Lafayette College Department of Civil and Environmental Engineering

CE 321: Introduction to Environmental Engineering and Science

Fall 2019

Homework #11 Due: Wednesday, December 5, 2019 SOLUTIONS

- 1) Suppose some wastewater had a BOD₅ equal to a 180 mg/L and a reaction rate k equal to 0.22/day. It also has total Kjedahl nitrogen content (TKN) of 30 mg/L.
 - a. Find the ultimate carbonaceous oxygen demand (CBOD).
 - b. Find the ultimate nitrogenous oxygen demand (NBOD).
 - c. Find the remaining BOD (nitrogenous plus carbonaceous) after five days have elapsed.
- 2) A wastewater treatment plant discharges 1.0 m³/s of effluent having an ultimate BOD of 40 mg/L into a stream flowing at 10.0 m³/s. Just upstream from the discharge point, the stream has an ultimate BOD of 3.0 mg/L. The deoxygenation constant k_d is estimated at 0.22/day.
 - a. Assuming complete and instantaneous mixing, find the ultimate BOD of the mixture of waste and river just downstream from the outfall.
 - b. Assuming a constant cross-sectional area for the stream equal to 55 m², what BOD would you expect to find at a point 10,000 m downstream.
- 3) The wastewater in Problem 2 has DO equal to 4.0 mg/L when it is discharged. The river has its own DO, just upstream from the outfall, equal to 8.0 mg/L. Find the initial oxygen deficit of the mixture just downstream from the discharge point. The temperatures of sewage and river are both 15°C.
- 4) Two point sources of BOD along a river (A and B) cause the oxygen sag curve shown in the following image.

- a. Sketch the rate of reaeration vs. distance downriver.
- b. Sketch Lt (that is, the BOD remaining) as a function of distance downriver.

5) Untreated sewage with a BOD of 240 mg/L is sent to a wastewater treatment plant where 50 percent of the BOD is removed. The river receiving the effluent has the oxygen sag curve as shown in the following figure (the river has no other sources of BOD). Notice that downstream is expressed in both miles and days.

- a. Suppose the treatment plant breaks down and it no longer removes any BOD. Sketch the new oxygen sag curve starting just after the breakdown. Label the point which represents the critical distance downriver.
- b. Sketch the oxygen sag curve, as it would have appeared four day after the breakdown of the treatment plant.
- 6) The ultimate BOD a river and sewage outfall, after mixing, is found to be 50 mg/L. Also the DO is found to be at a saturation value of 10.0 mg/L after mixing, therefore no initial deficit. The deoxygenation rate coefficient k_d is 0.30/day and the reaeration rate coefficient k_r is 0.90/day. The river is flowing at the speed of 48.0 miles per day. The only source of BOD in this river is the single outfall.
 - a. Find the critical distance downstream at which DO is minimum.
 - b. Find the minimum DO.
 - c. If a wastewater treatment plant is to be build, what fraction of the BOD would have to be removed from the sewage to assure a minimum DO concentration of 5.0 mg/L everywhere downstream?
- 7) A city of 200,000 people deposits 37 cubic feet per second (cfs) of sewage having a BOD of 28.0 mg/L and 1.8 mg/L of DO into a river that has a flow rate of 250 cfs and a flow speed of 1.2 ft/s. Just upstream of the release point, the river has a BOD of 3.6 mg/L and a DO of 7.6 mg/L. The saturation value of DO is 8.5 mg/L. The deoxygenation coefficient k_d is 0.61/day and the reaeration coefficient k_r is 0.76/day. Assuming complete and instantaneous mixing of the sewage and river find
 - a. The initial oxygen deficit and ultimate BOD just downstream of the outfall
 - b. The time and distance to reach the minimum DO
 - c. The minimum DO
 - d. The DO that could be expected 10 miles downstream

8) The town of Martins Creek, PA, has filed a complaint with the Department of Environmental Protection (DEP) citing the town of Portland, PA, for the discharge of raw sewage into the Delaware River. The raw sewage is considered to be the cause of high fecal coliform counts and reduced levels of dissolved oxygen (DO), which have lead to foul odors along the river between Portland and Martins Creek. The coliform counts and reduced DO levels have lead to restrictions of recreational areas within the Portland/Martins Creek reach of the Delaware River.

