Lafayette College Department of Civil and Environmental Engineering

CE 321: Environmental Engineering and Science

Fall 2012

Homework #11 Due Friday: 12/4-6/12 SOLUTIONS – Handed out 2012

The town of Easton is considering the use of a Pocono lake as a new water supply during the reconstruction of the main water treatment plant. The new supply will support a 20 milliongallon per day usage. A water analysis has been conducted at a local lab to characterize the lake water; the results are as follows:

Sodium = 55.2 mg/L Alkalinity = 151.5 mg/L as $CaCO_3$

 $\label{eq:calcium} \begin{array}{ll} \text{Calcium} = 51.0 \text{ mg/L} & \text{Chloride} = 28.12 \text{ mg/L} \\ \text{Iron (III)} = 0.04 \text{ mg/L} & \text{Fluoride} = 0.4 \text{ mg/L} \\ \text{Magnesium} = 10.68 \text{ mg/L} & \text{Nitrate} = 1.3 \text{ mg/L} \\ \text{Potassium} = 3.7 \text{ mg/L} & \text{Sulfate} = 102.0 \text{ mg/L} \\ \end{array}$

The town did not have the CO₂ tested. You, as a well-trained environmental civil engineer, are able to calculate the approximate concentration of CO₂ knowing the pH. Be certain to define Total Hardness (TH), Carbonate Hardness (CH), and Non-Carbonate Hardness (NCH).

Further Information:

pH = 7.9

Cost of CaO = \$0.10/lb

Cost of Soda Ash = 0.05/lb.

Cost of trucking *sludge* to a landfill = \$20/ton

* Assume the *sludge* after dewatering is 12% solids by weight

Because you are Lafayette College civil engineering student you are well versed in lime/soda softening techniques. For this reason you are given the job of determining the following using the theoretical method of lime/soda ash softening:

- 1) Calculate the amount of CO₂ present in the system.
- 2) Draw a "Milliequivalent Bar Graph."
- 3) Report the Total Hardness (TH), Carbonate Hardness (CH), and Non-Carbonate Hardness (NCH) as mg/L as CaCO₃.
- 4) How much lime as CaO would be needed considering the theoretical approach to the lime/soda ash softening process?
- 5) How much soda ash (Na₂CO₃) would be needed to complete the lime/soda ash process to remove all of the hardness?
- 6) How much sludge would be produced?
- 7) Total cost of chemicals and sludge disposal per month?
- 8) Total Dissolved Solids (TDS) after treatment?

SOLUTIONS

1) Calculate the amount of CO₂ present in the system

Alkalinity is given as $CaCO_3$. Most waterways have a pH range of 6-9, this one is at 7.9, therefore the predominate form of alkalinity would be bicarbonate (HCO_3). The following calculation is to convert the $CaCO_3$ to HCO_3 . 151.5 (61/50) = 184.83 mg/L

Cation	Conc mg/L	EW mg/mq	MillE meq/L	CaCO ₃ mg/L	Anion	Conc mg/L	EW mg/mq	MillE meq/L	CaCO₃ (mg/L)
Na⁺	55.20	23	2.4	120.0	HCO ₃	184.83	61	3.03	151.5
Ca ²⁺	51.00	20	2.55	127.5	Cl	28.12	35.45	0.79	39.5
Fe ³⁺	0.04	18.61	2.15E-3	0.107	FI-	0.4	10	2.10E-2	1.05
Mg ²⁺ K ⁺	10.68	12.15	0.87	43.5	NO_3	1.30	62	2.13E-2	1.06
K ⁺	3.70	39.09	9.46 E- 2	4.73	SO ₄ ²⁻	102.0	48.02	2.12	106.00

pH is give at 7.9, Therefore the hydrogen ion concentration $[H^+] = 10^{-7.9} = 1.26E-8$ mole/L

