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1 Introduction

My research starts with computation and ends with theory. I tend to choose problems
which I can explore first by doing explicit computations, both by hand and by computer.
The data collected in this way often gives direction to the theoretical side of my research
(illustrated examples below). After all, figuring out what to prove is often a bigger
obstacle than the proof itself.

Figure 1: Some scatterplots illustrating the shape of the set of monic degree 4 polynomials f(Z) = Z4+xZ3+yZ2+zZ±1
with Mahler measure M(f) ≤ T . I produced these images to aid in understanding the problem of counting the number of
algebraic units of given degree over Q and increasing height, discussed in Section 2.1.

I’ve always hated the idea of having to choose one specific focus, because I feel drawn
to all branches of mathematics. That’s why I’m a number theorist – we use tools from
algebra, geometry, analysis, probability, logic, and beyond, all in the study of one of the
most basic objects in all of mathematics: the integers. It’s also a field that has a long
history of being advanced through experimental computation. Gauss’s famous quadratic
reciprocity theorem was first conjectured by Euler and Legendre based on experimental
data. Centuries later, Birch and Swinnerton-Dyer used one of the world’s first computers
to count the number of mod p solutions to cubic equations in two variables, producing
data which led to a conjecture which is today one of the most important in the field, and
one of the Millenium Prize problems.

Research in number theory traces back to the basic questions about the integers:
what can we say about their algebraic structure (elementary/prime number theory, ad-
ditive combinatorics, etc.)? What can we say about the solutions to integer polynomial
equations in one variable (algebraic number theory) or several variables (diophantine
equations/ geometry)? My own research focuses on algebraic number theory and dio-
phantine geometry.
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Order is important. For example, we study the prime numbers, of which there are
infinitely many, using they fact that they are ordered. This lets us ask questions such
as: what proportion of prime numbers are congruent to 1 mod 4? This question makes
sense if we consider the proportion of all prime numbers up to an arbitrary given size. In
algebraic number theory and diophantine geometry, the notion of a “height function” is
an attempt to find the right way to order the points we want to study. Such functions play
a fundamental role in diophantine geometry (for example they appear in the proof of the
Mordell-Weil theorem and the statement of the Birch and Swinnerton-Dyer conjecture).
There are two qualities a good height function (such as the Weil height introduced in the
next section) should have:

1. The height of a point be a sensible measure of how complicated a point is, and there
should be only finitely many points of bounded height and degree (so that the height
can be used for “counting”). For example, in defining the height of an algebraic
number, it would make sense if the height of a plain old rational number were an
indication of how large the numerator and denominator are when the number is in
lowest terms. For general algebraic numbers, the height should in some sense reflect
how complicated a polynomial one needs to define it. For solutions to diophantine
equations (points on a variety), the height should be related to the heights of the
coordinates as algebraic numbers.

2. The height function should “respect” any algebraic structure present. This is sim-
ilar to what we ask of a norm in a vector space, which is also a measure of the size
of points, and which satisfies axioms defined in terms of the algebraic structure of
the space.

Quality 1 is what makes height functions a useful approach to bring order to an
infinite set of points, allowing people to “count” them: how many points have height less
than X? In Section 2 I’ll discuss my recent and future work on this theme, including a
current project (Section 2.3) which features an application of these ideas to a diophantine
problem on the linear relations which can exist between conjugate algebraic numbers.

Quality 2 leads to more subtle questions about “small points.” The oldest and deepest
such question is known as Lehmer’s problem, which is essentially the following question:
if the complex roots of an integer polynomial are not all on the unit circle, how close
can they be? Is there a theory that explains that the roots are “pushed away” from the
unit circle, in some sense? These questions are made precise by being phrased in terms
of lower bounds on height functions. These lower bounds, together with upper bounds
which come from different considerations, have important applications in diophantine
equations. The majority of my published work has been related to questions of small
points (how small can they be?). These are discussed in Section 3, along with ongoing
and future projects in the area.
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2 Arithmetic statistics and asymptotics

2.1 Counting algebraic numbers

For a polynomial

f(Z) = x0Z
d + · · ·+ xd = x0(Z − α1) · · · (Z − αd)

having real coefficients x0, . . . , xd (with x0 6= 0) and complex roots α1, . . . , αd, we define
the Mahler measure M(f) of the polynomial f by

M(f) = |x0|
∏
|αi|>1

|αi|.

The absolute Weil height H(α) of an algebraic number α ∈ Q can be defined as

H(α) = M(f)1/d, (1)

where f is the minimal polynomial of α over Z, having degree d. This height func-
tion turns out to be the one which generalizes to important height functions used in
diophantine geometry and arithmetic dynamics.

