Lafayette College Department of Civil and Environmental Engineering

CE 321: Introduction to Environmental Engineering and Science

Fall 2019

Homework #10 Due: Monday, 11/25/19 SOLUTIONS

- 1) If the BOD of a municipal wastewater at the end of 7 days is 60 mg/L and the ultimate BOD is 85.0 mg/L, what is the rate constant?
- 2) Assuming that the data in Problem 1 were taken at 25°C, computer the rate constant at 16°C.
- 3) A sample of municipal sewage is diluted to 1% by volume prior to running a BOD₅ analysis. After 5 days the oxygen consumption is determined to be 2.00 mg/L. What is the BOD₅ of the sewage?
- 4) If the BOD₅ values for two livestock wastes having *k* values of 0.3800 day⁻¹ and 0.240 day⁻¹ are16230.0 mg/L, what would be the ultimate BOD for each?
- 5) A wastewater has a five-day BOD equal to 210 mg/L (test performed at 20°C) and an ultimate BOD of 350 mg/L. Find the five-day BOD at 25°C.
- 6) In a standard five-day BOD test,
 - a. Why is the BOD bottle stoppered?
 - b. Why is the test run in the dark (or in a black bottle)?
 - c. Why is it usually necessary to dilute the sample?
 - d. Why is it sometimes necessary to seed the sample?
 - e. Why isn't ultimate BOD measured?
 - f. What concentration of DO would you suggest as a starting concentration.
- 7) Assuming 0.1 mM of glutamic acid (C₅H₉O₄N) is used in the following stoichiometric reactions, calculate the Theoretical NBOD of glutamic acid.

 $C_{5}H_{9}O_{4}N + 4.5O_{2} \rightarrow 5CO_{2} + 3H_{2}O + NH_{3}$ $NH_{3} + 2O_{2} \rightarrow NO_{3}^{-} + H^{+} + H_{2}O$

 If the dissolved oxygen concentration measured during a BOD test is 9 mg/L initially, 6 mg/L after 5 days, and 3 mg/L after an indefinitely long period of time, calculate the 10-day BOD.

- 9) The following figure shows a plot of BOD remaining versus time for a sample of the effluent taken from a wastewater treatment plant.
 - a. What is the ultimate BOD (L_o) ?
 - b. What is the five-day BOD?
 - c. What is L_t for 7 days?

- 10) If the BOD₅ for some wastewater if 200 mg/L and the ultimate BOD is 300 mg/L, find the reaction rate constant k (base e) and K (base 10).
- 11) Suppose a wastewater has a BOD₅ equal to 180 mg/L and a reaction rate (k) equal to 0.22/day.
 - a. Find the ultimate carbonaceous oxygen demand (CBOD).
 - b. Find the remaining BOD after five days have elapsed.
- 12) Glutamic acid (C₅H₉O₄N) is used as one of the regent for a standard to check the BOD test. Determine the theoretical oxygen demand of 150 mg/L of glutamic acid. Assuming the following reactions:

$$C_{5}H_{9}O_{4}N + 4.5O_{2} \rightarrow 5CO_{2} + 3H_{2}O + NH_{3}$$

 $NH_{3} + 2O_{2} \rightarrow NO_{3}^{-} + H^{+} + H_{2}O$

- 13) 10.0 ml sample of wastewater with enough water to fill a 300 ml bottle has an initial DO of 9.0 mg/L. To help assure an accurate test, it is desirable to have at least a 2.0 mg/L drop in DO during the five day run, and the final DO should be at least 2 mg/L. For what range of BOD₅ would this dilution produce the desired results. Assume this test to be a five-day, unseeded BOD test.
- 14) A water sample is diluted by a factor of 10 using *seeded dilution water*. Dissolved oxygen concentration is measured at 1-d intervals, and the results are listed below. Using these data, determine the BOD as a function of time, i.e., calculate the BOD for each day.