The DEP water quality criterion for the Delaware River is 5 mg/L of DO (i.e. at no point shall the DO concentration drop below 5 mg/L).

Martins Creek is 15.55 km down stream of Portland.

Parameter	Wastewater	Delaware River just above Portland
Flow (m ³ /sec)	0.1507	1.08
BOD ₅ at 16°C (mg/L)	128.00	Not provided
BOD _u at 28°C (mg/L)	Not provided	11.40
DO (mg/L)	1.00	7.95
k at 20°C (day-1)	0.4375	k of BOD in river is based on WW
Temperature (°C)	16.00	28.00
Data of river after WWTP		
Average Speed (m/sec)	N/A	0.390
Average Depth (m)	N/A	2.80
Bed-activity coefficient	N/A	0.200

The following data pertain to the 7-year, 10-day low flow at Portland

A) What is the DO concentration as mg/L at Martins Creek?

Distance between Portland and Martins Creek is 15.55 km

B) Does your answer make sense based on the complaint received?

Name schutthEIS, KARI Subject HW #11 Course CE 321-01 Date 12- 07-2016

Sheet of 8

1 GIVI	ATE K	ME WAS	TEWATER	HAS	A BOD	5 EQUA	V TO	180mg/L 30 mall	AND A	REACTION
								0		
FIND	THE	ULTIMATE	CBOD							
	THE	ULTIMAT	NBOD							
	REM	AINUNG	TOTAL EC	D AFTE	RSJ	2. NH				
ASSUMP	FIONS	COHSTAN)	TTEMPE	RATURE						
		17 C				- 20				
SOLUTION	45 0	BOPUT = C	0	180 mg1	k=60	1-e-	iday 3 = 0.2	22 May	$L_0 = 26$	9.81 mg/L
NBO	PULT = 3	omg/L .	4.5 <u>714</u> m	g 02/mgr	1 = 13	7.1_mg_	02/2			
BOD RE	MAINING	= TBOD-E	10p5 = 2	269.8 m	202/L	+137.1 m	3021L -	180 mg 02/L	= 226.9	mg/LOz
60.0	- 7/	0 0		-						
- LBOU	- 127	1.0 mg/	02	-					· · · · · · · · · · · · · · · · · · ·	
BOD	REMAINI		21 a ma	1.0						
	6-3 1 J 1121 1		20,10	1 [22						
Z GIV	EN A	WASTEWA	IER TRE	AIMEN	T_PLAT	IT DISC	HARGES	1.0 m3/5	OF FF	LUENT
W	BOD . =	40 mg/L	INTO	A STRE	FAM W	/ FLOW	1=10.0	m3/5 . JI	ST UPST	REANI,
OF	THE DISC	HARGE P	HT, TH	E STRE	AM_H	AS BO	$D_0 = 3$	S.D mg/L.	DEDXYGE	MATION
COF	ISTANT	$k_d = 0$	22 Iday	, CROS	5-SECTION	AL A O	STREA	$M = 55 m^2$		
FIND	THE B	D OF	THE MO	r of h	/ASTELLA	TEP AN	D RIVER	JUST DAW	NEREAM	FROM OFF
TH	IE BOD	AT A	PT. 10,0	200 m	POWH ST	REAM			1 1 2 1 2 2 1 1 1	
ASSUMP	ONS C	ONSTANT	TEMP							
		NSTANTAL	YEOUS, C	OMPLET	MIXII	NG				
		3ALANCE 0	E INS \$	OUTS (WATER	EBOD)				
SOLUTION	15					tradical distance in succession of the second				
							Qa= 1	0.0m3/5+1.0r	n ³ 15	
3/4					6		10,0m	15.3.0mg/L+	1-0m3/5-40,	ng/L = Qq BOD
300 -20		-> Qq BDD-	-k = 0.22	Jay	Q 16,000	-Qa	BAD	= 1 21 21		
~~0~ 0.0					ωυ ₁₀ α	oo	200	vcvc .v - p	mg/1 02	
	1.0 m3/	5					V = 11n	13/5 F 0.3	2 m/s	
	B00, - 4	Omgl					55	im ²		
				10,00	00m	Iday	= 0,5	578704 days	5	
				0,2	2m/5 5	86,400 =				

