−66 – – – – –
M3 +38/−38 3 5.6 0.2 −90 2

Table 3
Optimal model parameters for Tsai–Hill, Tsai–Wu, Hashin and Puck failure
criteria, and the related mean errors (fitness).

(a) Tension, compression, and shear strength parameters.

Failure criterion Parameter

S1T S1C S2T S2C S12 Mean error
(MPa) (MPa) (MPa) (MPa) (MPa) (%)

Tsai–Hill 110 −110 23 −23 58 19
Tsai–Wu 112 −42 21 −79 37 15
Hashin 240 −112 20 −97 37 7
Puck – – 21 −77 43 6

(b) Additional strength, strain, and interaction parameters.

Failure criterion Parameter Value

Tsai Wu f12, T (MPa−2) 0

f12, C (MPa−2) 0
Hashin S21 (MPa) −87
Puck ϵ1T 2.0

ϵ1C −3.2

⊥
+p( ) 0.42

⊥
−p( ) −1.57

⊥⊥
−p( ) −0.50

R. Koh, B. Madsen Mechanics of Materials 124 (2018) 26–32

30



using parameters from the literature (S1T, S1C etc.), the Tsai–Wu cri-
terion would far overestimate composite strength in cases of matrix
failure. Finally, it can be noted that the Tsai–Wu theory uses interaction
parameters, f12, T and f12, C, which are difficult to determine experi-
mentally. Within the optimization bounds (determined by the stability
criterion previously mentioned), f12, T and f12, C were found to have
negligible effect on the fit of the surface; therefore it is recommended to
use = =f f 0T C12, 12, .

The Hashin theory demonstrates a relatively low mean error of 7%,

and it also demonstrates optimal strength parameters which align clo-
sely with what exists in the literature for typical natural fibre compo-
sites. The main disadvantage to the Hashin theory, as compared to
Tsai–Hill or Tsai–Wu, is that it is of moderate complexity, requiring four
piecewise equations which depend upon the fracture mode. Considering
the use of four equations, though, it does not use interaction or other
parameters, which are often difficult to determine experimentally; in
this way it is still relative simple to implement.

The Puck theory shares several of the advantages of the Hashin

Fig. 5. Tsai–Hill, Tsai–Wu, Hashin, and Puck failure criteria in −σ σ1 2 space with =σ 012 . Experimental data are shown with UD specimens marked by open dots and
MD specimens marked by filled dots.

Fig. 6. Tsai–Hill, Tsai–Wu, Hashin, and Puck failure criteria plotted with experimental data in −σ σ2 12 space. Experimental data represents only samples which failed
in this mode, i.e. U2, M1, M2, M3.
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theory, and it has the lowest mean error of 6% among the presented
four theories. The main disadvantage to the Puck theory is that it is of
high complexity with five modes of failure and two parameters, +p( ) and

−p ,( ) in addition to the strength and strain parameters. The parameters
+p( ) and −p( ) define the slopes of the (σ2, σ12) failure curve for σ2 > 0

and σ2 < 0, respectively, and are determined empirically in practice.
The Puck theory is the best fit for inter-fibre failures because it allows
for three different modes of matrix failure, as opposed to the Hashin
criterion which allows for two modes of matrix failure. Furthermore,
the Puck theory includes a degradation model. While this model is not
used herein, it is a good subject for further study and one of the reasons
why the Puck criterion is recommended by Hinton et al., (2002) and
Hinton et al. (2002).

In general, for strengths (and ultimate strains in the case of the Puck
theory) of natural fibre composites, it is recommended to use the values
associated with the Hashin and Puck failure theories because of their
lower mean errors. The Tsai–Hill and Tsai–Wu theories substantially
under-predict S1T and S1C. Conversely, the piecewise formulation of the
Hashin and Puck theories allow for a more accurate assessment of
strength and ultimate strain.

A further conclusion from the present study is the demonstrated
advantage of using parametric optimization in combination with failure
theories to report shear strength and interaction parameters, which are
difficult to determine experimentally and not widely reported in the
literature. There is a lack of reported shear strength data for natural
fibre composites in the literature today, but it is well known that the
matrix component drives the composite shear strength more than the
fibre component because shear failures are inter-fibre failures (IFF).
Therefore, it is expected that there will not be a significant difference
between these composites and those fabricated from glass fibres with
similar matrix materials. The values reported for shear strength of the
flax fibre composites, in the range 36–49MPa for the four failure the-
ories, are consistent with the design values for glass fibre composites
with similar matrix types (28–48MPa), as recommended by the AIMS
Fiberglass Structural Design Manual (LLC, 2017). The results indicate
that, on the coupon testing scale, the natural fibre composites demon-
strate mechanical behaviour which is consistent with other types of
composites, and can be modelled using conventional computational
methods. With the present set of parameters, it is now possible to design
composite structures for ultimate strength from natural fibre compo-
sites.

4. Conclusions

A framework for evaluating the accuracy of failure criteria in
comparison to experimental data, using tension and compression
testing of multiaxial composite laminates, is presented. The Tsai–Hill,
Tsai–Wu, Hashin, and Puck failure theories are compared to experi-
mental data from tension and compression tests of flax composite la-
minates in five layups with varying fibre orientations. Each failure
theory is coupled with a parametric optimization routine, and best-fit
parameters are presented for each theory.

The Hashin and Puck theories have the lowest error compared to
experimental data. Hashin’ s theory offers the advantage of being more
simple to implement, while Puck’ s theory has the advantage of a de-
gradation component, which allows for a plastic failure regime after
yielding. The Tsai–Hill and Tsai–Wu theories, when fit to test data of
multiaxial specimens, substantially under-predict uniaxial strengths S1

(Tsai–Hill), S1T and S1C (Tsai–Wu). This also means that if these theories
are used with common parameters reported in the literature, they
would grossly overestimate the strength of multiaxial composite lami-
nates.

Finally, the parametric optimization results lead to a measurement
of parallel-to-fibre shear strength of flax laminate composites, a prop-
erty which is difficult to determine experimentally and not widely re-
ported in the literature.
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