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Abstract. Masser and Vaaler have given an asymptotic formula for the number of alge-
braic numbers of given degree d and increasing height. This problem was solved by count-
ing lattice points (which correspond to minimal polynomials over Z) in a homogeneously
expanding star body in Rd+1. The volume of this star body was computed by Chern and
Vaaler, who also computed the volume of the codimension-one “slice” corresponding to
monic polynomials – this led to results of Barroero on counting algebraic integers. We
show how to estimate the volume of higher-codimension slices, which allows us to count
units, algebraic integers of given norm, trace, norm and trace, and more. We also refine
the lattice point-counting arguments of Chern-Vaaler to obtain explicit error terms with
better power savings, which lead to explicit versions of some results of Masser-Vaaler and
Barroero.
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1. Introduction

A classical theorem of Northcott states that there are only finitely many elements of Q
of bounded degree and height. It’s then natural to ask, for interesting subsets S ⊂ Q of

bounded degree, how the number of elements of bounded height grows as we let the height
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bound increase. More precisely, one considers the asymptotics of

N(S,H) = #{x ∈ S | H(x) ≤ H},

where H(x) is the absolute multiplicative Weil height of x (see for example [BG06, p. 16]).

Many of the oldest instances of such asymptotic statements concern elements of a fixed

number field. Schanuel [Sch79, Corollary] proved that, for any number field K, as H grows,

N(K,H) = cK · H2[K:Q] +O
(
H2[K:Q]−1 logH

)
,

where the constant cK involves all the classical invariants of the number field K, and the

logH factor disappears for K 6= Q.

Lang states analogous asymptotics for the ring of integers OK and its unit group O∗K
[Lan83, Chapter 3, Theorem 5.2]:

N(OK ,H) = γK · H[K:Q](logH)r +O
(
H[K:Q](logH)r−1

)
;

N(O∗K ,H) = γ∗K · (logH)r +O
(
(logH)r−1

)
,

where r is the rank of O∗K and γK and γ∗K are unspecified constants. That first count was

later refined to a multi-term asymptotic by Widmer [Wid16, Theorem 1.1].

More recently, natural subsets that aren’t contained within a single number field have

been examined. Masser and Vaaler [MV08, Theorem] determined the asymptotic for the

entire set Qd = {x ∈ Q | [Q(x) : Q] = d}:

N(Qd,H) =
d · Vd

2ζ(d+ 1)
· Hd(d+1) +O

(
Hd2(logH)

)
, (1.1)

where the logH factor disappears for d ≥ 3, and Vd is an explicit positive constant that

we’ll define shortly.

This asymptotic was deduced from results of Chern and Vaaler [CV01] (discussed at

length in section 2), which also imply an asymptotic for the set Od of all algebraic integers

of degree d, as noted in [Wid16, (1.2)]. It was sharpened by Barroero [Bar14, Theorem 1.1,

case k = Q]:

N(Od,H) = d · Vd−1 · Hd
2

+O
(
Hd(d−1)(logH)

)
, (1.2)

where again the logH factor disappears for d ≥ 3.

After algebraic numbers and integers, it’s natural to turn to the problem of counting

units and other interesting sets of algebraic numbers. It’s also desirable to obtain versions

of these estimates with explicit error terms. These are the two purposes of this paper.

We establish counts of units, algebraic integers of given norm, given trace, and given

norm and trace in Corollaries 1.2-1.5, which follow from the more general Theorem 1.1

stated below. As for explicit error bounds, we have made several improvements to the

existing literature. The lack of explicit error terms in the results (1.1) and (1.2) is inherited

from results of Chern and Vaaler on counting polynomials. Specifically, Chern and Vaaler

mention (see [CV01, p. 6]) that it would be of interest to make the implied constant

in [CV01, Theorem 3] explicit, but they were unable to do so. In this paper we are able

to make this constant explicit (Theorem 7.1 below), and we also prove an analogous result

for monic polynomials (Theorem 8.1). We use these to obtain versions of (1.1) and (1.2)

that are uniform in both H and d. These, along with an explicit version of our result on

counting units, are summarized below in Theorem 1.10.
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1.1. Results. Throughout the paper, we will understand the minimal polynomial of an

algebraic number to be its minimal polynomial over Z; we obtain this by multiplying the

minimal monic polynomial over Q by the smallest positive integer such that all its coefficients

become integers.

Counting algebraic integers, as in (1.2), is equivalent to counting only those algebraic

numbers whose minimal polynomial has leading coefficient 1. Our primary goal in this paper

is to count algebraic numbers of fixed degree and bounded height subject to specifying any

number of the leftmost and rightmost coefficients of their minimal polynomials. Besides

specializing to the cases of algebraic numbers and algebraic integers above, this will allow

us to count units, algebraic integers with given norm, algebraic integers with given trace,

and algebraic integers with given norm and trace.

To state our theorem, we need a little notation. Our asymptotic counts will involve the

Chern-Vaaler constants

Vd = 2d+1(d+ 1)s
s∏
j=1

(2j)d−2j

(2j + 1)d+1−2j , (1.3)

where s = b(d− 1)/2c. These constants are volumes of certain star bodies discussed later.

For integers m, n, and d with 0 < m, 0 ≤ n, and m+ n ≤ d, and integer vectors ~̀ ∈ Zm

and ~r ∈ Zn, we write N (d, ~̀, ~r,H) for the number of algebraic numbers of degree d and

height at most H, whose minimal polynomial is of the form

f(z) = `0z
d + · · ·+ `m−1z

d−(m−1) + xmz
d−m + · · ·+ xd−nz

n + rd−n+1z
n−1 + · · ·+ rd.

Lastly, we set g = d−m−n. In the statements below, the implied constants depend on all

parameters stated other than H.

Theorem 1.1. Fix d, ~̀ ∈ Zm, and ~r ∈ Zn as above. Assume that `0 > 0, that

gcd(`0, . . . , `m−1, rd−n+1, . . . , rd) = 1,

and that rd 6= 0 if n > 0. Then as H →∞ we have

N (d, ~̀, ~r,H) = d · Vg · Hd(g+1) +O
(
Hd(g+

1
2
) logH

)
.

This generalizes the situation one faces when counting algebraic integers, whose minimal

polynomials are monic (m = 1, n = 0, ~̀ = (1)). Certain special cases are of particular

interest, and we prove stronger power savings terms for them.

Corollary 1.2. Let d ≥ 2, and let N(O∗d,H) denote the number of units in the algebraic

integers of height at most H and degree d over Q. Then as H →∞ we have

N(O∗d,H) = 2d · Vd−2 · Hd(d−1) +O
(
Hd(d−2)

)
.

Corollary 1.3. Let ν 6= 0 be an integer, d ≥ 2, and let NNm=ν(d,H) denote the number of

algebraic integers with norm ν, of height at most H and degree d over Q. Then as H →∞
we have

NNm=ν(d,H) = d · Vd−2 · Hd(d−1) +O
(
Hd(d−2)

)
.

Corollary 1.4. Let τ be an integer, d ≥ 2, and let NTr=τ (d,H) denote the number of

algebraic integers with trace τ , of height at most H and degree d over Q. Then as H →∞
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we have

NTr=τ (d,H) = d · Vd−2 · Hd(d−1) +


O (H) , if d = 2

O
(
H3 logH

)
, if d = 3

O
(
Hd(d−2)

)
, if d ≥ 4.

Corollary 1.5. Let ν 6= 0 and τ be integers, d ≥ 3, and let NNm=ν,Tr=τ (d,H) denote the

number of algebraic integers with norm ν, trace τ , of height at most H and degree d over

Q. Then as H →∞ we have

NNm=ν,Tr=τ (d,H) = d · Vd−3 · Hd(d−2) +O(Hd(d−3)).

Remark 1.6. For two real-valued functions f and g with the same domain, we write

f = O(g) to mean there exist positive constants C and C ′ such that |f(x)| ≤ C|g(x)| for

all x > C ′. In Theorem 1.1, the implied constants depend on d, ~̀, and ~r; in Corollary 1.2

on d; in Corollary 1.3 on d and ν; in Corollary 1.4 on d and τ ; and in Corollary 1.5 on d,

ν, and τ .

Remark 1.7. In Corollaries 1.3 through 1.5, the main term of the asymptotic doesn’t

depend on the specific coefficients being enforced. Thus these may be interpreted as results

on the equidistribution of norms and traces.

Remark 1.8. The type of counts found in this paper are related to Manin’s conjecture,

which addresses the asymptotic number of rational points of bounded height on Fano va-

rieties. Counting points of degree d and bounded height in Q, or equivalently, on P1, can

be transferred to a question of counting rational points of bounded height on the d-th sym-

metric product of P1, which is Pd. This is what Masser and Vaaler implicitly do when

they count algebraic numbers by counting their minimal polynomials (as does this paper;

see the Methods subsection below). However, one needs to use a non-standard height on

Pd; Le Rudulier takes this approach explicitly [LR14, Théorème 1.1], thereby re-proving

and generalizing (the main term of) the result of Masser and Vaaler. It should be noted,

though, that while the shape of the main term – a constant times the appropriate power

of the height – follows from known results on Manin’s conjecture, explicitly determining

the constant in front relies ultimately on an archimedean volume calculation of Chern and

Vaaler.