Name	SCHUE	THE	15	KARI	
Subject	_HW	-11	11		

÷

C

Course CE 321-01

Date	12-07	-2016	P	
Sheet	2	10	8	

2 (con't)	BOD 10,000 m = 6.3636 mg/L (1-e-0.518704 day . 0.22 lday)
BOD 10,000 m	= 0.77 mg/L Oz
$BOD_{q} = 6.30$ $BOD_{10,000} m =$	0.77 3/L 02
2 6 11	
THE UPSTRE	HM DO OF THE RIVER IS 8.0 mg/L
THE DU	INITIAL OXYGEN DEFICIET OF THE MIX JUST DOWN STREAM OF SCHARGE POINT
ASSUMIPTIONS	CONSTANT TEMP OF RIVER & SEWAGE AT 15°C INSTANTAMEOUS MIXING BALANCE OF BOD & WATER IN & OUT CHLORIDE CONCENTRATION = 0
30LUTION	
= 10.0 m ^{3/} 5	$Q_n = 11 \text{ m}^3/\text{s}$ 10.0 m ³ /5 · 8.0 mg/L + 1.0 m ³ /s · 4.0 mg/L = 11 m ³ /s · DOg
D=6Dmg1L DC	$DO_q = 7.63636 \text{ mgl}$ = 1.0 m3/5 $DO_q = 7.63636 \text{ mgl}$
	$D_q = DO_{s(1s^2c)} - DO_q = (10.08 - 7.63636) mg/c = 2.443636mg/c$
Da = 2.44 mg/L	
GIVEN BELOW	TWO POINT SOURCES OF BOD ALONG A RIVER CAUSE THE OXUGEN SAG CURVE
x05	
00	
	X or te
-IND SKETCH	I RATE OF REARTION US DISTANCE DOWNISTREAM

Name SCHULTHE'S, KARL Course CE 321-01 Subject HW #11 Date 12-07-2016 Sheet 3 of 8 4 (con't) ASSUMPTIONS CONSTANT TEMP WELL MIXED LITILE TO NO DO PRESENT AT START Peoko Trough motich SOLUTION Dos - REAERATION DO O Lt X or L . 5 GIVEN ' UNTREATED SEWAGE WI BOD = 240 mg/L IS SENT TO A WASTEWATER TREATMENT PLANT WHERE 50% OF BOD IS REMOVED. THE RIVER RECEIVING THE EFFLUENT 'HAS NO DTHER SOURCES OF BOD * THE OXYGEN SAG CURVE SHOWN. RIVER UF130 milday DOS 9 2 8 1234567 59 Days FIND THE NEW SAG CORVE IF THE TREATMENT PLANT WERE TO STOP FUNCTIONING & NO LONGER REMOVES BOD THE SAG WARE 4 DAVS AFTER BREAKDOWN OF THE DLANT ASSUMPTIONS WELL MIXED (INSTANTANEOUSLY) PLUG FLOW CONSTANT TEMPERATURE CONSTANT PIVER SPEED SOLUTION R- BOD X2 30 D X2 SINCE DO, - DOS, to IS SAME 8- UNTIL DAY 4, WILL RESEMBLE GRAPH FROM PART A. AT 4 days JUMPS UP TO INITIAL SAG LURVE

LAFAYETTE COLLEGE ENGINEERING DIVISION

.

.