If S is a subset of Q one considers the asymptotics of

N(S,H) = #{x ∈ S | H(x) ≤ H},

Schanuel [23, Corollary] proved a now classical result in this direction: for any number
field K, as H grows,

N(K,H) = cK · H2[K:Q] +O
(
H2[K:Q]−1 logH

)
,

where the constant cK involves all the classical invariants of the number field K, and the
logH factor disappears for K 6= Q. More recently, natural subsets that aren’t contained
within a single number field have been examined. Masser and Vaaler [22, Theorem]
determined the asymptotic for the entire set Qd = {x ∈ Q | [Q(x) : Q] = d}:

N(Qd,H) =
d · Vd

2ζ(d+ 1)
· Hd(d+1) +O

(
Hd2(logH)

)
,

where the logH factor disappears for d ≥ 3, and Vd is an explicit positive constant in
terms of d.

This asymptotic was deduced from results of Chern and Vaaler [7], which also imply
an asymptotic for the set Od of all algebraic integers of degree d, as noted in Widmer [29,
(1.2)]. It was sharpened by Barroero [2, Theorem 1.1, case k = Q]:

N(Od,H) = d · Vd−1 · Hd2 +O
(
Hd(d−1)(logH)

)
,

where again the logH factor disappears for d ≥ 3.
In a recent paper with Joseph Gunther [18], we added to these results in two ways.

First, we extended the results to counting units in the ring of algebraic integers. Secondly,
we were able to make explicit the implied constants in the “big O” error terms of Masser-
Vaaler and Barroero. The following theorem summarizes these results.
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Theorem 2.1. Let Qd denote the set of algebraic numbers of degree d over Q, let Od
denote the set of algebraic integers of degree d over Q, and let O∗d denote the set of units
of degree d over Q in the ring of all algebraic integers. For all d ≥ 3 we have

(I )
∣∣∣N(Qd,H)− d·Vd

2ζ(d+1)
Hd(d+1)

∣∣∣ ≤ 3.37 · (15.01)d
2 · Hd2 , for H ≥ 1;

(ii )
∣∣N(Od,H)− dpd(Hd)∗

∣∣ ≤ 1.13 · 4ddd2d2 · Hd(d−1), for H ≥ 1; and

(iii)
∣∣N(O∗d,H)− 2dVd−2 · Hd(d−1)

∣∣ ≤ 0.0000126 · d34d(15.01)d
2· Hd(d−1)−1,

for H ≥ d2d+1/d.

I place a high value on explicit results, and in this context it is easy to explain this
value. While the results cited above with “big O” error terms can be used to pose
(asymptotic) questions about the probability that a “random algebraic number of degree
d” has a certain property, results that have explicit error bounds, i.e. are uniform in both
d and H, allow one to pose more general questions about a “random algebraic number”
of unspecified degree, counting numbers in arbitrary “height-degree boxes.”

Figure 2: Algebraic numbers of degree d ≤ 4 and height H ≤ 1.5. Each dot represents d conjugate algebraic numbers.

These problems of counting algebraic numbers of bounded height amount to those of
counting integer polynomials with bounded Mahler measure (i.e. counting the minimal
polynomials of the algebraic numbers. The pioneers of this subject were Chern and
Vaaler, who showed how to solve the problem by computing the number of lattice points
in certain “star-bodies” in euclidean space (where the coordinates correspond to the
coefficients of the polynomials) cut out by the condition that the Mahler measure of
the polynomials is bounded. The constants Vd above represent the volume of the set
of degree d polynomials of Mahler measure at most 1, and were computed explicitly by
Chern and Vaaler. For our new problem of counting units, it was important to understand
the asymptotic volume of “slices” of these star-bodies corresponding to specifying that
the polynomials be monic and have constant coefficient ±1. The images in Figure 1
above were generated to help understand the asymptotic shape of these slices. Degree
4 polynomials represent both the simplest case where the shapes of the slices cannot be

∗The function pd(T ) is an explicit polynomial described by Chern and Vaaler whose leading term is
Vd−1T

d.
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easily computed by hand, and also the largest degree case where the set can be easily
visualized (as degree 4 polynomials have 5 coefficients, but specifying the first and last
coefficients yields a 3-dimensional set).