We have learned that the Molar Concentration of CO_2 = to H_2CO_3 . The reason has to do with equilibrium shifts in water. Since the weak acid, Carbonic Acid (H_2CO_3), is pH dependent and we know that typical pH values of waterways range from about 6 to 9 we know that due to speciation of the H_2CO_3 it will be present as bicarbonate (HCO_3). And based on research of how CO_2 speciates as it interacts with the water, researchers have found that the concentration of the intermediate specie, H_2CO_3 , is about 0....therefore the forms of the weak acid present are CO_2 and HCO_3 . The following stoichiometric sequence demonstrates how CO_2 in the atmosphere enters the water to for an aqueous form of CO_2 and then interacts with water molecules. Therefore, as outlined in this discussion, at equilibrium the two forms of the weak acid (i.e., two factions) that are present are CO_2 (aq) and HCO_3 .

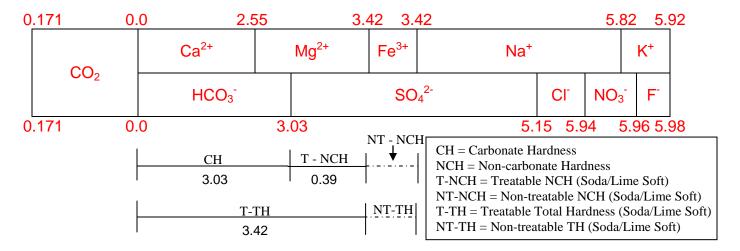
$$CO_2$$
 (gas) $\leftarrow \rightarrow CO_2$ (aq) + $H_2O \leftarrow \rightarrow H_2CO_3 \leftarrow \rightarrow H_2 + HCO_3$

We know that pK_{a1} for the equilibrium of H₂CO₃ to HCO₃⁻ is 6.35 (K_{a1} = 4.45E-7) and the equilibrium relationship is stated as: $K_{a1} = \frac{[HCO_3^-][H^+]}{[H_2CO_3]}$

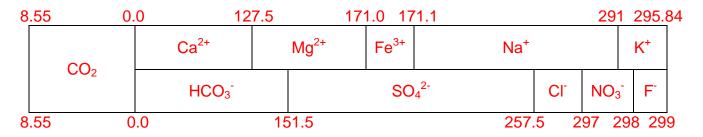
Molar Concentration of $[HCO_3] = Conc/MW = 0.18483g/L / 61 g/mole = 3.03E-3 mole/L$

Solving for CO₂ molar concentration

$$[CO_2] = [H_2CO_3] \rightarrow K_{a1} = \frac{[HCO_3^-][H^+]}{[H_2CO_3]} \rightarrow 4.45E-7 \text{ mole/L} = \frac{[0.00303^{mole}/L][1.26E-8^{mole}/L]}{[CO2]}$$


 $[CO_2] = 8.57E-5 \text{ mol/L};$

therefore the concentration of CO_2 is 8.57E-5 mol/L x 44 g/mol x 1000 mg/g = 3.77 mg/L


The concentration as milliequivalent/L is 3.77 mg/L / ((44 mg/meq)/2) = 0.171 meq/L

2) Draw a "Milliequivalent Bar Graph."

Milliequivalent Bar Chart (meq/L)

Calcium Carbonate (CaCO₃) Bar Chart (mg/L as CaCO₃)

Check Cation/Anion → +/- 5%:

$$\left(\frac{5.98 - 5.92}{5.92}\right) * 100 = 1.01 \%$$
 The system checks within specified boundaries.