Barroero’s count of algebraic integers of degree d corresponds to counting rational points

on Pd that are integral with respect to the hyperplane at infinity. As noted in [LR14,

Remarque 5.3], the shape of his count’s main term then follows from general results of

Chambert-Loir and Tschinkel on counting integral points of bounded height on equivariant

compactifications of affine spaces [CLT12, Theorem 3.5.6].

Our own units count corresponds to counting points on Pd integral with respect to two

hyperplanes, and does not appear to follow from any results currently in the literature.

Remark 1.9. The algebraic number and integer counts of (1.1) and (1.2) have also been

extended to arbitrary base number fields [MV07,Bar14] and to vectors of algebraic numbers

[Sch95, Gao95, Wid09, Wid16, Gui17]. We expect there should be extensions of our new

counts to these contexts as well.
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The second goal of this paper is to give explicit error terms, which we feel is especially

justified in this context, beyond general principles of error-term morality. Namely, it’s nat-

ural to ask questions about properties of “random algebraic numbers” (or random algebraic

integers, random units, etc.). For example: “What’s the probability that a random element

of Q generates a Galois extension of Q?”

How to make sense of a question like this? There are models from other arithmetic

contexts; for example, if we’re asked “What’s the probability that a random positive integer

is square-free?” we know what to do: count the number of square-free integers from 1 to

N , divide that by N , and ask if that proportion has a limit as N grows (Answer: Yes,
6
π2 ). Note that the easiest part is dividing by N , the number of elements in your finite box.

In order to make sense of probabilistic statements in the context of Q, one would like to

first take a box of bounded height and degree (which will have only finitely many algebraic

numbers by Northcott), determine the relevant proportion within that finite box, and then

let the box size grow. But now the denominator in question is far from trivial; unlike

counting the number of integers from 1 to N , estimating how many algebraic numbers are

in a height-degree box is a more delicate matter.

In the context of Q, where there are two natural parameters to increase (the height and

the degree), the gold standard for a “probabilistic” result would be that it holds for any

increasing set of height-degree boxes such that the minimum of the height and degree goes

to infinity. To prove results that even approach this standard (e.g. one might require that

the height of the boxes grows at least as fact as some function of the degree), one likely needs

good estimates for how many numbers are in a height-degree box to begin with. Without an

estimate that holds uniformly in both H and d, one would be justified in making statements

about random elements in Q of fixed degree d, but not random elements of Q overall. Thus

controlling the error terms in the theorems above is crucial.

To this end, in this paper we give explicit error bounds for the algebraic number counts

of Masser and Vaaler, the algebraic integer counts of Barroero, and our own unit counts.

Below pd(T ) is a polynomial defined in Section 2 whose leading term is Vd−1T
d, so our result

is consistent with (1.2).

Theorem 1.10. Let Qd denote the set of algebraic numbers of degree d over Q, let Od
denote the set of algebraic integers of degree d over Q, and let O∗d denote the set of units of

degree d over Q in the ring of all algebraic integers. For all d ≥ 3 we have

(i)
∣∣∣N(Qd,H)− d·Vd

2ζ(d+1)H
d(d+1)

∣∣∣ ≤ 3.37 · (15.01)d
2 · Hd2 , for H ≥ 1;

(ii)
∣∣N(Od,H)− dpd(Hd)

∣∣ ≤ 1.13 · 4ddd2d2 · Hd(d−1), for H ≥ 1; and

(iii)
∣∣N(O∗d,H)− 2dVd−2 · Hd(d−1)

∣∣ ≤ 0.0000126 · d34d(15.01)d
2 · Hd(d−1)−1,

for H ≥ d2d+1/d.

1.2. Methods. The starting point of all our proofs is the relationship between the height

of an algebraic number and the Mahler measure of its minimal polynomial. Recall that the

Mahler measure µ(f) of a polynomial with complex coefficients

f(z) = w0z
d + w1z

d−1 + · · ·+ wd = w0(z − α1) · · · (z − αd) ∈ C[z],
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with w0 6= 0, is defined by

µ(f) = |w0|
d∏
i=1

max{1, |αi|},

and µ(0) is defined to be zero. It’s immediate that the Mahler measure is multiplicative:

µ(f1f2) = µ(f1)µ(f2).

Crucially for our purposes, if f(z) is the minimal polynomial of an algebraic number α,

then we have (see for example [BG06, Proposition 1.6.6])

µ(f) = H(α)d.

Thus, in order to count degree d algebraic numbers of height at most H, we can instead

count minimal integer polynomials of Mahler measure at most Hd.
We identify a polynomial with its vector of coefficients, so that counting integer polynomi-

als amounts to counting lattice points. To do this we employ techniques from the geometry

of numbers, which make rigorous the idea that, for a reasonable subset of Euclidean space,

the number of integer lattice points in the set should be approximated by its volume. So

for example, the number of integer polynomials with degree at most d and Mahler measure

at most T should be roughly the volume of the set of such real polynomials

{f ∈ R[z]deg≤d
∣∣ µ(f) ≤ T} ⊂ Rd+1.

Note that by multiplicativity of the Mahler measure, this set is the same as TUd, where

Ud := {f ∈ R[z]deg≤d
∣∣ µ(f) ≤ 1}.

The set Ud will be our primary object of study. It is a closed, compact “star body,”

i.e. a subset of euclidean space closed under scaling by numbers in [0, 1]. Chern and

Vaaler [CV01, Corollary 2] explicitly determined the volume of Ud. In a rather heroic

calculation, they showed that Vd := vold+1(Ud) is given by the positive rational number

in (1.3)∗. Thus by geometry of numbers, and noting that vol(TUd) = T d+1 · vol(Ud), one

expects the number of integer polynomials of degree at most d and Mahler measure at most

T to be approximately T d+1 · Vd. Chern and Vaaler proved this is indeed the case. Masser

and Vaaler then showed how to refine this count of all such polynomials to just minimal

polynomials, which let them prove the algebraic number count in (1.1).

What if you only want to count algebraic integers? Again, the above approach suggests

you should do that by counting their minimal polynomials. Algebraic integers are charac-

terized by having monic minimal polynomials. Thus one is naturally led to seek the volume

of the “monic slice” of TUd consisting of those real polynomials with leading coefficient

1. However, these slices are no longer dilations of each other, so their volumes aren’t de-

termined by knowing the volume of one such slice. Still, Chern and Vaaler were able to

compute the volumes of monic slices of TUd; rather than a constant times a power of T ,

they are given by a polynomial in T , whose leading term is Vd−1T
d. Geometry of numbers

can then be applied again to obtain the algebraic integer count in (1.2).

In order to count units of degree d, or algebraic integers with given norm and/or trace,

one needs to take higher-codimension slices. For example, the minimal polynomial of a unit

will have leading coefficient 1 and constant coefficient ±1. But one quickly discovers that

∗Our Ud is the same as what would be denoted by Sd+1 in the notation of [CV01], and our Vd matches
their Vd+1. Our subscripts correspond to the degree of the polynomials being counted rather than the
dimension of the space.
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these higher-dimensional slices have volumes that are, in general, no longer polynomial in

T . Rather than trying to explicitly calculate these volumes, we depart from the methods

of earlier works, and instead approximate the volumes of such slices.

When we cut a dilate TUd by a certain kind of linear space, then as T grows the slices look

more and more like a lower-dimensional unit star body; this will be explained in Section

4. This explains the appearance of the volume Vd in all of our asymptotic counts. We also

use a careful analysis of the boundary of Ud to show that the above convergence happens

relatively fast; this makes our approximations precise enough to obtain algebraic number

counts with good power-saving error terms.

We state here our main result on counting polynomials. For non-negative integers m, n,

and d with 0 < m+ n ≤ d, and integer vectors ~̀ ∈ Zm and ~r ∈ Zn, let M(d, ~̀, ~r, T ) denote

the number of polynomials f of the form

f(z) = `0z
d + · · ·+ `m−1z

d−(m−1) + xmz
d−m + · · ·+ xd−nz

n + rd−n+1z
n−1 + · · ·+ rd

with Mahler measure at most T , where xm, . . . , xd−n are integers. Let g = d−m− n.

Combining our volume estimates with a counting principle of Davenport, we obtain the

following.

Theorem 1.11. For all 0 < m+ n ≤ d, ~̀ ∈ Zm, and ~r ∈ Zn, as T →∞ we have

M(d, ~̀, ~r, T ) = Vg · T g+1 +O(T g).

Here the implied constant depends on d, ~̀, and ~r.

Now we briefly discuss the methods used in the second half of the paper to prove our

explicit results, and how these results fit in with the literature. Chern and Vaaler’s [CV01,

Theorem 3], which is the main ingredient in (1.1), gives an asymptotic count of the number

of integer polynomials of given degree d and Mahler measure at most T . The error term in

this result contains a full power savings – order T d against a main term of order T d+1 – but

the implied constant in the error term is not made explicit. They do produce an explicit

error term of order T d+1−1/d in [CV01, Theorem 5] using [CV01, Theorem 4], which is a

quantitative statement on the continuity of the Mahler measure.