Time, d	Diluted Sample Dissolved Oxygen, g/m ³	Seeded Blank Dissolved Oxygen, g/m ³
0	8.55	8.75
1	4.35	8.70
2	4.05	8.66
3	3.35	8.61
4	2.75	8.57
5	2.40	8.53
6	2.10	8.49
7	1.85	8.46

Name Fancua E. de la Rosa Subject HW 10

CE 321 Date 12818 Sheet 02 of 14

	Fanessa		i Kos	۵.								Cou	irse		CE3	21	0			
Subjea	HW_#	10										Dat	e	A7	11/2	X II	<i>୪</i>		<u> </u>	
			1011114	-	1 .		-			-	1-	Shee	et	03	0	01		**	·····	
	_					_				- i-			1							
) A	sample of r	nunicip	al se	wage i	s dil	uted	0 1%	6 bv	volu	meı	orio	r to r	บทก	ing	a BC)Ds	analy	vsis.		
A	fter 5 days t	he oxyg	gen c	onsum	ptio	n is d	etern	nine	d to b	be 2.	00 1	ng/L	. \	Wha	t is t	he B	OD	of		-
th	e sewage?-											-								
	Given :	£=	540		12	1 BO		7	NO			_	17	1	4.1.4					-
	VIIACAL -	U-	Jaa	42		D	5		.00 n	ng/				b	NTAL		imi			
	Find :	Total	volu	Ume o	1 n	nunia	cal j	PINO	ae . =	2			1							
					D			Cyth	7											
	Solution :	-																		
			2	. 00 mg	112	(9)	7′)	=	19	181	ng	14		-			_1			
				.00 mg 198 m	19/	6 +	2 mg	112	= 1	200) w	191	4							
				3005	F.		12.1								_					
			-	5005	-	200	vrig	1L	1	-										
1									1.174								-			1
												T	1						(
					1		- I have	-		-						E				
								-												
				-	-					-				-				-	_	
-				-		-	-			-										
				-						-										
			1					1			1					1			10	Ĩ
							-													
							-			_			-							
				-							1.500						-			
-	· · · · · · · · · · · · · · · · · · ·	•								-										
																	-			
												*****							ł.	T
													-						1	-
																			_	
																	_	111		
																	-			
1			-														-			
-																				
				-													-			

t

0

C

Name Fanussa E de la Posa. Subject HN # 10

 Course
 CE 32-1

 Date
 11/28/2-018

 Sheet
 04
 of

				ate BOD for e		<u></u>	
Given	: K	= 0,380) day -1	K2 = 0.2	10 day-1	BDD5 = 16	230.0 mg/L
Find :	Ba	DD u for	each or	L0			
Solutio	n :		-				
		BODS	= Lo (1	- e =) -	$\Rightarrow L_0 = \frac{BOD}{(1-e)}$	<u>5</u> k)	
() K,	= 0.3800	day-1				
-	Lo	= 162	30.0mg/L	- 19,0	84.43 mg/		
		(1-	e 6 (0.300	2 7] [

	¥ -	0.240 da	-1				
G			9				
	Lo	16230	(0.240)]	_ = 23	3,225.34	ng/2	
	-						
							the second se

Name Fanissa E. de la Rosa Subject HW#10 Course (E 32)