In [18] one of the key steps is to estimate the asymptotic number of integer polynomials
with bounded coefficients which are reducible, as the coefficient bound T increases. For
general polynomials of degree d, there are ∼ T d+1 such polynomials, and general Hilbert
irreducibility theorem (HIT) results imply that the number of reducible polynomials

is O(T d+ 1
2 ) log(T ), however it can be shown using a technique of W. Schmidt that a

stronger estimate of order O(T d) holds. In other words, a “full power savings” is achieved.
Gunther and I used this method to prove similar results for monic polynomials with given
second and/or final coefficients. In a forthcoming paper, I am extending these results to
as general as possible a setting, proving the following.

Theorem 2.2 (G., forthcoming). Let N red
s,d denote the number of reducible polynomials of

degree d with exactly s of their coefficients taking specified values, having all coefficients
at most T . Then if s < d− 2, we have

N red
s,d = O(T d−s), as T →∞.

Note that the total number of such polynomials (reducible and irreducible) is∼ T d+1−s. In
the cases where this applies, it gives a better bound than the previous result [10, Theorem
1].

2.2 Counting number fields

[21, Theorem 1] Let F (d,X) denote the number of number fields (up to isomorphism) of
degree d over Q and discriminant at most X in absolute value. It has been conjectured
that F (d,X) ∼ cd ·X, as X →∞, where the constant cd depends only on d†. The cases
d = 1, 2 are trivial, and beyond this the only known cases of this result are in degree 3
(Davenport and Heilbronn), 4 and 5 (mostly Bhargava).

For arbitrary d, the best upper and lower bounds on F (d,X) are due to Ellenberg
and Venkatesh [14, Theorem 1.1]. We focus here on their lower bound, which is of the
form

F (d,X)� X1/2+1/n2

.

A slightly weaker bound than this could be obtained relatively easily by using my results
with Gunther on counting units discussed in the previous section, along with the following
classical result (we include a brief proof as it is important for this discussion):

Theorem 2.3 (Mahler). Let f be any polynomial of degree d, disc(f) = D, and M(f) =
M . Then

|D| ≤ ddM2d−2

†This statement is often described as a “folk” conjecture “possibly” due to the late Soviet mathe-
matician Y. V. Linnik. Etiquette dictates we must continue the tradition of speculative attribution in
perpetuity.
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Proof. We let α1, . . . , αd denote the roots of f . By expanding the discriminant in terms
of a Vandermonde determinant and applying Hadamard’s inequality, we find that

|D| ≤ |leading coefficient|2d−2

d∏
i=1

(
d−1∑
j=0

|αji |2
)

≤ |leading coefficient|2d−2

d∏
i=1

dmax{1, |αi|2d−2} = ddM2d−2.

Since the ith factor in this product is at most dmax{1, |αi|2d−2}, we achieve (2.3).

Indeed, using this method to produce a lower bound on F (d,X) is quite similar to the
approach taken by Ellenberg and Venkatesh, who use the size of the largest root outside
the unit circle in place of the Mahler measure (the size of the product of all roots outside
the unit circle). It is worth considering the question: how much can Mahler’s inequality
be improved? The figure below is an illustration suggesting that improvement is possible.
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Figure 3: Scatterplot showing logM(f) (Mahler measure) vs log disc(f) for reciprocal polynomials f (of degree 16). Each
dot represents a polynomial, and the colors correspond to the number of roots outside the unit circle. The data used
to generate this image were computed by my collaborator Michael Mossinghoff. That all dots lie above the gray line is
the classical bound of Mahler. The other curves represent bounds in terms of the location of the roots that were easily
discovered after analyzing the data.

Unfortunately, it is provably not possible to improve the bounds by replacing the gray
line in the figure with one of steeper slope. However, if one could prove that, asymp-
totically, a positive proportion of the “dots” lie above any line with steeper slope than
the gray one, this would be sufficient to improve Ellenberg and Venkatesh’s lower bound
on F (d,X). While the colorful curves in the figure correspond to tightening the second
inequality in the proof above of Mahler’s theorem, what we need is an improvement in
the first inequality, which is simply Hadamard’s inequality: the determinant is majorized
by the product of the euclidean lengths of the matrix’s rows. This inequality cannot be
sharpened in general, but as is apparent from looking at the data, for many polynomials
the result is not sharp. I plan to explore in detail the extent to which heuristic models for
the distribution of the lattices spanned by power bases for number fields can be shown
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to imply improvements on Ellenberg and Venkatesh’s lower bound in this way, and, if
possible, prove a result along these lines.