Our Theorem 7.1 below makes the constant in the error term of [CV01, Theorem 3]

explicit, using a careful study of the boundary of Ud. We apply the classical Lipschitz

counting principle in place of the Davenport principle; the latter is not very amenable to

producing explicit bounds. Theorem 8.1 is the analogous result to Theorem 7.1 for monic

polynomials, and is obtained in a similar manner. However, the application of the Lipschitz

principle is more delicate in this case. We also prove an explicit version of our Theorem

1.11 counting polynomials with specified coefficients (Theorem 9.3). For this result we also

apply [CV01, Theorem 4], and, reminiscent of Chern and Vaaler’s application, this method

yields an inferior power savings.

We now describe the organization of the paper. In Section 2 we collect key facts about

the unit star body Ud, including a detailed discussion of its boundary. In Section 3 we

describe the counting principles we use to estimate the difference between the number of

lattice points in a set and the set’s volume. In Section 4 we estimate the volume of the sets

in which we must count lattice points to prove Theorem 1.11; this theorem is then proved

in Section 5. In Section 6 we transfer our counts for polynomials to counts for various kinds
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of algebraic numbers, thereby proving Theorem 1.1 and Corollaries 1.2-1.5. This involves

using a version of Hilbert’s irreducibility theorem to account for reducible polynomials.

The rest of the paper is devoted to obtaining explicit versions of these counts. In Section 7

we prove the aforementioned explicit version of [CV01, Theorem 3] on counting polynomials

of given degree and bounded Mahler measure, and in Section 8 we do the same for the count

of monic polynomials. Section 9 contains a version of the general Theorem 1.11 with an

explicit error term, at the cost of weaker power savings. In Section 10 we begin to convert

our explicit counts of polynomials to explicit counts of minimal polynomials. The main piece

of this is showing that the reducible polynomials are negligible. We follow the techniques

for this used by Masser and Vaaler (sharper than the more general Hilbert irreducibility

method described above), obtaining explicit bounds. In Section 11 we prove our final explicit

results on counting algebraic numbers, including explicit versions of Masser and Vaaler’s

result (1.1), Barroero’s result (1.2), and Corollaries 1.2 and 1.3. Finally, we include an

appendix with some estimates for various expressions involving binomial coefficients which

occur in our explicit error terms throughout the paper.

Acknowledgments. The authors would like to thank Antoine Chambert-Loir for useful

correspondence related to Remark 1.8, and Melanie Matchett Wood for useful comments

on an early draft of this paper. We also thank Jeffrey Vaaler for confirming the error

in [CV01, (1.31)] and providing the corrected formula, stated in Section 2 below.

2. The unit star body

In this section we discuss some properties of the unit star body

Ud := {~w ∈ Rd+1
∣∣ µ(~w) ≤ 1}.

Since for all f ∈ R[x] and t ∈ R we have

µ(tf) = |t|µ(f), (2.1)

it’s easy to see that Ud is in fact a (symmetric) star body. Furthermore, Ud is compact;

it is closed because µ is continuous [Mah61, Lemma 1], and we can see it is bounded by

classical results that bound the coefficients of a polynomial in terms of its Mahler measure,

for example the following (see [Mah76, p. 7] and [BG06, Lemma 1.6.7 and its proof]).

Lemma 2.1 (Mahler). Every polynomial f(z) = w0z
d + w1z

d−1 + · · · + w0 ∈ C[z] has

coefficients satisfying

|wi| ≤
(
d

i

)
µ(f), i = 0, . . . , d. (2.2)

Furthermore, we have the following double inequality comparing Mahler measure with the

sup-norm of coefficients:(
d

bd/2c

)−1
‖~w‖∞ ≤ µ(~w) ≤

√
d+ 1‖~w‖∞, ∀ ~w ∈ Rd+1. (2.3)

2.1. Volumes. As mentioned in the introduction, the exact volume of Ud was determined

by Chern and Vaaler [CV01, Corollary 2]:

Vd := vold+1(Ud) = 2d+1(d+ 1)s
s∏
j=1

(2j)d−2j

(2j + 1)d+1−2j ,
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where s = b(d− 1)/2c. (Here volN denotes Lebesgue measure on RN .)

We record some numerical information about the volume of Ud. We note that a result

like Lemma 2.2 below would follow quite easily from the asymptotic formula for log Vd given

in [CV01, (1.31)]. However, this formula was given without proof and contains an error.

The correct version of [CV01, (1.31)] is apparently (using our notation):

log Vd = −1

2
d log d+

(
1

2
log 2π + 1

)
d− 5

4
log d+

(
3ζ ′(−1) +

1

2
+

1

3
log 2

)
+

19θ2
12d

,

where |θ2| ≤ 1. In this corrected version, the constant term differs from what was printed

in [CV01] by log 2. Since in this paper we are mainly interested in the maximum of Vd, we

settle for the following simpler result that can be proved quickly.

Lemma 2.2. We have

Vd ≤ V15 =
2658455991569831745807614120560689152

13904872587870848957579157123046875

=
2121

320 · 59 · 79 · 116 · 134
≈ 191.1888

for all d ≥ 0, and

lim
d→∞

Vd = 0.

Proof. Note using Stirling’s estimates (see (A.1) in the appendix) that for any positive

integer s, we have
s∏
j=1

{
2j

2j + 1

}
=

2ss!

(2s+ 1)!/(2ss!)
=

4ss!2

(2s+ 1)!

≤ 4s(e1−sss+1/2)2√
2πe−2s−1(2s+ 1)2s+3/2

≤ 4s(e2−2ss2s+1)√
2πe−2s−1(2s)2s+3/2

≤ e34ss2s+1

√
2π4s23/2s2s+1

√
s
≤ e3

4
√
πs
.

Suppose that d is odd, so we may take s =
⌊
d−1
2

⌋
=
⌊
(d+1)−1

2

⌋
. Then we have

Vd+1

Vd
=

2d+2(d+ 2)s

2d+1(d+ 1)s

s∏
j=1

{
(2j)d+1−2j

(2j)d−2j

} s∏
j=1

{
(2j + 1)d+1−2j

(2j + 1)d+2−2j

}

= 2

(
d+ 2

d+ 1

)s s∏
j=1

{
2j

2j + 1

}
≤
(
d+ 2

d+ 1

)s
· e3

2
√
πs
.

If d is even and s =
⌊
d−1
2

⌋
= d

2 − 1, then
⌊
(d+1)−1

2

⌋
= s+ 1, and then we have

Vd+1

Vd
=

2d+2(d+ 2)s+1

2d+1(d+ 1)s
· d

(d+ 1)2

s∏
j=1

{
(2j)d+1−2j

(2j)d−2j

} s∏
j=1

{
(2j + 1)d+1−2j

(2j + 1)d+2−2j

}

= 2
(d+ 2)s

(d+ 1)s
· d2 + 2d

d2 + 2d+ 1
·
s∏
j=1

{
2j

2j + 1

}
≤
(
d+ 2

d+ 1

)s
· e3

2
√
πs
.
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In either case, the ratio of successive terms tends to zero, so in fact Vd decays to zero faster

than exponentially, proving the second claim of our lemma. For the first claim, it suffices to

compute enough values of Vd. We see the maximum is attained at d = 15, as advertised. �

For any T ≥ 0, by (2.1) we have that

vold+1

(
{~w ∈ Rd+1

∣∣ µ(~w) ≤ T}
)

= vold+1(TUd) = Vd · T d+1.

Chern and Vaaler (see [CV01, equation (1.16)], corrected as in [Bar14, footnote on p. 38])

also computed the volume of the “monic slice”

Wd,T := {(w0, . . . , wd) ∈ TUd
∣∣ w0 = 1}. (2.4)

They showed:

vold (Wd,T ) = pd(T ) := Cd2−s{s!}−1
s∑

m=0

(−1)m(d− 2m)s
(
s

m

)
T d−2m, (2.5)

where again

s =

⌊
d− 1

2

⌋
, and Cd = 2d

s∏
j=1

(
2j

2j + 1

)d−2j
.

Note that, since pd(T ) is a polynomial in T , we automatically have (carefully inspecting the

leading term):

vold (Wd,T ) = Vd−1 · T d +O(T d−1).

For other slices besides the monic one, we will have to work harder (in Section 4) to obtain

such power savings. Along the way, it will become clear why the leading coefficient takes

the form it does.

Remark 2.3. Above, and throughout the paper, for a measurable set S ⊂ RN and n < N ,

we will sometimes write voln(S). In this case, S will always be a subset contained in an

affine space defined by fixing N −n coordinates of RN , and then voln(S) will always denote

the Lebesgue measure of the projection of S to Rn given by simply forgetting the fixed

coordinates. For ease of notation, we will sometimes drop the subscript when it is clear

from context.

2.2. Semialgebraicity. Next we establish a qualitative result we will need in proving The-

orem 1.11. A (real) semialgebraic set is a subset of euclidean space which is cut out by

finitely many polynomial equations and/or inequalities, or a finite union of such subsets.

Recall that the class of semialgebraic sets is closed under finite unions and intersections,

and also closed under projections by the Tarski-Seidenberg theorem [BM88, Theorem 1.5].

Lemma 2.4. The set Ud ⊂ Rd+1 is semialgebraic.