Date 11/28/2018 Sheet 05 of 14

Name 📄	Fanlssa	£	de	la.	Rosa	
Subject	_+(w#)	υ				

_	Cours	eGF_321	
	Date	11/28/18	
		-D.6 of	

		d five-day BOD test,
		y is the BOD bottle stoppered?
		is the test run in the dark (or in a black bottle)?
		is it usually necessary to dilute the sample?
		is it sometimes necessary to seed the sample?
		v isn't ultimate BOD measured?
I.	Wha	at concentration of DO would you suggest as a starting concentration.
Sol	whire	
	2	The BOD holthe is strategied becaused it are rate air for a sector
		The BOD bottle is stoppered because it prevents air from entering the bottle and disrupting the experiment's closed system.
	b.)	The test is run in the dark (or in a black bottle) because sunlight
		promotes growth in organics. Therefore, sunlight is not let in.
	0.1	"torto lud" environment. Dilutions are typically between 2-7 mg/L of
		"controlled" environment. Dilutions are hypically between 2-7 mg/L of
		dissolved oxygen.
	42	
	d)	Sometimes it is necessary to seed the sample because it coprects the
	d)	Sometimes it is necessary to seed the sample because it connects the demand of the source and. It is necessary to have a population of
	d)	Sometimes it is necessary to seed the sample because it corrects the demand of the source need. It is necessary to have a population of micro organisms that can consume the biodegradatce organic
	d)	Sometimes it is necessary to seed the sample because it corrects the demand of the source seed. It is necessary to have a population of micro organisms that can consume the biodegradable organic mother present in the sample to determine BOD.
		dimand of the source aced. It is necessary to have apopulation of microorganisms that can consume the biodegradatle organic mother present in the sample to determine BOD.
		dimand of the source and It is necessary to have a population of micro organisms that can consume the biodegradatce organic mother present in the sample to determine BOD. Ultimate BUD isn't measured because. it takes a long tome in
		dimand of the source aced. It is necessary to have apopulation of microorganisms that can consume the biodegradatle organic mother present in the sample to determine BOD.
	ę.)	dimand of the source and It is necessary to have a population of micro organisms that can consume the biodegradatce organic motter present in the sample to determine BOD. Ultimote BUD isn't measured because. it takes a long tome in companison to the standardized BOD test.
		demand of the source and It is necessary to have a population of micro organisms that can consume the biodegradatce organic motter present in the sample to determine BUD. Ultimote BUD isn't measured because. it takes a long tome in companison to the standardized BUD test. I would suggest 9 mg/L as the starting concentration of 00 since it
	ę.)	dimand of the source and It is necessary to have a population of micro organisms that can consume the biodegradatce organic motter present in the sample to determine BOD. Ultimote BUD isn't measured because. it takes a long tome in companison to the standardized BOD test.
	ę.)	demand of the source and It is necessary to have a population of micro organisms that can consume the biodegradatce organic motter present in the sample to determine BUD. Ultimote BUD isn't measured because. it takes a long tome in companison to the standardized BUD test. I would suggest 9 mg/L as the starting concentration of 00 since it
	ę.)	demand of the source and It is necessary to have a population of micro organisms that can consume the biodegradatce organic motter present in the sample to determine BUD. Ultimote BUD isn't measured because. it takes a long tome in companison to the standardized BUD test. I would suggest 9 mg/L as the starting concentration of 00 since it
	ę.)	demand of the source and It is necessary to have a population of micro organisms that can consume the biodegradatce organic motter present in the sample to determine BUD. Ultimote BUD isn't measured because. it takes a long tome in companison to the standardized BUD test. I would suggest 9 mg/L as the starting concentration of 00 since it
	ę.)	demand of the source and It is necessary to have a population of micro organisms that can consume the biodegradance organic motter present in the sample to determine BOD. Ultimote BOD isn't measured because. it takes a long tome in companison to the standardized BOD test. I would suggest 9 mg/L as the starting concentration of OU since it
	ę.)	demand of the source and It is necessary to have a population of micro organisms that can consume the biodegradance organic motter present in the sample to determine BOD. Ultimote BOD isn't measured because. it takes a long tome in companison to the standardized BOD test. I would suggest 9 mg/L as the starting concentration of OU since it
	ę.)	demand of the source and It is necessary to have a population of micro organisms that can consume the biodegradance organic motter present in the sample to determine BOD. Ultimote BOD isn't measured because. it takes a long tome in companison to the standardized BOD test. I would suggest 9 mg/L as the starting concentration of OU since it
	ę.)	demand of the source seed. It is necessary to have a population of Micro organisms that can consume the biodegradatce organic motter present in the sample to determine BUD. Ultimote BOD ion't measured because. it takes a long tome in comparison to the standardized BOD test. I would suggest 9 mg/L as the starting concentration of DO since it