2.3 Relations among conjugates

In the 1986 paper [26], Smyth made a striking conjecture about conjugate solutions to
linear equations, which is the subject of an current joint project with Jennifer Berg. We
work here with the simplest case of the problem. Let a, b, and c be positive integers with
no common factor. Smyth observed that there can only be a solution to the equation

ax+ by + cz = 0 (2)

with x, y, and z conjugate algebraic numbers (i.e. all roots of the same irreducible
polynomial with integer coefficients) if

• a ≤ b + c, b ≤ a + c, and c ≤ a + b (i.e. a, b, and c could be the side lengths of a
euclidean triangle), and

• a, b, and c are pair-wise relatively prime (i.e. a, b, and c could be the side lengths
of a p-adic triangle).

Smyth’s conjecture, which remains open, is that these necessary conditions are also suf-
ficient. This is very much in the spirit of classical diophantine problems in which there
are obvious “local obstructions” to the existence of solutions, and it is hoped that these
are the only obstructions.

The rationale behind Smyth’s conjecture lies in an equivalent formulation of the
problem he discovered. Smyth showed that (2) has a solution in conjugate algebraic
numbers if and only if it admits a finite set

S = {(n`1, n`2, n`3)}L`=1

of not necessarily distinct integer solutions‡ (always excluding the trivial solution (0, 0, 0))
satisfying

{|n`1|}` = {|n`2|}` = {|n`2|}`

as multisets. We’ll call such a family of integer solutions a happy family. The proof of the
equivalence makes it possible to take a happy family and produce conjugate solutions.
For example the set {1,−2, 1), (2, 1,−2) is a happy family of solutions to

3x+ 4y + 5z = 0. (3)

Using these points, Smyth’s proof, and a program written in SAGE, I produced the
polynomial t8−70t6 +1435t4−7350t2 +16641, which one can verify has 3 roots x, y, and
z satisfying (3). The formulation in terms of happy families makes it possible to search
for conjugate solutions systematically.

‡So it’s really a multiset of points, or a set of points together with weights telling how many of each
point to take.
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In our forthcoming paper, Berg and I discuss this problem from both perspectives.
We describe a precise probabilistic heuristic argument in favor of the conjecture, extend
the computational verification of the conjecture begun by Smyth (who verified it for
|a|, |b|, |c| ≤ 30; we are in the lengthy process of verifying it up to 100), and prove the
following negative result.

Theorem 2.4 (Berg, G.). There is no positive integer d such that, for all (a, b, c) satisfy-
ing the bulleted conditions above, the equation (2) admits a solution in conjugate algebraic
numbers of degree at most d. That is, conjugate solutions to (2) must be of arbitrarily
large degree (if they exist), as a, b, and c vary.

Our strategy of proof is the reason I have chosen to discuss this paper in the section
on “arithmetic statistics and asymptotics.” We refine yet another of Smyth’s equivalent
formulations of the conjecture to a statement about rational points on curves: if (a, b, c)
admits a solution in conjugates of degree d, then (a, b, c) must lie on one of finitely
many projective curves. However, the size of the set of (a, b, c) of bounded height and
satisfying the necessary conditions can be estimated asymptotically, and this estimate is
large enough to prove the set is Zariski-dense in P2, i.e. cannot lie in the union of finitely
many curves.

Our paper will also discuss the reasons why traditional tools from arithmetic geometry,
such as the circle method, do not seem as though they could be useful for proving Smyth’s
conjecture.

3 Small points

3.1 Background: the Lehmer problem

If f(x) is a monic integer polynomial, then the Mahler measure of f is the size of the
product of all its roots which lie outside the unit circle. Let’s just focus on the case
where f(x) is irreducible over the integers. One possibility is that f(x) is a cyclotomic
polynomial, vanishing only at roots of unity. In this case, clearly M(f) = 1. It follows
from a theorem of Kronecker that this is the only situation where M(f) = 1. The Lehmer
problem is the question: is the Mahler measure of non-cyclotomic polynomials bounded
away from 1 by a universal constant? In his search for polynomials with small Mahler
measure (though it wasn’t known by that name at the time), D.H. Lehmer in 1933
discovered that the polynomial

f(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

has unusually small Mahler measure.
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Figure 4: The ten complex roots of Lehmer’s polynomial

This polynomial has only one root outside the unit circle, a real number α ≈ 1.17628
(known as “Lehmer’s number”). Its reciprocal 1/α is also a root, and the other 8 roots
all lie on the unit circle. (Such a real number, having the property that its reciprocal is a
conjugate and all its other conjugates lie on the unit circle, is called a “Salem number.”
These numbers have been thoroughly studied in connection to this problem, but also
occur naturally in geometry§). Since there is only one root of f outside the unit circle,
we have

M(f) = α ≈ 1.17628.

Since then, extensive computations have failed to find a (non-cyclotomic) polynomial
with smaller Mahler measure than Lehmer’s, and it is thought by many that none exists.