T-TH = 171.0 mg/L as $CaCO_3$ and TH = 171.1 mg/L as $CaCO_3$ CH = 151.5 mg/L as $CaCO_3$ T-NCH = 19.5 mg/L as $CaCO_3$ and NCH = 20.0 19.5 mg/L as $CaCO_3$

TDS - Total dissolved solids - two important considerations when calculating TDS

- 1) TDS is not reported as any particular chemical; therefore you simply add the weight of each compound.
- 2) If a TDS test is performed by evaporating the water in a crucible, it is important to know the HCO₃⁻ (bicarbonate) will be converted to carbonate and precipitate out as CaCO₃ or MgCO₃ (Only one CO₃⁺² to each Ca⁺² or Mg⁺²...not two...in other words, an equivalent amount of alkalinity will associate with Ca⁺² or Mg⁺²). The HCO₃⁻ that remains in the water will convert to H₂O vapor and CO₂ gas. (remember, with a charge of one there would be 2 HCO₃⁻ associated with each Ca⁺² or Mg⁺²) So the weight of CO₃⁺² would be 184.83 (30/61) = **90.90 mg/L**

TDS before Treatment = 55.20 mg/L + 51.00 mg/L + 0.04 mg/L + 10.68 mg/L + 3.70 mg/L +**90.90 \text{ mg/L}**+ 28.12 mg/L + 0.4 mg/L + 1.30 mg/L + 102.0 mg/L = 343.34 mg/L

3) Report the Total Hardness (TH), Carbonate Hardness (CH), and Non-Carbonate Hardness (NCH) as mg/L as CaCO₃.

Carbonate Hardness Noncarbonate Hardness

 $CH = 151.5 \text{ mg/L as } CaCO_3$

Treatable NCH = 19.5 mg/L as CaCO₃ treatable by the Lime/Soda Softening process Total NCH = 20.0 19.5 mg/L as CaCO₃

Total Hardness

Treatable TH = 171.0 mg/L as $CaCO_3$ Ca^{2+} and Mg^{2+} - by the Lime/Soda Softening process

Total Hardness = 171.1 mg/L as CaCO₃

- 4) How much lime as *CaO* would be needed considering the theoretical approach to the *lime/soda ash softening process*? The only hardness that can be removed using the Lime/Soda Ash Softening process is Ca²⁺ and Mg²⁺.
- 5 Overall Reactions that are considered in Lime/Soda Softening:
 - 1) Neutralization Reaction

$$CO_2 + Ca(OH)_2 <==> CaCO_3(s) + H_2O$$

2) CH due to Ca (must raise pH to > 10.3)

$$Ca^{+2} + 2HCO_3^- + Ca(OH)_2 <==> 2CaCO_3(s) + 2H_2O$$

3) CH due to Mg (two stage reaction, pH > 10.3, pH > 11)

a.
$$Mg^{+2} + 2HCO_3^- + Ca(OH)_2 <==> MgCO_3 + CaCO_3(s) + 2H_2O$$

b.
$$Mg^{+2} + CO_3^{-2} + Ca(OH)_2 <==> Mg(OH)_2(s) + CaCO_3(s)$$

Remember MgCO₃ is relatively soluble

4) Noncarbonate Hardness due to Ca⁺² (no further OH⁻ needed to adjust pH, CO₃⁻² needed)

a. $Ca^{+2} + Na_2CO_3 <==> CaCO_3(s) + 2Na^+$

5) Noncarbonate Hardness due to Mg⁺² (Note Mg⁺² removed but not Ca⁺²)

a.
$$Mg^{+2} + Ca(OH)_2 <==> Mg(OH)_2(s) + Ca^{+2}$$

b.
$$Ca^{+2}$$
 + Na₂CO₃ <==> $CaCO_3(s)$ + 2Na⁺

Ca ²⁺ and Mg ²⁺ Ratio/Assessment Table – Milliequivalence								
		Equivalent F	Ratios	Chemical/Sludge Assessment (MillE)				
Eq. #	Lime	Soda Ash	CaCO ₃ /MgOH ₂	Lime	Soda	CaCO ₃ /MgOH ₂		
1	1:1	-	1:1 / -	0.171	-	0.171 / -		
2	1:1	-	1:2 / -	2.55	-	2(2.55)/ -		
3	1:2	-	1:2 / 1:1	2(0.48)	-	2(0.48) / 0.48		
4	-	1:1	1:1 / -	1	-	-		
5	1:1	1:1	1:1 / 1:1	0.39	0.39	0.39 / 0.39		
Totals				4.071	0.39	6.621 / 0.87		