Proof. Our proof is similar to that of [Bar14, Lemma 4.1]. For j = 0, . . . , d, we wish to

define a semialgebraic set Sj ⊂ Rd+1 corresponding to degree j polynomials in Ud. We start

by constructing auxiliary subsets of Rd+1×Cj corresponding to the polynomials’ coefficients

and roots, where C is identified with R2 in the obvious way. We define

S0
j = {(0, . . . , 0, wd−j , . . . , wd, α1, . . . , αj) ∈ Rd+1 × Cj

∣∣ wd−j 6= 0, and

wd−jz
j + wd−j+1z

j−1 + · · ·+ wd = wd−j(z − α1) · · · (z − αj)},
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where the equalities defining the set are given by equating the real part of each elementary

symmetric function in the roots α1, . . . , αj with the corresponding coefficient wi, and setting

the imaginary part to zero. To enforce µ((0, . . . , 0, wd−j , . . . , wd)) ≤ 1, we define S1
j to

comprise those elements of S0
j such that all products of subsets of {α1, . . . , αj} are less than

or equal to 1/|wd−j | in absolute value. Finally, we let Sj be the projection of S1
j onto Rd+1.

Now simply note that

Ud = {0} ∪
d⋃
j=0

Sj .

�

Remark 2.5. Note that for any T > 0 the dilation TUd is also semialgebraic, and is defined

by the same number of polynomials (and of the same degrees) as is Ud.

2.3. Boundary parametrizations. Next we describe the parametrization of the boundary

of Ud, which consists of vectors corresponding to polynomials with Mahler measure exactly

1. The simple idea behind the parametrization is that such a polynomial is the product of

a monic polynomial with all its roots inside (or on) the unit circle, and a polynomial with

constant coefficient ±1 and all its roots outside (or on) the unit circle. Recall that Ud is a

compact, symmetric star body in Rd+1. The parametrization is described in [CV01, Section

10]. We briefly summarize the key points here. The boundary ∂Ud is the union of 2d + 2

“patches” Pεk,d, k = 0, . . . , d, ε = ±1. The patch Pεk,d is the image of a certain compact set

J εk,d under the map

bεk,d : Rk × Rd−k → Rd+1,

defined by

bεk,d
(
(x1, . . . , xk), (y0, . . . , yd−k−1)

)
= Bk,d

(
(1, x1, . . . , xk), (y0, . . . , yd−k−1, ε)

)
, (2.6)

Bk,d
(
(x0, x1, . . . , xk), (y0, . . . , yd−k)

)
= (w0, . . . , wd),

with

wi =
k∑
l=0

d−k∑
m = 0

l +m = i

xlym, i = 0, . . . , d. (2.7)

Note that this simply corresponds to the polynomial factorization

w0z
d + · · ·+ wd = (x0z

k + · · ·+ xk) · (y0zd−k + · · ·+ yd−k).

The sets J εk,d are given by

J εk,d = Jk ×Kε
d−k ⊆ Rk × Rd−k,

where

Jk = {~x ∈ Rk
∣∣ µ(1, ~x) = 1}, and (2.8)

Kε
d−k = {~y ∈ Rd−k

∣∣ µ(~y, ε) = 1}.

It will also be useful in Section 8 to have a parametrization of ∂Wd,T , the boundary of

a monic slice (see (2.4)), along the lines of that given for ∂Ud above. Consider a monic

polynomial

f(z) = zd + w1z
d−1 + · · ·+ wd ∈ R[z],
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having Mahler measure equal to T ≥ 1 and roots α1, . . . , αd ∈ C. We note that such

a polynomial can be factored as f(z) = g1(z)g2(z), where g1 and g2 ∈ R[z] are monic,

µ(g1) = 1 (forcing µ(g2) = T ), the constant coefficient of g2 is ±T , and where deg(g1) =

k ∈ {0, . . . , d− 1}. To do this, we simply let

g1(z) =
∏
|αi|<1

(z − αi), and g2(z) =
∏
|αi|≥1

(z − αi).

It is easy to check that g1 and g2 have the desired properties. For k = 0, . . . , d − 1, we let

Jk be as in (2.8), and let

Y εT
d−k = {~y ∈ Rd−k−1

∣∣ µ(1, ~y, εT ) = T}, and

LεTk,d = Jk × Y εT
d−k ⊆ Rk × Rd−k−1,

for each k = 0, . . . , d− 1, ε = ±1. We also define

βεTk,d
(
(x1, . . . , xk), (y1, . . . , yd−k−1)

)
= Bε

k,d

(
(1, x1, . . . , xk), (1, y1, . . . , yd−k−1, εT )

)
, (2.9)

similarly to (2.6).

We have that ∂Wd,T is covered by the 2d “patches”

βεTk,d
(
LεTk,d

)
. (2.10)

3. Counting principles

We’ll need a counting principle of Davenport to estimate the number of lattice points in

semialgebraic sets.

Theorem 3.1 (Davenport). Let S be a compact, semialgebraic subset of Rn defined by

at most k polynomial equalities and inequalities of degree at most l. Then the number of

integer lattice points contained in S is equal to

voln(S) +O(max{vol(S), 1}),

where vol(S) denotes the maximum, for m = 1, . . . , n − 1, of the volume of the projection

of S on the m-dimensional coordinate space given by setting any n −m coordinates equal

to zero. The implicit constant in the error term depends only on k, l, and n.

Remark 3.2. This follows from the main theorem of [Dav51], as described immediately

after its statement. (The argument for this reduction was corrected in [Dav64].) Davenport’s

principle has been generalized in a couple directions, to allow for lattices other than the

standard integer lattice [BW14, (1.2)], and to apply to sets definable in any o-minimal

structure [BW14, Theorem 1.3], of which semialgebraic sets are but one example. However,

the above version will suffice for our purposes.

For our explicit error estimates we will use a different counting principle, namely a re-

finement of the classical Lipschitz counting principle due to Spain [Spa95]. The classical

principle allows one to estimate the difference between the number of lattice points in a set

and the set’s volume: one uses that the boundary is parametrized by finitely many Lipschitz

maps, and that a Lipschitz map sends a cube in the domain into a cube in the codomain. In

our case it will be convenient to use “tiles” other than cubes in the domain. This could be

achieved by precomposing the maps with other maps which cover our tiles with the images

of cubes, but we feel the following alternative formulation is intuitive and less awkward in

application.
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Theorem 3.3. Let S ⊂ Rn be a set whose boundary ∂S is contained in the images of

finitely many maps φi : Ji → Rn, where I is a finite set of indices and each Ji is a set. For

each i ∈ I, assume that Ji can be covered by mi sets Ti,1, . . . , Ti,mi, with the property that

for each j the image φi(Ti,j) is contained in a translate of [0, 1]n inside Rn. Then

|#(S ∩ Zn)− voln(S)| ≤ 2n
∑
i∈I

mi.

Proof. We follow the “every other tile” approach of [Spa95]. The number of lattice points

in S differs from the volume of S by at most the number of integer vector translates of the

half-open unit tile [0, 1)n ⊆ Rn that meet the boundary ∂S. Consider the set E of tiles

which are even integer vector translates of [0, 1)n; it is clear that any translate of [0, 1]n

meets exactly one such tile. Since ∂S is contained in at most
∑

i∈Imi translates of [0, 1]n,

this means that at most that many tiles from E meet ∂S. But Rn is partitioned by 2n sets of

tiles which, like E , are made up of “every other tile.” (Explicitly, these sets are of the form

E + ~v, where ~v is a vector of 0’s and 1’s.) The bound claimed in the theorem follows. �

4. Volumes of slices of star bodies

We keep all the notation established just before Theorem 1.11 in the introduction, so

d,m, n, ~̀= (`0, . . . , `m−1) ∈ Zm, and ~r = (rd−n+1, . . . , rd) ∈ Zn† are fixed, and again we set

g = d−m−n. Let T be a positive real number. We continue to use the volume convention

of Remark 2.3. The primary step in proving Theorem 1.11 is to estimate the volume of the

slice

S(T ) = S~̀,~r(T ) := {~w = (w0, . . . , wd) ∈ Rd+1
∣∣ µ(~w) ≤ T ;

wi = `i, for i = 0, . . . ,m− 1; and

wj = rj , for j = d− n+ 1, . . . , d} (4.1)

as T grows. Specifically, we show the following.

Theorem 4.1. We have

volg+1(S(T )) = VgT
g+1 +O(T g), as T →∞.

We won’t obtain an explicit error estimate of this strength, but in Section 9 we will

discuss how to obtain an explicit error term of order T g+1− 1
d .

The idea of the proof of Theorem 4.1 is as follows. Because µ(T ~w) = Tµ(~w) for all T ≥ 0,

and all ~w ∈ Rd+1, we have

{~w ∈ Rd+1
∣∣ µ(~w) ≤ T} = T{~w ∈ Rd+1

∣∣ µ(~w) ≤ 1} = TUd.