While the simplicity of this problem makes it one of natural independent interest,
especially in algebraic number theory, Lehmer’s problem today sits within a large area of
research about height functions and “small points” – how small can the values of various
height functions be? Using (1), Lehmer’s problem can be rephrased as: does there exist
a universal positive constant c such that

logH(α) ≥ c

[Q(α) : Q]
,

whenever α is a nonzero algebraic number which is not a root of unity? Phrased this
way, the Lehmer problem has a natural analogue for elliptic curves, which has been

§for example, Salem numbers arise in studying lengths of geodesics on hyperbolic manifolds, where a
gap as suggested in the Lehmer problem would have implications about the minimal length of geodesics.
Lehmer’s problem is also connected with knot theory, and with measuring the entropy of diffeomorphisms
of a complex surface.
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studied extensively by Silverman, Hindry, Masser, and Laurent, but remains as open as
the original Lehmer problem.

Since α1/n will have height H(α)1/n for any algebraic number α and integer n, the
conjectured lower bound in Lehmer’s problem is clearly the strongest one can hope for
in general. However, under additional assumptions on α we can ask for even stronger
results, and this has been the focus of much of my work described below.

3.2 Property (B) and relative Bogomolov extensions

A classical theorem of Kronecker [4, 1.5.9] states that the only elements of Q× of height
1 are roots of unity (torsion points of the multiplicative group). In [5] Bombieri and
Zannier define the Bogomolov Property, or property (B), for a subset of Q. This property
is satisfied if the height of non-torsion points (i.e. non-roots of unity) is bounded away
from 1. (Briefly: the field contains “no small points.”) There are many theorems and
open questions concerning which subfields of Q satisfy this property. In a recent paper [16]
I defined a generalization of this property as follows.

Definition 3.1 (G.). Let Q ⊆ K ⊆ L ⊆ Q be fields. We say that L/K is Bogomolov, or
that L/K satisfies the relative Bogomolov property, (RB), if there exists ε > 0 such that

{α ∈ L
∣∣ 1 < H(α) < 1 + ε} ⊆ K.

That is, an extension L/K satisfied (RB) if L has “no new small points.” The following
facts follow quickly from the definition.

Proposition 3.2. Suppose K ⊆ L ⊆M are subfields of Q.

(a) If K satisfies (B), then L/K is Bogomolov if and only if L satisfies (B);

(b) M/K is Bogomolov if and only if M/L and L/K are both Bogomolov; and

(c) if L \M contains a root of unity and M/K is not Bogomolov, then L/K is not
Bogomolov.

I construct examples which give the following result, showing that the definition is
nontrivial.

Theorem 3.3 (G.). Let K/Q be an infinite extension that does not satisfy property (B),
and suppose L/K is an algebraic extension. All of the following possibilities can occur:

(a) L/K is finite and Bogomolov,

(b) L/K is finite and not Bogomolov,

(c) L/K is infinite and Bogomolov, and

(d) L/K is infinite and not Bogomolov.

11



Research Statement Robert Grizzard October 31, 2017

Note that the real content here is that examples exist of (b) and (c), since examples
of (a) and (b) are numerous and easy to construct. My paper also describes a method
for explicitly bounding below the height of points in L \ K for the type of examples I
produce.

My main result is the following, which is proved using a combination of archimedean
and non-archimedean estimates.

Theorem 3.4 (G.). Let K/Q be a Galois extension. If there exists a (finite) rational
prime ` with finite ramification index in K, then there exist relative Bogomolov extensions
L/K. These extensions can be constructed explicitly of the form K(

√̀
α) for appropriately

chosen elements α ∈ K.

This theorem should be compared with [5, Theorem 2], which states that a Galois ex-
tension with bounded local degree (ramification index times inertial degree) above some
prime has the Bogomolov property.

3.3 Multiplicative diophantine approximation

In the recently submitted paper [20], I some natural questions that arise when the height
is thought of as a norm on the multiplicative group. Concretely, properties (1) and (2)
(from Section 2 above) actually mean that the logarithmic Weil height h := log(H) is

actually a norm on the multiplicative group modulo roots of unity, G := Q×/Q×tors (or

equivalently on Q× ⊗Z Q).

One should observe that Q× is an abelian group, or Z-module, which is divisible –
that is, you can take arbitrary roots. The nth root of an algebraic number is well-defined
up to multiplication by roots of unity (which are exactly the elements of height zero),

and this makes Q×/Q×tors into a Q-module, i.e. a vector space over Q. This vector space
is written multiplicatively! The vector “addition” arises from traditional multiplication,
while “scalar multiplication” by rational numbers arises from exponentiation. The “zero
vector” is the equivalence class of 1, which is to say that all roots of unity represent the
zero vector.