Ca ²⁺ and Mg ²⁺ Ratio/Assessment Table – Calcium Carbonate								
		Equivalent F	Ratios	Chemical/Sludge Assessment (CaCO ₃)				
Eq. #	Lime	Soda Ash	CaCO ₃ /MgOH ₂	Lime	Soda	CaCO ₃ /MgOH ₂		
1	1:1	-	1:1 / -	8.55	-	8.55 / -		
2	1:1	-	1:2 / -	127.5	ı	2(127.5) / -		
3	1:2	-	1:2 / 1:1	2(24.0)	ı	2(24.0)/ 24.0		
4	-	1:1	1:1 / -	-	-	-		
5	1:1	1:1	1:1 / 1:1	19.5	19.5	19.5 / 19.5		
Totals			203.55	19.5	331.05 / 43.50			

Therefore based on the assessment table and considering the appropriate equiv wts.:

EW of Lime, also call Quick Lime (CaO) = 56 mg/mmole / 2 meq/mmole = 28 mg/meq EW of Slake Lime (Ca(OH)₂) = 74 mg/mmole / 2 meq/mmole = 37 mg/meq EW of Soda Ash (Na₂CO₃) = 106 mg/mmole / 2 meq/mmole = 53 mg/meq

Calculating the amount of Quick Lime (CaO) needed for the LIME/SODA process

NOTE: In equations 1-5 slake lime is represented. It is important to note that an equivalent amount of quick lime could also be used.

Calculated using Quick Lime

Lime as $CaO = (4.071 \text{ meq/L}) \times 28 \text{ mg/meq} = 113.99 \text{ mg/L of Quick Lime NEEDED}$

IF Slake Lime were used....

Calculated using Slake Lime

Lime as $Ca(OH)_2 = (4.071 \text{ meq/L}) \times 37.0 \text{ mg/meq} = 150.63 \text{ mg/L of Slake Lime}$

5) How much Soda Ash (Na₂CO₃) would be needed to complete the lime/soda ash process to remove all of the hardness?

Soda Ash $(Na_2CO_3) = 0.39 \text{ meg/L x } 53 \text{ mg/meg} = 20.67 \text{ mg/L of Soda Ash NEEDED}$

6) How much sludge would be produced?

EW of $CaCO_3 = 100 \text{ mg/mmole} / 2 \text{ meg/mmole} = 50 \text{ mg/meg}$ EW of MgOH₂ = 58 mg/mmole / 2 meg/mmole = 29 mg/meg

SLUDGE from EQUATION:

- 1= Neutralization = all CaCO₃ sludge = 0.171 meg/L x 50 mg/meg = 8.55 mg/L
- **2** = CH due to Ca = all CaCO₃ sludge = $2(2.55 \text{ meg/L}) \times 50 \text{ mg/meg} = 255.00 \text{ mg/L}$
- 3 = CH due to Mg = part CaCO₃ sludge and part MgOH₂ sludge

 $CaCO_3$ sludge = 2(0.48 meg/L) x 50 mg/meg = **48.00 mg/L** $MgOH_2$ sludge = 0.48 meg/L x 29 mg/meg = **13.92 mg/L**

5 = Noncarbonate Hardness due to Mg⁺² = part CaCO₃ sludge and part MgOH₂ sludge $CaCO_3$ sludge = 0.39 meg/L x 50 mg/meg = **19.50 mg/L**

 $MgOH_2$ sludge = 0.39 meg/L x 29 mg/meq = **11.31 mg/L**

Total WEIGHT of SLUDGE = 356.28 mg/L

Total WEIGHT of WET SLUDGE @ 12% Solids = 356.28 mg/L/0.12 = 2,968.75 mg/L

7) Total cost of chemicals and sludge disposal per month?