Name Fancisa E di la Rosa Subject HW#10

Course CE321

Date II/28/18 Sheet 07 of 14

	$C_{5}H_{9}O_{4}N + 4.5O_{2} \rightarrow 5CO_{2} + 3H_{2}O + NH_{3}$ $NH_{3} + 2O_{2} \rightarrow NO_{3}^{-} + H^{+} + H_{2}O$
Find :	Theoretical NBOD = ?
Jolution :	
	$\frac{NBOD}{Mg N} = \frac{4.57 \text{ mg } O_2}{Mg N} \left(\frac{TKN \text{ as } N}{Mg N} \right)$
	M = Conc -> conc = M (MW) MW
	0.1 mM glutamic acid _ 1mar NH3 _ O.IMM NH3
	In of glutamic acid
	If we med Oz thin:
	$0.1 \text{ mM NH}_3 = \frac{2 \text{ mol } 0_2}{\text{ mul } \text{ NH}_3} = 0.2 \text{ m M } 0_2$
	conc = M(MW)
Theo.NBOD -	\Rightarrow conc of O_2 nucled = 200 MO_2 (32 g/me)
	$= 6400 g_{L} \rightarrow [6.4 mg/L]$

Name Fancsia E de la Rosa Subject HW#10

Course (E 321 Date 11 28 18

Sheet ____O____ of ____14

	de la Rosa				Course	CE321	
bject					_ Date	11/28/18	14
Glutamic acid (C ₅ H ₀ O ₄ N) i	s used as one	e of the rege	ent for a sta	ndard to ch	eck the BO	Ditest
Determine the t	heoretical o						
following react		5H9O4N + 4.	50 > 500				
			$D_2 \rightarrow NO_3$				
Course 1	Dop						
<u>Given</u> :	pubg	65 Hq 04 N	= 130 mg	/L			
Find :	theoretic	al Oxygen 1	Demand = ?				
Solution :							
	THO	D = CBDE) + NBOD				
	ISO ma	C-HORUN	(4.5 mile	02)(32 40,	1 Imole-Ha	64N - 146 91
		-	I mol C5	Haugh	MINE	1479	<u>(140)</u> = 146.9
	·						
					9 NH2		
					9 NH3) mol	Imel cr Ha	
					<u>9 NH3</u>)(mol	Imol cr Ha	<u>0-1N</u>) = 17.35
	150 mg Cr 12	Hg 04 N (Imol NI	13)(17			<u>0.1N</u>) = 17.35
	150 mg Cr 12	Hg 04 N (Imol NI	13)(17			<u>0.1N</u>) = 17.35
	150 mg Cr 12	Hg 04 N (I mol NI	13)(17			
	150 mg Cr 12	Hg Oy N (5 mg NH3 1 C	I mol NI	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35
	150 mg Cr 12 17.3	Hg Oy N (5 mg NH3 I C (144. 9 mg	$1 \mod Nt$ $(2 \mod 1)$ $(2 \mod 1)$	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35
	150 mg Cr 12 17.3	Hg Oy N (5 mg NH3 I C (144. 9 mg	$1 \mod Nt$ $(2 \mod 1)$ $(2 \mod 1)$	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35
	150 mg Cr 12 17.3	Hg Oy N (5 mg NH3 1 C	$1 \mod Nt$ $(2 \mod 1)$ $(2 \mod 1)$	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35
	150 mg Cr 12 17.3	Hg Oy N (5 mg NH3 I C (144. 9 mg	$1 \mod Nt$ $(2 \mod 1)$ $(2 \mod 1)$	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35
	150 mg Cr 12 17.3	Hg Oy N (5 mg NH3 I C (144. 9 mg	$1 \mod Nt$ $(2 \mod 1)$ $(2 \mod 1)$	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35
	150 mg Cr 12 17.3	Hg Oy N (5 mg NH3 I C (144. 9 mg	$1 \mod Nt$ $(2 \mod 1)$ $(2 \mod 1)$	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35
	150 mg Cr 12 17.3	Hg Oy N (5 mg NH3 I C (144. 9 mg	$1 \mod Nt$ $(2 \mod 1)$ $(2 \mod 1)$	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35
	150 mg Cr 12 17.3	Hg Oy N (5 mg NH3 I C (144. 9 mg	$1 \mod Nt$ $(2 \mod 1)$ $(2 \mod 1)$	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35
	150 mg Cr 12 17.3	Hg Oy N (5 mg NH3 I C (144. 9 mg	$1 \mod Nt$ $(2 \mod 1)$ $(2 \mod 1)$	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35
	150 mg Cr 12 17.3	Hg Oy N (5 mg NH3 I C (144. 9 mg	$1 \mod Nt$ $(2 \mod 1)$ $(2 \mod 1)$	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35
	150 mg Cr 12 17.3	Hg Oy N (5 mg NH3 I C (144. 9 mg	$1 \mod Nt$ $(2 \mod 1)$ $(2 \mod 1)$	$\binom{1}{2} \left(\frac{17}{17} \right)$	<u>g Oz</u>) nole		<u>0.1N</u>) = 17.35