0

Name SCHUCTHEIS, KARI	Course CE 321-01
Subject HW #11	Date 12-07-2016
	Sheet 4 of 8
5 (con't)	
9 INITIAL	CURVE
D PART A	- INFINITLY LONG AFTER BREAKDOWN
O PART B	- 4. DAVS AFTER BREAKDOWM
P	
12345G7 t days	
6 GIVEN THE BODY OF A RIVER JUST BE	LOW A SEWAGE OUTFALL = 50.0mg/L
AND THE DO = DOS = 10.0 mgk 02. THE DEC	DXYGENATION RATE COEFFICIENT & =0.30/
AND REAERATION RATE Kr= 6.90 day, THE	RIVER FLOWS AT 18.0 milday .
FIND CRICAL DISTANCE DOWNSTREAM DISTANCE	WHERE DO IS AT A MIMIMUM.
DO MINIMUM	
IF A WINTP IS TO BE BUILT, WHAT FRA	SCTLOM OF BOD WOND HAVE TO BE
REMOVED FROM THE SEWAGE TO ASSURE DO	IS HUWAYS > 5.0 mg/L AMYWHERE DOWNSTRE
ASSUMPTIONS THE SEWAGE OUTFALL IS THE ONL	Y BOD SOURCE
HO HET LOSS OR GAIN O	F WATER
EVEN, CONSISTENT MIXING	
CONSTANT TEMPERATURE	
CONSTANT RIVER SPEED	
DOLUTION = 0.30 day = 0.90 day	Va Ong/L
1 1 1 1 1 1 1 1 1 1 1 1 1	
$t_c = 1$ in $\frac{0.90}{0.40} = 0.0.90 - 0.30$	= 1.83/02 days. 48 m1 - 87.889 m1
6.40-0.30 [0.30 L 0.30.50 J]	I day
1.83 - 205 - 21.83 - 205 - 20.0 mg/L	
D = 0.20 50 (0.0.3.1.83 0.0.152) . 00	190.1.83 = 9 (225 mali
$V_{193} = 0.130.20$ (e $e^{-0.9.1.83}$) + 0e	- 1.022- 11.312 02
0.10.0.0.20	
Do . = 10 0m . = 0 1.225mail = 0.200	E
501.83 - 10.019/L - 7.642.319/L - 0.5111	3 mg/L
te independent of BOD ADDED ; WE WAN	ITU01.83-5 mg/L
1/152 - 10 - 0 - 0 mg/L	

Name SCHULTHEIS, KARI

Subject Hw #11

0

Course CE 321-01

Date 12-07-2016 Sheet 5______8

<u>6 (con'+)</u>	$D_l = 5 mg/L =$	0.3. BOD (e	0.3.1.83 - C-0.9.1	85) BOD =	25.98 mg/L
% REMOVED =	50 mal - 25.981	nall : 10.01 = 4	8.04%		
	Somgly	-Gee *-100 /6			
	2				
$Dist_{c} = 87$	9 mi				
48 0% PE	SII mg/L 02	D PEOWRED			
I GIVEN	A CITY OF 200	.000 PEOPLE P	EPOSITS 37 Cfs	OF SEWAGE OF	SEWAGE WITH
BOD = 26.0 m	g/L AND 1.8 m	7/6 00 11/10	A RIVER WITH	A FLOW RATE OF	250 cfs
THE PIVEP	HAS A RODE	S.G. mall AND	A DO=7.6mal	THE SATURAT	HOAL WALVE
OF DO =	8.5mg/1 . TH	DEAXYGEN	ATTION COEFF	CIENT K, = C	D.El Idau
AND THE	REAERATION	COEFFICIEN	$T k_r = 0.76/e$	lay	6
FIND INITIP	L OXYGEN DEF	FICIT (DA) AI	ND ULTIMATE	BOD JUST DOWN	ASTREAM OF
OUTFAIL	DICTINUICE	IDENCIA ANNI			
HE MINUM	NA DO	KERLEI MIN			
HE EXPECT	ED DO 10	MI TONNIN	STREAM		
SSUMPTIONS	COMPLETE, IN	STANTANEOUS	MIXING OF TH	E SEWNGE : R	IVER
	CONSTANT TEW	PERATURE	+		
	CONSTANT RI	ier speed	? FLOW RATE	S	
	NO OUTSIDE	ADPITION SUBT	RACION OF V	VATER OR BOD	
VALUETIANI					
25004	0.=0.	+ ().		Q., =	- Qa
D = 3.6 mgl	BODA = L		K.= 0.	76/day BODIO	1
0 = 7,6mg/L	D04 =	0	{c_= 0.	olday Dopm	
D= 3TICTS	$D_{\alpha} =$				
D= 28.0mg/L					
0= 1.8 mg/L					
0 00	= 250 cfe . 11 / ma	1 + 271 - 12 - 12 - 0	mall = 1 \$5000		
	250 113 - 110110	+27 060	" <u>אור ~ 6.0) 220</u>	mol	
$D_{i} = DD_{i} - DI_{i}$) = 8.5 mul -	6.85 mall = 1	65 mal D		
Vu	-9	3/2	311 - 22		

Name _	SCHUU	THES	KARI
Subject	HW	#11	

.