This norm induces a distance function (α, β) 7→ h(α/β), and we are addressing ques-
tions about “the distance to a subspace.” Specifically, if inside the vector space G we
consider the subspace generated by (the multiplicative group of) a subfield K of Q, we
show (effectively) that elements outside of this subspace cannot be arbitrarily close to the
space. Concretely, we have:

Theorem 3.5 (G., Vaaler). Let K be a subfield of Q, and α an algebraic number. Let

hK(α) = inf
{
h
(
α/β1/n

) ∣∣ β ∈ K×, n ∈ N
}

¶.

Then either some power of α lies in K, in which case hK(α) = 0, or

hK(α) ≥ 1

2
max{h(σα/α)

∣∣ σ ∈ Gal(Q/K)} > 0.

¶This is the right definition of “the distance from α to the subspace generated by K×.”
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Our result improves on [12, Theorem 2], which establishes this result only for num-
ber fields. This should be interpreted as a kind of diophantine approximation result in
the multiplicative group scheme Gm, whereas traditional diophantine approximation ad-
dresses the additive group Ga. Our paper also includes a generalization of this theorem
to the case of studying several fields at once.

Another recent paper of mine, [17], explores some consequences of the above theorem
to the cojectures included in the “generalized Lehmer problems” of G. Rémond. I prove
that the weakest of these conjectures, the so-called “degree one” form, already implies a
seemingly much more general conjecture.

3.4 Small points in free abelian groups

If a subfield K of Q satisfies property (B) – that is, if it has no “small points” – then
Gm(K)/tors (that is, K×/K×tors) is a free abelian group (something it’s not hard to show
holds for a finite extension of Q). This follows immediately from the Lawrence-Zorzitto-
Steprans Theorem, which says that “a discretely normed abelian group is free abelian” –
property (B) gives the discreteness. My joint paper [19] with Philipp Habegger and Lukas
Pottmeyer explores (failure of) the converse of this statement: we show, by constructing
explicit examples, that there exist fields K which have points of arbitrarily small positive
height, yet where K×/K×tors is free abelian. This main difficulties here are:

1. How to make points of small height: one way to do this to consider roots of a
sequence of polynomials of increasing degree and bounded coefficients.

2. How to make a “large” (Galois) extension K/Q which maintains the property that
K×/K×tors is free abelian. This can be done by controlling the Galois groups of the
polynomials, in an effort to make K× “far from divisible.”

For these purposes, one can take for example the field Qsym generated over Q by
all polynomials with full symmetric Galois groups. Since the polynomials xn − x − 1
each have symmetric Galois group, and the heights of their roots tend to zero, we can
explicitly construct the points of small height, and what remains is a Galois-theoretic
argument that (Qsym)× /tors is free abelian.

Real difficulties arise in showing the analogous result for elliptic curves, but we were
able to prove the same result in that case as well. If E is an elliptic, defined curve over Q
(for simplicity), then E(Q)/tors is a vector space much in the same way as Gm(Q)/tors,
and we also have a height function (namely the square root of the Néron-Tate canonical
height) with similar properties to the Weil height (it also induces a norm). Here we are
also able to construct fields K such that, if E is any elliptic curve over Q, then E(K)
contains points of arbitrarily small height, yet E(K)/tors is free abelian. Both 1 and 2
above become much more involved in this setting, and proof is rather technical, however
an example of a field which works is:

K =
((
Qab
)sa)(2)

,

where Qab denotes the maximal abelian extension of Q,
(
Qab
)sa

denotes the field attained
by adjoining to Qab all roots of polynomials over Qab having alternating or symmetric
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Galois groups (of all degrees), and
((
Qab
)sa)(2)

denotes the compositum of all degree 2

extensions of
(
Qab
)sa

. The construction of the small points is quite elaborate, since it
must be done with control over the Galois group of the field of definition, and the proof
that the result satisfies the free abelian property is also a lot more work, and is different
in the CM and non-CM cases.

To summarize our results:

Theorem 3.6 (G., Habegger, Pottmeyer). If G is either Gm or an elliptic curve defined
over Q,‖ then there exist subfields K of Q such that G(K)/tors is free abelian, but there
are points of arbitrarily small height in G(K).