Let

~v = (`0, . . . , `m−1, 0, . . . , 0, rd−n+1, . . . , rd) ∈ Rd+1,

and for each t ∈ [0,∞), set

Wt := t~v + Span{em, em+1, . . . , ed−n} ⊂ Rd+1, (4.2)

where e0, e1, . . . , ed are standard basis vectors for Rd+1. Then for T > 0 we have

S(T ) = W1 ∩ TUd = T
(
W1/T ∩ Ud

)
, (4.3)

†For this section we could take ~̀ and ~r to be real vectors, but this will not be important for our results.
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and since W1/T is (g + 1)-dimensional, this means

volg+1(S(T )) = T g+1 volg+1

(
W1/T ∩ Ud

)
. (4.4)

Letting t = 1/T , we should expect that

volg+1

(
W1/T ∩ Ud

)
= volg+1 (Ud ∩ (W0 + t~v))→ volg+1 (Ud ∩W0) , as t→ 0,

unless the boundary of Ud were to intersect with W0 in an unusual way; for example, if

Ud were a cube and W0 was a plane containing one of the faces. This basic idea of using

continuity of volumes of slices appears in the proof of [Sin08, Theorem 1.5]. We will show

below that volg+1 (Ud ∩W0) = Vg, whence the main term in the statement of Theorem 4.1.

We’ll obtain a full power savings by showing that the boundary of Ud is never tangent to

W0.
‡

Proposition 4.2. Let S ⊂ R × RN be a compact set bounded by finitely many smooth

hypersurfaces Hi, i = 1, . . . ,m. Assume each boundary component Hi ∩ ∂S has smooth

intersection with (i.e. is not tangent to) the hyperplane {0}×RN , and that these boundary

components Hi ∩ ∂S have pairwise disjoint interiors. Then

V (t) := volN
(
S ∩ ({t} × RN )

)
satisfies

V (t) = V (0) +O(t), as t→ 0+.

Proof. We denote points in R×RN by (x, y1, . . . , yN ). For each t ≥ 0, let S[0,t] = S∩([0, t]×
RN ), and let St = S ∩ ({t} × RN ). Let F denote the constant vector field (1, 0, . . . , 0) on

R× RN . By the divergence theorem, we have∮
∂S[0,t]

F · d~s =

∫
S[0,t]

∇ · F d volN+1 =

∫
S[0,t]

0 d volN+1 = 0,

where the first integral is with respect to the surface measure with outward normal. Note

that our assumption that {0}×RN is not tangent to any of the Hi means that neither is the

parallel hyperplane {t} × RN for t sufficiently small. Let Rt = ([0, t]×RN ) ∩ ∂S, and note

that, as long as t is small enough to avoid the aforementioned tangencies, the boundary of

S[0,t] decomposes into three pieces with disjoint interiors as follows:

∂S[0,t] = S0 ∪ St ∪Rt.

and so we have

0 =

∮
∂S[0,t]

F · d~s =

∫
S0

F · d~s+

∫
St

F · d~s+

∫
Rt

F · d~s

= −V (0) + V (t) +

∫
Rt

F · d~s,

where ∫
Rt

F · d~s =
∑
i

∫
Hi∩Rt

F · d~s.

‡As an exercise to see why tangency is a problem, consider the length of cross-sections of a disk as the
cross-sections slide toward a tangent line.
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Now we must show that

|V (t)− V (0)| =
∣∣∣∣∫
Rt

F · d~s
∣∣∣∣ = O(t). (4.5)

Since S is compact, the set Rt is contained in a “pizza box” [0, t]× [−M,M ]N for some

positive number M independent of t. Fix i ∈ {1, . . . ,m}. By assumption, Hi ∩ ∂S is not

tangent to the hyperplane {x = 0}, but since Hi is smooth and we’re working in a compact

set, we know Hi ∩ ∂S is not tangent to {x = t} for any t sufficiently small. This means

that, by the implicit function theorem, for t sufficiently small and any point P ∈ Hi ∩ Rt,
we have that Hi coincides in an open subset U ⊆ Hi ∩ Rt containing P with the graph of

a function yr = f(x, y1, . . . , ŷr, . . . , yN ) for some r ∈ {1, . . . , N} which depends on P . So

we have f : V → [−M,M ], where V is an open subset of [0, t] × [−M,M ]N−1. Letting ~n

denote the outward unit normal, we have∫
U
F · d~s =

∫
U
F · ~n ds =

∫
· · ·
∫
V
∓∂f
∂x

dxdy1 · · · ˆdyr · · · dyN , (4.6)

where the sign in the final integral is − or + depending on whether ~n is an upward or

downward normal to the graph of f , respectively.

By our non-tangency assumption again, the partial derivative ∂f
∂x is bounded in absolute

value inside our pizza box by a constant K which does not depend on U, i, or t as t → 0.

By compactness, finitely many of these neighborhoods U cover Hi ∩Rt, and the number of

neighborhoods required – call this number n – can be chosen independent of t or i. Using

(4.6), we estimate the integral in (4.5) as follows:

∣∣∣∣∫
Rt

F · d~s
∣∣∣∣ ≤ m∑

i=1

∣∣∣∣∫
Hi∩Rt

F · d~s
∣∣∣∣ ≤ m∑

i=1

∫
Hi∩Rt

|F · ~n| ds ≤
m∑
i=1

∑
U

∫
U
|F · ~n| ds

≤
m∑
i=1

∑
U

∫ M

−M
· · ·
∫ M

−M

∫ t

0

∣∣∣∣∂f∂x
∣∣∣∣ dxdy1 · · · ˆdyr · · · dyN

≤ m · n · [(2M)N−1t]K = O(t).

�

Now we verify that the boundary of Ud satisfies the hypotheses of Proposition 4.2. We

refer to the parametrization of said boundary described in Section 2, and follow that no-

tation. As noted in [CV01, Section 10], the condition of the boundary components having

disjoint interiors is satisfied here – this can be readily verified directly from the description

of the parametrization. Let H = Hε
k,d be one of the hypersurfaces which bound Ud. The

hypersurface H is the image of Rk × Rd−k under the map b = bεk,d described in (2.6).

Proposition 4.3. Let ~v = (`0, . . . , `m−1, 0, . . . , 0, rd−n+1, . . . , rd) ∈ Rd+1, and let

W0 = Span{em, em+1, . . . , ed−n}, and

W = Span{~v, em, em+1, . . . , ed−n},

where e0, e1, . . . , ed are standard basis vectors for Rd+1. Then W0 is not tangent to H ∩W
at any point.

We will break up the proof of this proposition into three lemmas.
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Lemma 4.4. The subspace W0 does not meet H unless

n ≤ k ≤ d−m.

If those inequalities hold and P = (w0, . . . , wd) = b(x1, . . . , xk, y0, . . . , yd−k−1) is a point in

H ∩W0, then we have

y0 = · · · = ym−1 = xk−n+1 = · · · = xk = 0. (4.7)

Proof. Suppose the inequalities are satisfied. We’ll prove vanishing of the parameters yi,

by induction on 0 ≤ i ≤ m− 1. If m = 0, there’s nothing to prove. Otherwise, for the base

case i = 0, by the definition of W0 we have w0 = 0, but also w0 = y0 by the definition of b

in (2.6). For arbitrary i, we again have wi = 0, while by the definition of b, every summand

in the formula for wi is of the form xi−jyj for j < i, except for the summand yi. Thus we’re

done by induction. Essentially the same proof works for the vanishing of xk−n+1, . . . , xk.

However, if n > k, then the above argument would imply that x0 = 0, but we know

x0 = 1, a contradiction. Similarly, if k > d−m, the above would give 0 = yd−k = ε, also a

contradiction. �

Lemma 4.5. The tangent space TP (H) of H at P is the row space of the following d×(d+1)

matrix, where the first (d − k) rows represent the tangent vectors
(
∂w0
∂yj

, . . . , ∂wd
∂yj

)
, j =

0, . . . , d − k − 1, and the last k rows represent the tangent vectors
(
∂w0
∂xi

, . . . , ∂wd
∂xi

)
, i =

1, . . . , k. Let q = d− k − 1 for ease of reading.

(Db)T =



1 x1 x2 · · · · · · xk 0 0 · · · · · · 0
0 1 x1 x2 · · · · · · xk 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
0 · · · · · · 0 1 x1 x2 · · · · · · xk 0
0 y0 y1 · · · · · · yq ε 0 · · · · · · 0
0 0 y0 y1 · · · · · · yq ε 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 0 · · · · · · 0 y0 y1 · · · · · · yq ε



.

Lemma 4.6. The projection of TP (H) onto W⊥0 is surjective.

Proof. Using Lemma 4.4, the image of that projection contains the row space (in appropriate

coordinates) of the following matrix, obtained by taking the first m columns and first m

rows of the above matrix, as well as its last n columns and last n rows:

C :=

[
A 0
0 B

]
,

where

A =


1 x1 x2 · · · xm−1
0 1 x1 · · · xm−2
...

. . .
. . .

. . .
...

...
. . .

. . . x1
0 · · · · · · 0 1


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is an m×m-matrix, and

B =



ε 0 · · · · · · 0

yq ε
. . .

...
...

. . . ε
. . .

...

yq−n+3
. . .

. . .
. . . 0

yq−n+2 · · · yq−1 yq ε


is an n× n-matrix.

Thus C is a block diagonal matrix (we’ve used the vanishing of parameters described in

(4.7) here) with determinant εn 6= 0, so its row space is all of W⊥0 . �

Proof of Proposition 4.3. We seek a tangent vector to H at P which is contained in W \W0.

By Lemma 4.6, TP (H) surjects onto the positive-dimensional space W⊥0 . Since its kernel

under this map is exactly W0, a vector must exist as desired. �

Proof of Theorem 4.1. We begin by noting that we may identify Ud ∩ W0 ⊆ Rd+1 with

Ug ⊆ Rg+1 as follows.