ï

Course CE 321-01 Date 12-07-2016

Sheet 6 of 8

7 (cont) La:	= 3.4 mg/ 2	50 cfs + 37 cfs - 28	.0mg/L = 6.7456mg/L
	250 cts	* 37 cfs	
+ = 1	61912.07	av E. 16477mall	
076400 - 0.61/4	In 0.61/de	Q.(a)(day)	(0.1070ay - 0.0178ay) - 1.052111 Cays
Circlined and the			
tr = 1.0527711 day	15 - 86,400s =	90959 4255 · 1.2 f/c	= 109151,31 ft
	Iday		
DO1.053 = 8.5 mg/L-	DIOSE		
D = CHIMAN	THE Come In	(-0.61-1.053day -0	76/ ay . 1.053 day) + 1 41770.76/ 1.053 c
0.1.050 - 0.01/day	O (I AL	(e e)+1.671 mg/L2
U. Impany	U.GI/CAV		
Dur. = 2.8485	1 mall	m. = 8.5mal	2.54859mall = 5 (5141 mall
C-1.092		MN GIL	
-10 mi 5280 ft	12 = 0.5	092592	
1.2 fls Imi	86,4005		
D0.509d = 0.61/d.6	1456mg/L (e	0.6112 · 0.5092 - e-0	.76/2.6.5612) + 1.6477 mg/c e 0.76/2.0.5090
0.76/0-	0.61/d		0
			$D_q = 1.65 \text{ mg} / 1$
Do. 509 = 2.597678	8 mg/L		La= 6.75mg/L
	U		tc= 1.05 days
DOrom = DOS - Do.	509 = 5.9021	ng/ Oz	Drst_ = 109/151 ft
	· · · · · · · · · · · · · · · · · · ·	V	$DO_{MIN} = 5.65 \text{mg/L}$
			$DO_{lom} = 3.90 \text{ mg/L}$
G DOLLAR AND	14 000 m		
O PROBLEM IMARI	LITE CHEEK PA	TAS FILED IN CON	APLAINT CITING TOKILAN DIA
IS CRUSHIC I OL	DO	SCWIGE INIO I	HE DELAWAKE WHICH HEY DECEIVE
CAVOINGO	N N LEVEL.	D ? DIMER ETHECIS	IN PIME IN S LEEK.
GIVEN DEP CONTER	NON IS SMA	I DO MORTINIS	(PEEV IS ISSEM DOWNISTREDAM
FROM PORTIAND -	THE FOLLOWING	DOTO & GIUENI	R TW ID HOW FINIL AT DAPTIAND
		ADVIA IS CIVEN	
	WASTEWATER	DELAWARE RIVER	AFTER WINTP
FLOW (m3/s)	0.1507	1.08	ENTERS RWER
BODS @ 16° C(mg/L)	128.00		AVG SPEED (m/s) 0.390
BOD, @28°C (ma/c)		11.40	AVG DEPTH (m) 2.80
DO (mg/L)	1.00	7.95	BED ACTIVITY 0 200
K@ 20° (1day)	0.4375	Based on ww	OFFICIET
TEMPERATURE (°C)	16.00	2.8.00	