3.5 The compositum of all degree d extensions of a number field

My paper [15], a collaboration with Itamar Gal, focused on basic and general properties
of number fields and their Galois groups, but was inspired by questions about heights.
We addressed the following two questions about k[d], the compositum of all degree d
extensions of an arbitrary number field k :

1. Does k[d] contain all extensions of degree less than d?

Answer:

Theorem 3.7 (Gal, G.). The field k[d] contains all extensions of k of degree less
than d if and only if d < 5 (“Yes” for d < 5 is simply a reinterpreting of old results,
but “no” for d ≥ 5 was new.)

2. Are all subfields of k[d] generated over k by elements of bounded degree? (If so, we
say k[d] is “bounded.”) If not, is this at least true if we restrict our attention to
subfields which are Galois over k? (If so, we say k[d] is “Galois bounded.”)

Answer: For the first question, we showed this only holds for d ≤ 2. That is, a
compositum of degree d extensions can contain subfields requiring arbitrarily large
degree polynomials to generate, whenever d ≥ 3. For the question about Galois
subfields, we showed that such a bound exists when d is prime, and fails to exist
when d is even, divisible by a square, or satisfies certain other divisibility conditions,
but the problem remains open for infinitely many d. The smallest d for which we
left the problem open is d = 15. To summarize our results:

Theorem 3.8. The field k[d] is “bounded” in the above sense if and only if d ≤ 2,
and is “Galois bounded” in the above sense when d is prime∗∗. It is not Galois
bounded whenever d is even, divisible by a square, or divisible by a pair of primes
p and q such that q ≡ 1 (mod p).

‖Actually, our result as stated in the paper is more general than this.
∗∗the result for d = 3 has been recently applied as an important ingredient in [11], where the authors

classify all torsion structures for rational elliptic curves over Q(3).
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Why was I looking at this problem in the first place? A fundamental result on
heights is Northcott’s Theorem [4, Theorem 1.6.8], which in its most basic form states
that for any bounds d and T there are only finitely many algebraic numbers of degree
at most d and height at most T . This result (along with its more general version about
points in projective space [4, Theorem 2.4.9]) is simple but powerful. Bombieri and
Zannier explored generalizations of this result in [5], where they defined the Northcott
property (property (N)). A subset of Q satisfies the Northcott property if for any T it
contains only finitely many points of height at most T . The authors were hopeful that
Northcott’s theorem could be generalized to prove that, for any number field k, property
(N) is satisfied by the field k(d) obtained by adjoining to k all algebraic numbers of degree
at most d over k. This problem remains open for d ≥ 3, but they were able to prove that
the property is enjoyed by the maximal abelian subextension of k(d).

In this proof, a crucual role is played by the fact that if L/k is an abelian extension
generated by elements of degree at most d, then all subextensions K/k are also generated
by elements of degree at most d. In [6], Checcoli observed that this property does not
hold in general when the assumption that L/k is abelian is dropped. We explored this
property further for the fields k[d], analyzing for which values of d the property holds. In
all the cases we considered, this issue boiled down via Galois theory to intricate questions
about permutation groups.

3.6 Property (N) and number field statistics

I am very interested in the following question, mentioned above in section 3.5.

Question 3.9 (Bombieri and Zannier [5]). If K is a number field, and d ≥ 3, does K [d]

satisfy property (N)?

Originally, I hoped that our work on the fields k[d] in [15] would be helpful in showing
that those fields do satisfy the property, but I feel the most important next step in
the “Northcott problem” is to gather statistical evidence in support of either its truth
or falsehood. As pointed out by Widmer [28], crucial to this problem is our ability
to determine the smallest height of an element generating a relative extension L/K of
number fields. Lower bounds on heights (such as Silverman’s inequality [24, Theorem 2],
which Widmer uses to prove that property (N) holds in some cases) have been researched
thoroughly, and could conceivably be used to answer Question 3.9 positively.

Upper bounds on the smallest height of a generator have been explored very little –
see [27] for a discussion of generators of number fields over Q. A more refined estimate
along these lines for the generator of a relative extension could conceivably be useful
in producing an infinite list of elements of bounded height contained in some field k[d],
giving a negative answer to the question.

To establish new theorems on fields with the Northcott property it would be desirable
to obtain stronger results along the lines of estimating the lowest height of a generator
of an extension of number fields, both from above and below. Indeed, even numerical
evidence that the best existing estimates could be improved would be desirable. I am very
interested in developing computer algorithms for determining or estimating the lowest
height of an element in a number field, or properly contained in an extension. To my
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knowledge, the most similar algorithm that has been implimented along these lines was
that of Doyle and Krumm [13], which computes all elements of height below a prescribed
bound in a number field, but involves quite a bit of computation, involving the unit and
class groups. As the question of the Northcott property is still wide open even for Q(3),
the challenge will be to make an algorithm that helps us find new small points in a tower of
cubic and quadratic extensions. Then it would be possible to gather sufficient statistical
data to suggest whether or not Q(3) satisfies the Northcott property. It is also possible
that we may be able to apply the wealth of theorems and conjectures on the arithmetic
statistics of number fields of low degree, ranging from the Davenport-Heilbronn Theorem
and its recent improvements (e.g. [3]) to the Cohen-Lenstra conjectures [9]. I suspect
that there is a connection between statistics for cubic fields and the Northcott problem
for Q(3).