	10				11/28/18	4
				Sheet		
) 10.0 ml sa	mple of wastew	ater with enough	water to fill a 30	0 ml bottle h	as an initial D	00 of
9.0 mg/L.	To help assure	an accurate test,	t is desirable to l	have at least	a 2.0 mg/L dr	op in
BOD auring	; the five day ru	n, and the final D produce the desir	O should be at le	east 2 mg/L.	For what rang	ge of
unseeded	BOD test.	produce the desh	eu resuits. Assu			y,
Give	$1 D_{i} = 1$	9.0mg/L	10.0 ML W	atu and	300 ML 1	1
	00 -	2.0 mg/L	natural	A min-dename di denamba ancia		
	t t	2.0 mg/L				
Fino	ranae	1 BOD = = ?	(ketween	9 and 2r	ngll	
	-	U				
Solu	hon: r Bo	He Test. (un	sedud)	- Hadar	<u>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </u>	
	1300 = 00	i - DOF	$\rho = \rho$	Libna Greek	= Volsam Vols +	
		ρ		INNIN TREAM	VOR S +	pu NT
						H ₂ D
	BODS = C	1 mall - 2 mall	1L_ = 210	mg/L]		
		1 mg/L - 2 m (10mL / 300 m	L)			
					ange	
	BOD- = "	2mc/1 - 7ma	60 1	mall		
	3	<u>1mg/1 - 7mg</u> (10m L /300m	L)			
	This L.L. #	in highly	4546	and the C	di .	10 1
	This dilut	IL BUDS.	duce desired	results the	n the range	60 mg/
14						

.

0

Name Fanissa Edula Rosa	Course CE 321
Subject HW#10	Date 11 28 18
	Sheet IH of IH

14) A water sample is diluted by a factor of 10 using *seeded dilution water*. Dissolved oxygen concentration is measured at 1-d intervals, and the results are listed below. Using these data, determine the BOD as a function of time, i.e., calculate the BOD for each day.

Time, d	Diluted Sample Dissolved Oxygen, g/m ³	Seeded Blank Dissolved Oxygen, g/m ³
	8.55	8.75
	4.35	8.70
2	4.05	8.66
3	3.35	8.61
4	2.75	8.57
5	2.40	8.53
6	2.10	8.49
	1.85	8.46

alven:	. chart		
	· P = ailution factor	1 =	0.1

Find: BOD as a function 2 time for each day

Solution							
duro-juriz	BUD =	(DO, - DUF) -	(DO 61 - DO BE)f	f=	90% of seed durited	
		р				100 Landauguna	

100% y sted water in Jample

f 9 5 0

Day 1 :	- Drift			8,709/m3) 0.9		3
Day 2:	(8.55g/m3 -	1.0 - (² mlc70.H -	- (8.759/m ³	-8.66 9/m3) 0.9	= 44.14	MglL
Day 3 :	(8.55 9/m) -	0.1 5.35 3/m2) -	(8.759/m ³ -	- 8.619/m3) 0.9	= 50.1	4 mall
Day 4:		0.1		E.573/m?) 0.9		
Day 5		0.1		- 8.53 J/m ³) 0.9		
ungs		0.1				
Day 6	(8.55 plm3 -	2 (0 9/m ²) -	(8.753 m3 .	- 8.49 J/m3 70.9	= 62.1	6 mg/L
Day 7:	(8.55 9/m3 -	- 1.85 (9/m3) - 0.1	(8.75 9 m2	- 8.46 9/m3) 0.9	= 64,3	39 mg/L