Define a map τ : Rg+1 → Rd+1 by

τ(wm, . . . , wd−n) = (0, . . . , 0︸ ︷︷ ︸
m

, wm, . . . , wd−n, 0, . . . , 0︸ ︷︷ ︸
n

) ∈W0,

which corresponds to multiplying the polynomial corresponding to the input by zn. Notice

that this operation preserves the Mahler measure. It’s also clear that τ maps Ug isometrically

onto Ud ∩W0, so we conclude that

volg+1(Ud ∩W0) = volg+1(Ug) = Vg. (4.8)

Using Proposition 4.3, we can apply Proposition 4.2 to the set S = Ud ∩W , considered

as a subset of W ∼= R× Rg+1 (so we are setting N = g + 1). Here for t ≥ 0 we have

S ∩
(
{t} × Rg+1

)
= Ud ∩Wt.

Then Proposition 4.2 gives

volg+1

(
Ud ∩W1/T

)
= volg+1 (Ud ∩W0) +O(1/T ).

Now by (4.4) and (4.8) we have

volg+1(S(T )) =
(

volg+1

(
Ud ∩W0

)
+O(1/T )

)
· T g+1

= Vg · T g+1 +O(T g),

completing our proof. �

5. Lattice points in slices: proof of Theorem 1.11

Now that we have an estimate for the volume of S(T ), we want to in turn estimate the

number of integer lattice points in S(T ), via Theorem 3.1. Note that this is the same as

the number of integer lattice points of S′(T ), which will denote the projection of S(T ) on

W0
∼= Rg+1. Note that vol(S(T )) = vol(S′(T )).

Since Ud is semialgebraic by Lemma 2.4 (and thus T · Ud as well), it is clear that the

number and degrees of the polynomial inequalities and equalities needed to define S′(T )
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are independent of T . Thus to apply Theorem 3.1, it remains only to bound the volumes

of projections of S′(T ) on coordinate planes.

For ~w ∈ S′(T ), by (2.3) we have

‖~w‖∞ ≤ ‖(~̀, ~w,~r)‖∞ ≤
(

d

bd/2c

)
µ(~̀, ~w,~r) ≤

(
d

bd/2c

)
T,

so S′(T ) is contained inside a cube of side length 2
(

d
bd/2c

)
T in Rg+1. Thus for j = 1, . . . , g,

any projection of S′(T ) on a j-dimensional coordinate plane is contained inside a cube of

side length 2
(

d
bd/2c

)
T in Rj , and thus has volume at most (2

(
d
bd/2c

)
T )j , which is certainly

O(T g) for j = 1, . . . , g.

By Theorem 3.1, we now get

M(d, ~̀, ~r, T ) = vol(S′(T )) +O(T g),

and so by Theorem 4.1 we have

M(d, ~̀, ~r, T ) = Vg · T g+1 +O(T g).

6. Proofs of Theorem 1.1 and corollaries

In this section we transfer our counts for degree d polynomials in Theorem 1.11 to the

counts for degree d algebraic numbers in Theorem 1.1. This only requires estimating the

number of reducible polynomials, because the hypotheses of Theorem 1.1 (fixing a positive

number of coefficients which must be coprime) ensure that the only irreducible polynomials

we count are actually minimal polynomials of degree d. We’ll apply a version of Hilbert’s

irreducibility theorem to achieve the most general result, which is the last ingredient needed

to prove Theorem 1.1. However, in various special cases we work a little harder to improve

the power savings, which will prove the sharper results of Corollaries 1.2 through 1.5.

We keep the notation and hypotheses of Theorem 1.1, fixing d,m, n, ~̀ ∈ Zm, and ~r ∈ Zn.
Furthermore, we let Mred(d, ~̀, ~r, T ) denote the number of reducible integer polynomials of

the form

f(z) = `0z
d + · · ·+ `m−1z

d−(m−1) + xmz
d−m + · · ·+ xd−nz

n + rd−n+1z
n−1 + · · ·+ rd,

and as before we set g = d−m− n.

Proposition 6.1. We have

Mred(d, ~̀, ~r, T ) = O
(
T g+

1
2 log T

)
. (6.1)

Proof. One of our hypotheses is that, if n > 0, then rd 6= 0; that is, we don’t want f(z) to

be divisible by z. It’s not hard to see that, under this hypothesis, the “generic polynomial”

f(xm, . . . , xd−n, z) defined above is irreducible in Z[xm, . . . , xd−n, z], by the following argu-

ment. Suppose f factors nontrivially as f = f1f2. Since f has degree 1 in xm, without loss

of generality f1 has degree 1 in xm and f2 has degree 0 in xm. Let f1 = g1xm + g2, where

g1 and g2 are in Z[xm+1, . . . , xd−n, z], so we have f = f2g1xm + f2g2, which means that

f2g1 = zd−m. We discover that f2 is (plus or minus) a power of z, and so f was divisible

by z all along.
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Now our proposition follows immediately from a quantitative form of Hilbert’s irreducibil-

ity theorem due to Cohen [Coh81, Theorem 2.5]. In the notation of the cited theorem, we

are setting r = 1, and s = g + 1. Cohen uses the `∞ norm on polynomials rather than

Mahler measure, but these are directly comparable by (2.3). It’s worth noting that, as can

be inferred from [Coh81, Section 2], the implied constant in (6.1) depends only on d, g, and

‖(~̀, ~r)‖∞, and could in principle be effectively computed. �

In the situations of Corollaries 1.2 through 1.5, we can obtain stronger bounds.

Proposition 6.2. For d ≥ 2, and r ∈ Z \ {0}, we have

Mred(d, (1), (r), T ) = O
(
T d−2

)
.

For d ≥ 3, t ∈ Z, and r ∈ Z \ {0}, we have

Mred(d, (1, t), (r), T ) = O
(
T d−3

)
.

For d ≥ 2, T ≥ 1, and t ∈ Z, we have

Mred(d, (1, t), (), T ) =


O
(√

T
)
, if d = 2,

O (T log T ) , if d = 3, and

O
(
T d−2

)
, if d > 3.

We postpone the proof until Section 10, where we’ll prove it with explicit constants. For

now, we show how Theorem 1.1 and Corollaries 1.2 through 1.5 follow from our results so

far.

Proof of Theorem 1.1 and Corollaries 1.2 through 1.5. By Theorem 1.11 we have that

M(d, ~̀, ~r, T ) = Vg · T g+1 +O(T g).

We write Mirr(d, ~̀, ~r, T ) for the corresponding number of irreducible degree d polynomials

with specified coefficients. Since ~̀ is non-empty and `0 6= 0, we have

Mirr(d, ~̀, ~r, T ) =M(d, ~̀, ~r, T )−Mred(d, ~̀, ~r, T ).

Applying Theorem 1.11 and Proposition 6.1, we see that

Mirr(d, ~̀, ~r, T ) = Vg · T g+1 +O(T g+
1
2 log T ). (6.2)

By our assumption that the specified coefficients had no common factor, and that `0 > 0,

any irreducible polynomial counted will be a minimal polynomial. Thus each of the degree

d irreducible polynomials f we count corresponds to exactly d algebraic numbers α1, . . . , αd
of degree d and height at most H, where Hd = T , since µ(f) = H(αi)

d for i = 1, . . . , d. In

other words, we have

N (d, ~̀, ~r,H) = dMirr(d, ~̀, ~r,Hd).
Now Theorem 1.1 follows from (6.2).

Corollaries 1.3, 1.4, and 1.5 follow similarly, by replacing the general upper bound for

reducible polynomials in Proposition 6.1 with the sharper bounds in Proposition 6.2. The

count for units in Corollary 1.2 follows immediately from Corollary 1.3, since an algebraic

number is a unit exactly if it is an algebraic integer with norm ±1. �
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7. Counting polynomials: explicit bounds

LetM(≤d, T ) denote the number of polynomials in Z[z] of degree at most d and Mahler

measure at most T . The following is an explicit version of [CV01, Theorem 3]. To condense

notation, we define for each d ≥ 0 the constants

P (d) =

d∏
j=0

(
d

j

)
, and (7.1)

A(d) =

d∑
k=0

P (k)P (d− k).

Theorem 7.1. For d ≥ 1 and T ≥ 1 we have

|M(≤d, T )− vol(Ud)T d+1| ≤ κ0(d)T d,

where

κ0(d) = 4d+1A(d)

(
d

(
d

bd/2c

)
+ 1

)d
≤ 40

4
√

2π3/4e−3 · d−1/4 · (4
√

2e3/2π−3/2)d · (2
√
e)d

2

≤ 5.59 · (15.01)d
2
.

Proof. We refer to the parametrization of the boundary of Ud detailed in Section 2.3. The

boundary ∂(TUd) is parametrized by 2d+ 2 maps of the form

Tbεk,d : J εk,d → ∂(TUd) ⊆ Rd+1,

T bεk,d(~x, ~y) =
(
Tf0(~x, ~y), . . . , T fd(~x, ~y)

)
,

where

fi(~x, ~y) := wi
(
(1, ~x), (~y, ε)

)
, for i = 0, . . . , d,

and wi is as in (2.7).