3.7 Galois groups in Lehmer’s problem

I have a strong feeling that Lehmer’s conjecture should be much easier to prove in all
cases of reciprocal polynomials where the Galois group is much smaller than it “has to
be,” and have begun to collect computational evidence that even stronger bounds exist
in this case. This idea can be illustrated via Figure 3 above. The Lehmer conjecture
asserts that there is a horizontal line above which lie not only all the points in that plot
(degree 16 polynomials), but all the points in the corresponding plots for each degree.
So the conjecture is about the position of the “lowest dot” on all such plots (our figure
provably contains this point for degree 16). If we only plot polynomials with various
“small” Galois groups, we see that in some cases the lowest dot is much higher.

Some authors have already explored the relationship between the Galois group of the
polynomial f and the Lehmer problem. In this direction there is the following theorem,
which is a corollary [1, Corollaire 1.8] of a deep result of Amoroso and David that gives
a Dobrowolski-type bound†† for a higher dimensional version of Lehmer’s problem.

Theorem 3.10 (Amoroso & David). For each positive integer m, there exists a constant
c(m) > 0 such that the following holds. If α is an algebraic number, not a root of unity,
of degree d over Q and whose minimal polynomial has Galois group of order at most dm,
then

h(α) ≥ c(m)

d
.

In particular (taking m = 1), there is a universal constant c such that h(α) ≥ c/d
whenever α is not a root of unity and Q(α)/Q is a Galois extension.

This result should be interpreted as a lower bound on the Galois groups which must
be considered in attacking Lehmer’s problem – in fact, it has very recently been observed
by David Masser (and given as an exercise in a soon-to-be-published book) that one can
achieve even stronger bounds under the assumption that Q(α)/Q is Galois, of the form

h(α) ≥ cεd
− 1

2
−ε.

††Dobrowolski’s Theorem is a lower bound of the form h(α) ≥ c
d

(
log log(3d)
log(3d)

)3
, where d = [Q(α) : Q].
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If we seek an upper bound on the Galois group, we may turn to one of the most
significant early breakthroughs in Lehmer’s problem, which was achieved in 1971 by
Smyth in [25]. Smyth showed, using analytic techniques, that Lehmer’s problem has a
positive answer for polynomials which are not reciprocal. Recall that a polynomial f(x)
of degree d = 2n is reciprocal if f(x) = xdf(1/x), or equivalently if each root α of f(x)
has the property that 1/α is also a root of f(x). Since Lehmer’s problem is trivial in the
case where f(x) is not monic, the only polynomials we must study in attacking Lehmer’s
problem are therefore monic, irreducible, reciprocal polynomials of even degree d = 2n
in Z[x] (these include the Salem polynomials mentioned above). This condition places
an upper bound on the Galois group, because the group must respect the partition of
the 2n roots into pairs of reciprocals.

Let f be a such a polynomial, with a root α. In general such a polynomial has a
Galois group which is naturally a subgroup of the group of permutations which respect
the fact that the 2n roots are partitioned into pairs (αi, 1/αi). This group is isomorphic to
C2 oSn = Cn

2 oSn ≤ Sd (here C2 represents a cyclic group of order 2). The Galois group of
f will be a (not necessarily split) extension A.H, where A ≤ Cn

2 has order 2r, 1 ≤ r ≤ n,
and H is a transitive subgroup of Sn, which is the Galois group of the “trace polynomial,”
i.e. the minimal polynomial of α+1/α. McKee and Christopoulos have shown in [8] that
if f is a Salem polynomial, then r ∈ {n−1, n}. I have begun a computational project with
Michael Mossinghoff, in which we compute Galois groups for all reciprocal polynomials
of a given degree and bounded Mahler measure, finding for various Galois groups the
polynomial which provably has the smallest Mahler measure. Preliminary data suggest
that polynomials in which r < n − 1 must have higher Mahler measure because of this
restriction, but much more data needs to be collected to formulate a precise conjecture.
We are also interested in whether or not we can expect a better lower bound on Mahler
measure under the assumption that H is strictly smaller than the symmetric group Sn.
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