Cost of Quick Lime

$$113.99\,{}^{mg}/_{L}*8.345\,{}^{\#\cdot L}_{\overline{mg\cdot MGal}}*20\,{}^{MGal}/_{day}*30\,{}^{day}/_{Month}*0.1\,{}^{\$}/_{\#}\,=\$57,074.79/month$$

Cost of Soda Ash

$$20.67 \frac{mg}{L} * 8.345 \frac{\text{#} \cdot \text{L}}{mg \cdot \text{MGal}} * 20 \frac{\text{MGal}}{\text{day}} * 30 \frac{\text{day}}{\text{Month}} * 0.05 \frac{\text{$}^{\$}}{\text{#}} = \text{$5,174.73/month}$$

Cost for WET Sludge Disposal
$$\frac{\frac{356.28^{mg}/_{L^{*}8.345\frac{\#\cdot L}{mg\cdot MGal}*20^{MGal}/_{day}*30^{day}/_{Month}*20^{\$/}_{ton}}{2000^{\#}/_{ton^{*}}0.12}=\ \$148,657.7/month$$

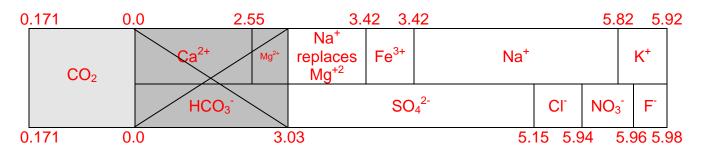
TOTAL COST = Cost of Quick Lime + Cost of Soda Ash + Cost for Dry Sludge Disposal

= \$57,074.79/month + \$5,174.73/month + \$17,838.93/month = \$80,087.10/month

TOTAL COST = Cost of Quick Lime + Cost of Soda Ash + Cost for WET Sludge Disposal

= \$57,074.79/month + \$5,174.73/month + \$148,657.7/month = \$210,907.27/month

Total Dissolved Solids (TDS) after treatment?


Initial Total Dissolved Solids (TDS)

As outlined in Part 2:

- 1) TDS is not reported as any particular chemical; therefore you simply add the mass/L of each compound.
- 2) If a TDS test is performed by evaporating the water in a crucible, it is important to know the HCO₃⁻ (bicarbonate) will be converted to carbonate and precipitate out as CaCO₃ or MgCO₃ (Only one CO₃⁺² to each Ca⁺² or Mg⁺²...not two...in other words, an equivalent amount of alkalinity will associate with Ca⁺² or Mg⁺²). The HCO₃⁻ that remains in the water will convert to H₂O vapor and CO₂ gas. (remember, with a charge of one there would be 2 HCO₃⁻ associated with each Ca⁺² or Mg⁺²) So the weight of CO₃⁺² would be **184.83** (**30/61**) = **90.90** mg/L

TDS before Treatment = 55.20 mg/L + 51.00 mg/L + 0.04 mg/L + 10.68 mg/L + 3.70 mg/L + 90.90 mg/L + 28.12 mg/L + 0.4 mg/L + 1.30 mg/L + 102.0 mg/L = 343.34 mg/L

Assessment of finished water TDS

We always disregard CO₂ when calculating TDS, is converts bag to a gas. Ca²⁺, Mg²⁺ and the bicarbonate have been removed from the water through the lime softening process, they became part the sludge that was hauled off. Also the Mg²⁺ NCH was replace by Na+ as shown in Equation 5.

Therefore:

Added Na⁺ that replaces $Mg^{2+} = (3.42 \text{ meq/L} - 3.03 \text{ meq/L}) * 23 \text{ mg/meq} =$ **8.97 mg/L**Summing the cations and anions in the finished water:

 $8.97 \text{ mg/L} + 55.20 \text{ mg/L} + 0.04 \text{ mg/L} + 3.70 \text{ mg/L} + 28.12 \text{ mg/L} + 0.4 \text{ mg/L} + 1.30 \text{ mg/L} + 102.0 \text{ mg/L} = 199.73 \text{ mg/L} \text{ of remaining TDS}}$ (plus whatever ions might be missing)