Fix for the moment k ∈ {0, . . . , d} and ε ∈ {±1}. If (~x, ~y) lies in any J εk,d, then µ(1, ~x) =

µ(~y, ε) = 1, and so by (2.2) we have ‖(~x, ~y)‖∞ ≤
(

d
bd/2c

)
, and so

‖(~x, ~y)‖2 ≤
√
d‖(~x, ~y)‖∞ ≤

√
d ·
(

d

bd/2c

)
. (7.2)

Also, for any i ∈ {0, . . . , d}, by (2.7) we have

‖∇fi(~x, ~y)‖∞ ≤ max{1, ‖(~x, ~y)‖∞, }. (7.3)
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Now for any i ∈ {0, . . . , d} and for any (~x1, ~y1), (~x2, ~y2) ∈ J εk,d, using (7.2) and (7.3) we have∣∣Tfi(~x1, ~y1)− Tfi(~x2, ~y2)∣∣ = T
∣∣fi(~x1, ~y1)− fi(~x2, ~y2)∣∣

≤ T · sup
(~x,~y)∈J

‖∇fi(~x, ~y)‖2 · ‖(~x1, ~y1)− (~x2, ~y2)‖2

≤ T ·
√
d · sup

(~x,~y)∈J
‖(~x, ~y)‖∞ ·

√
d · ‖(~x1, ~y1)− (~x2, ~y2)‖∞

≤ T ·
√
d ·
(

d

bd/2c

)
·
√
d · ‖(~x1, ~y1)− (~x2, ~y2)‖∞

= d ·
(

d

bd/2c

)
· T · ‖(~x1, ~y1)− (~x2, ~y2)‖∞.

We obtain the Lipschitz estimate

‖Tbεk,d(~x1, ~y1)− Tbεk,d(~x2, ~y2)‖∞ ≤ KT · ‖(~x1, ~y1)− (~x2, ~y2)‖∞, (7.4)

where K = K(d) := d ·
(

d
bd/2c

)
≤
√
d · 2d.

We now apply the Lipschitz counting principle from Section 3. Fix T ≥ 1, so that

dKT e ≤ KT + 1 ≤ (K + 1)T. Since Tbεk,d satisfies the Lipschitz estimate (7.4), the image

under Tbεk,d of any translate of [0, 1/dKT e]d is contained in a unit cube in Rd+1.

Let Qεk,d(T ) denote the number of d-cubes of side length 1/dKT e required to cover J εk,d.
The easiest way to get an estimate for this quantity would be to note that each J is

contained in a cube of side length 2 ·
(

d
bd/2c

)
. However, we can do significantly better than

this without too much effort, using the bounds on the individual coordinates (coefficients)

from Lemma 2.1.

Using (2.2), we see that J εk,d is contained in the cuboid{
(x1, . . . , xk, y0, . . . , yd−k−1) ∈ Rk × Rd−k

∣∣ |x`| ≤ (k
`

)
, |ym| ≤

(
d− k
m

)
, ∀`,m

}
,

and therefore J εk,d can be covered by

k∏
`=1

2

(
k

`

)
·
d−k−1∏
m=0

2

(
d− k
m

)
= 2dP (k) · P (d− k)

unit d-cubes. Hence surely we have

Qεk,d(T ) ≤ 2dP (k)P (d− k)dKT ed ≤ 2dP (k)P (d− k)((K + 1)T )d. (7.5)

Using Theorem 3.3 we conclude that

|M(≤d, T )− vol(Ud)T d+1| ≤ 2d+1
∑
k,ε

Qεk,d(T )

≤ 2d+1 · 2
d∑

k=0

2dP (k)P (d− k)(K + 1)dT d

= 4d+1A(d)(K + 1)dT d = κ0(d)T d.
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We now estimate κ0(d) as in the statement of the theorem, using Lemma A.1 from the

appendix:

κ0(d) = 4d+1A(d)

(
d

(
d

bd/2c

)
+ 1

)d
≤ 4d+1A(d)

(
2d

(
d

bd/2c

))d
≤ 4d+1A(d)

(
2e

π

√
d2d
)d
≤
(

40
4
√

2π3/4e−3
)
d−1/4

(
4
√

2e3/2π−3/2
)d (

2
√
e
)d2

= a
bdcd

2

4
√
d
≤ a(bc)d

2
= 40

4
√

2π3/4e−3 · (8
√

2π−3/2e2)d
2 ≤ 5.59 · (15.01)d

2
,

where a = 40 4
√

2π3/4e−3, b = 4
√

2e3/2π−3/2, and c = 2
√
e.

�

Remark 7.2. As each J εk,d is measurable, it follows that for each d we have

Qεk,d(T ) ∼ vol(J εk,d) · ((K + 1)T )d, as T →∞. (7.6)

Notice that

vol(J εk,d) = pk(1) · pd−k(1),

where pd(T ) is as defined in (2.5). The sharpest way to proceed would be to explicitly

estimate the error in (7.6). Comparing (7.6) with (7.5): how much does vol(J εk,d) differ

from 2dP (k)P (d− k)?

8. Counting monic polynomials: explicit bounds

LetWd,T denote the subset of Rd corresponding to monic polynomials of degree d in R[z]

with Mahler measure at most T , i.e.

Wd,T = {~w = (w1, . . . , wd) ∈ Rd
∣∣ µ(1, ~w) ≤ T}.

We want to estimate the number of lattice pointsM1(d, T ) in this region. Note that, in the

notation of the introduction, we have M1(d, T ) =M(d, (1), (), T ). Recall that the volume

of Wd,T is given by the Chern-Vaaler polynomial pd(T ), as defined in (2.5).

We define, for d a non-negative integer,

B(d) =

d−1∑
k=0

P (k)P (d− k)γ(k)d−k−1γ(d− k)k,

where P is as defined in (7.1), and γ(k) :=
(

k
bk/2c

)
.

Theorem 8.1. For all d ≥ 2 and T ≥ 1 we have

|M1(d, T )− pd(T )| ≤ κ1(d)T d−1,

where

κ1(d) = 4ddd−1B(d) ≤ 4ddd−12d
2
.

Proof. Our starting point is the parametrization of the boundary ∂Wd,T given in Section

2, which consists of the patches described in (2.9) and (2.10). As opposed to the previous

proof, we’ll need to be a bit more careful in our application of Theorem 3.3. Instead of a

Lipschitz estimate of the form

‖output1 − output2‖∞ ≤ [constant] · ‖input1 − input2‖∞,
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we’ll estimate each component of the parametrization separately, which will lead to an

argument where the parameter space is tiled by “rectangles” instead of “squares.” We fix

k ∈ {0, . . . , d− 1} and ε ∈ {±1}, and set L = LεTk,d. We write

βεTk,d(~x, ~y) = (1, g1(~x, ~y), . . . , gd(~x, ~y)) .

We have

|gi(~x1, ~y1)− gi(~x2, ~y2)| ≤ sup
(~x,~y)∈L

|∇gi(~x, ~y) · ((~x1, ~y1)− (~x2, ~y2))|

≤ sup
(~x,~y)∈L

(
k∑
`=1

∣∣∣∣ ∂gi∂x`
(~x, ~y)

∣∣∣∣ |x1,` − x2,`|+ d−k−1∑
m=1

∣∣∣∣ ∂gi∂ym
(~x, ~y)

∣∣∣∣ |y1,m − y2,m|
)
.

By (2.2), if (~x, ~y) ∈ L, then we must have |x`| ≤
(
k
`

)
≤ γ(k), for each ` = 1, . . . , k, and

|ym| ≤ T
(
d−k
m

)
, for each m = 1, . . . , d − k − 1. Now notice that each partial derivative

∂gi
∂x`

, as a function, is either equal to 1, εT , or yi−`, and thus has absolute value at most

T
(
d−k
i−`
)
≤ Tγ(d − k). By the same token, each ∂gi

∂ym
is equal to either 1 or xi−m, and thus

has absolute value at most
(

k
i−m
)
≤ γ(k). Applying this to the inequality above gives

|gi(~x1, ~y1)− gi(~x2, ~y2)| ≤ kγ(d− k)T‖~x1 − ~x2‖∞ + (d− k − 1)γ(k)‖~y1 − ~y2‖∞. (8.1)

Suppose for the moment that 0 < k < d− 1. Now if 1
p + 1

q = 1, and if

‖~x1 − ~x2‖∞ ≤
1

pkγ(d− k)T
, and

‖~y1 − ~y2‖∞ ≤
1

q(d− k − 1)γ(k)
,

then (8.1) will give

|gi(~x1, ~y1)− gi(~x2, ~y2)| ≤ 1.

So, if P is a cube in Rk with sides parallel to the axes and side length

1

dpγ(d− k)kT e
, (8.2)

and if Q is a cube in Rd−k−1 with sides parallel to the axes and side length

1

dq(d− k − 1)γ(k)e
, (8.3)

then βεTk,d(P×Q) is contained in a unit d-cube with sides parallel to the axes in Rd. If k = 0,

we take q = 1 in (8.3), and βεTk,d(Q) is contained in a unit d-cube with sides parallel to the

axes in Rd. Similarly, if k = d− 1, then we take p = 1 in (8.2), and we have the same result

for βεTk,d(P).