Name SCHULTHEIS, KARI Subject HW#11

2 G 🔆 👻

(

Course CE 321-01 Date 12-07-2016 Sheet 7 of 8

8 (conit) FIND DO AT MARTINS OREEK
ASSUMPTIONS INSTANTAMEOUS, EUL MIXING
CONSTRUCT TEMP AFTER MIXING
K IN RIVER BASED ON K IN WW
PLUG FLOW AFTER MIXING
NO WATER OR BOD ENTERS OR LEAVES SYSTEM BESIDES WHAT IS SPECIFIED
STEAP' STATE
NO CHLORIDE CONTENT
SOLUTION (16°.20°) = 0.2(2(2))
KIG-07517-1155 - 0.203031004
Loww (1-e-5001.0.263-3/day) = 128 mg/L Loww = 174.775 mg/L
RIVER
$L_0 = 11.40 \text{ mg/L}$ $L_0 = 31.41 \text{ mg/L}$ $@ T_0$
Q= 1.08 mp/s Q= 1.2307 m3/s Kd= 0.6642/d, Q= 1.2307
DO= 7.95 myle DO= 7.10 myle kr= 0.6069/d DO15.5m =
Tg= 28°C Tg= 26.5°C
WWTP KT = 0.62441 lday
$L_0 = 174.175 m_0/c$
$Q = 0.1507 \text{ m}^3/\text{S}$
Do= 1.0 mg/L
k= 0.4575 (@ 20°C) Hay
$T = 0.1577 - 31.11.05 - 316.25^{\circ} = 21.5201^{\circ} = 0.1275 - 1.051 (26-20)$
1 2301m3/c - 0.6211016/0 - 0.6211016/0
DD= = 1.08 m3/5. 7.95 mall + 0.1507 m3/5. Lomall = 7.09897 mall
1.230 T m ³ /s
$DO_{50} = 30^{\circ} - 26.53^{\circ} = 7.56 \text{ mall} - DO_{50} = 7.0458$
30°-25° 7.56mg/L-8.26mg/L
$D_{q} = DO_{sq} - DO_{q} = 0.94683$
$t_{MC} = \frac{15.55 \text{km} \cdot 1000 \text{m}}{0.39 \text{ m/s}} \frac{1 \text{d}}{1 \text{ km}} = 0.461479107$
$k_{d_{20}} = 0.4375 + \frac{0.390m/s}{2.90m} = 0.200 = 0.465357/day = 0.465357 - 1.056^{(26.5-20)} = 0.66424/d$
$k_{r_{a}} = \frac{3.9(0.390 \text{ m/s})^{1/2}}{(2.8 \text{ m})^{5/2}} = 0.51982823 / day - k_{126.5} = 0.519828 \cdot 1024 (22.5 \cdot 20) = 0.606910/d$

Name SCHULTHEIS, KAR Subject Hw #1

Course CE 321-01 Date 12-07-2016 Sheet 8 of 8

8 6	on't)			<u>.</u>											Ye							1		T			T
Ē į		_	La=	: 15	14.	77 r	ngle	•0)_!!	507	m3	's -	- 1.	08	11.4	10 m	all	-	- 2	5.4	053	38 r	ml	C			
-								1.2	.30	7 m	3/5		- 1	ĺ	_				_		-		0.				
D _{is.}	SSI≿m	= 0.	6642	14.3	31 41 0.	<u>mali</u> 664	2/2	(e	- 0	. 66	- 0,4	IC IS	-	e	0.60	7-0		s)	+	0.1	946	×83	e ⁻	0.60	69/9	• 0_	4615
Dis	ss ki	n =	78	960	67	ma	14																				+
De	-		~ ~			4	20		_				_		_												_
V	MC		n n n	ng4				ngl	ر=	0	15	ma)LC														
DO	MC =	- 0	.15	mg	IL			-	1																		
<u>THI</u>	sn	AKE	5	ENS	δĒ.	p	D	2	BEL	ou	24	5	5	J	ND	551	RA	BL	Ê,	AN	D	74	IS	DO	15	5	
	NER	LD	_4[] _CA	USE	TH	11.S. 7.4/	E	TOA	-D 1P1-	RE	502	OF	11	1.191	TAI	VEI KL	5	-14	PE RE	65		F[0]	SVS	IEN	1 4	HD	
																									1		T
-		1 1 1	-			-		-	-			_	-		12	-	1	1									
		-											+													+	
																_											
_			-	-		_	-	-	+		_		-	-		-					_					-	-
						1000				25.0					-	+						1			+		1
						_	+	-	-		_	-			-	-	-							_		-	
																								_		-	-
_																											
						-	_		-	<u> </u>			-	-	-				_		-					_	
					T							-	-	-					_		+	+			-		+
		_		6 #											_				_		_						1
							-					-	-	-	+-	-			_								-
																			-						1	-	t
	_													1										Print and a second			
			-								-				-									-	_		-
						1	_	-					-							-					-		
																						-			-		-