This is the first part of preparing to apply Theorem 3.3. We let Rεk,d(T ) denote the

minimum number of such “rectangles” P × Q required to cover L. As we argued in the

previous section for the sets J εk,d, we see that L can be covered by

k∏
`=1

2

(
k

`

)
·
d−k−1∏
m=1

2T

(
d− k
m

)
= 2d−1P (k)P (d− k) · T d−k−1

unit cubes. Since each unit cube can be covered by

dpkγ(d− k)T ek · dq(d− k − 1)γ(k)ed−k−1
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of our rectangles, we have

Rεk,d(T ) ≤ 2d−1P (k)P (d− k) dpkγ(d− k)T ek · dq(d− k − 1)γ(k)ed−k−1 T d−k−1,

for 0 < k < d− 1. Similarly, when k = 0 we have

Rεk,d(T ) ≤ 2d−1P (k)P (d− k) · [(d− k − 1)γ(k)]d−k−1 T d−k−1,

and when k = d− 1 we have

Rεk,d(T ) ≤ 2d−1P (k)P (d− k) [kγ(d− k)T ]k T d−k−1.

Following the proof in the previous section, by Theorem 3.3, we have

|M1(d, T )− pd(T )| ≤
∑
k,ε

2dRεk,d(T )

≤ 2d · 2
d−1∑
k=0

2d−1P (k)P (d− k) dpkγ(d− k)T ek · dq(d− k − 1)γ(k)ed−k−1 T d−k−1

= 4d
d−1∑
k=0

P (k)P (d− k) dpkγ(d− k)T ek · dq(d− k − 1)γ(k)ed−k−1 T d−k−1,

where we understand dpkγ(d− k)T ek = 1 when k = 0, and dq(d− k − 1)γ(k)ed−k−1 = 1

when k = d− 1, and similarly below.

It will now be convenient to set p = d−1
k and q = d−1

d−k−1 . Note that if k = 0 we have

q = 1, and p does not appear; similarly if k = d− 1 we have p = 1, and q does not appear.

We conclude our proof, assuming T ≥ 1:

|M1(d, T )− pd(T )| ≤

4d
d−1∑
k=0

P (k)P (d− k)(pk + 1)k(q(d− k − 1) + 1)d−k−1γ(k)d−k−1γ(d− k)kT d−1

= 4d
d−1∑
k=0

P (k)P (d− k)dkdd−k−1γ(k)d−k−1γ(d− k)kT d−1

= 4ddd−1B(d)T d−1 = κ1(d)T d−1.

Finally, we note that B(d) ≤ 2d
2

by Lemma A.2 from the appendix. �

9. Lattice points in slices: explicit bounds

The goal of this section is to prove a version of the lattice point-counting result Theorem

1.11 with an explicit error term, albeit with worse power savings – Theorem 9.3 stated

below. As a byproduct of the proof, we also obtain an explicit version of our volume

estimate Theorem 4.1. Our explicit version of Theorem 1.11 makes it possible to estimate

the quantities in Corollaries 1.2 through 1.5 with explicit error terms.

We start with some notation. Fix d,m, n, ~̀, ~r, and T > 0 as in Section 1, and again set

g = d−m− n. Let π : Rd+1 → Rg+1 denote the projection forgetting the first m and last

n coordinates, given by

π(w0, . . . , wd) = (wm, . . . , wd−n).
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Let S(T ) be as defined in (4.1). For t ∈ [0,∞), define Wt as in (4.2), and set

Bt := π(Wt ∩ Ud).

By (4.3) we have

π (S(T )) = π
(
T
(
W1/T ∩ Ud

))
= Tπ

((
W1/T ∩ Ud

))
= TB1/T . (9.1)

Also note that by (4.8) we have

vol(B0) = volg+1 (Ud ∩W0) = Vg. (9.2)

For subsets A and A′ of a common set, we use the usual notation for a symmetric

difference A4A′ = (A ∪A′) \ (A ∩A′). Note that for T > 0 we have

T (A4A′) = (TA)4(TA′),

for any two subsets A and A′ of a common euclidean space.

The following lemma is the main tool of this section. We postpone its proof until the

end.

Lemma 9.1. Let

k1 = k1(d, ~̀, ~r) := 2d
2
dd(m+ n)‖(~̀, ~r)‖∞, and

δT := (k1/T )1/d.

If T ≥ k1, then

B04B1/T ⊆ {~x ∈ Rg+1
∣∣ 1− δT ≤ µ(~x) ≤ 1 + δT } (9.3)

= [(1 + δT )Ug] \ [(1− δT )Ug] .

Using this result we take a brief detour to make the advertised explicit volume estimate.

Compare the following with Theorem 4.1, in which we obtain a better power-savings in the

error term, though in that theorem the error term is not made explicit.

Theorem 9.2. Let S(T ) = S~̀,~r(T ). If T ≥ k1, then∣∣volg+1 (S(T ))− VgT g+1
∣∣ ≤ cT g+1−1/d,

where

c = c
(
d, ~̀, ~r

)
= 2d+1

(
(m+ n)‖(~̀, ~r)‖∞

)1/d · d · Vg).
Proof. Using (9.1) and (9.2) we have∣∣∣∣volg+1(S(T ))

T g+1
− Vg

∣∣∣∣ =
∣∣vol(B1/T )− vol(B0)

∣∣ ≤ vol(B04B1/T )

≤ vol({~x ∈ Rg+1
∣∣ 1− δT ≤ µ(~x) ≤ 1 + δT }) (by Lemma 9.1)

= 2δTVg =
c

T 1/d
.

�

In Section 4 we estimated the volume of S(T ) in order to estimate the number of lattice

points in that set. Here, by contrast, we actually don’t require a volume estimate; Lemma

9.1 allows us to directly estimate the number of lattice points in S(T ), which we have

denoted M(d, ~̀, ~r, T ), as follows.
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Theorem 9.3. Let k1 = k1(d, ~̀, ~r) be as in Lemma 9.1, and κ0 as defined in Theorem 7.1.

For all T ≥ k1, we have

|M(d, ~̀, ~r, T )− Vg · T g+1| ≤ κ(d, ~̀, ~r)(T g+1−1/d),

where

κ(d, ~̀, ~r) = (g + 1)2g+1k
1/d
1 Vg + (g2gk

1/d
1 + 1)κ0(g).

We note for later that Vg ≤ 2 · 15g
2

for all g ≥ 0, and so

κ(d, ~̀, ~r) ≤ (g + 1)2g+1k
1/d
1 (Vg + κ0(g))

≤ d(g + 1)2d+g+1(m+ n)1/d‖~̀, ~r‖∞ (Vg + κ0(g)) (9.4)

≤ (2 + a)d(g + 1)2d+g+1(m+ n)1/d‖~̀, ~r‖∞(bc)g
2
,

where a, b, and c are the constants appearing in the end of the proof of Theorem 7.1 (note

that bc > 15).

Proof. We let Z(Ω) denote the number integer lattice points in a subset Ω of euclidean

space. Again applying (9.1), we have

M(d, ~̀, ~r, T ) = Z(S(T )) = Z(π(S(T )) = Z(TB1/T ).

Also note that

Z(TB0) =M(≤g, T ),

which we estimated in Section 7. Therefore, using the triangle inequality and Theorem 7.1,

we have∣∣∣M(d, ~̀, ~r, T )− Vg · T g+1
∣∣∣ =

∣∣Z(TB1/T )− Vg · T g+1
∣∣

≤
∣∣Z(TB1/T )− Z(TB0)

∣∣+
∣∣Z(TB0)− Vg · T g+1

∣∣
≤
∣∣Z(TB1/T )− Z(TB0)

∣∣+ κ0(g)T g, (9.5)

Clearly ∣∣Z(TB1/T )− Z(TB0)
∣∣ ≤ Z ((TB1/T )4(TB0)

)
= Z

(
T (B1/T4B0)

)
,

and by Lemma 9.1 we have

T (B1/T4B0) ⊆ [(T + TδT )Ug] \ [(T − TδT )Ug] .

Hence, applying Theorem 7.1 a second time and using an elementary estimate from the

mean value theorem, we find that∣∣Z(TB1/T )− Z(TB0)
∣∣ ≤ Z((T + TδT )Ug)− Z((T − TδT )Ug)
≤ Vg

[
(T + TδT )g+1 − (T − TδT )g+1

]
+ κ0(g) [(T + TδT )g − (T − TδT )g]

≤ Vg(g + 1)(T + TδT )g(2TδT ) + κ0(g)g(T + TδT )g−1(2TδT ).
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Recall that δT = k
1/d
1 T−1/d. Assuming T ≥ k1 means that δT ≤ 1. Combining the

estimate just obtained with (9.5), we achieve

|M(d, ~̀, ~r, T )− Vg · T g+1| ≤ Vg(g + 1)(2T )g · 2T 1−1/d · k1/d1

+ gκ0(g)(2T )g−1 · 2T 1−1/d · k1/d1 + κ0(g)T g

≤ [(g + 1)2g+1k
1/d
1 Vg + (g2gk

1/d
1 + 1)κ0(g)]T g+1− 1

d .

�

Proof of Lemma 9.1. We will require the following Lipschitz-type estimate for the Mahler

measure [CV01, Theorem 4], which is a quantitative form of the continuity of Mahler mea-

sure:

Theorem 9.4 (Chern-Vaaler). For any ~w1, ~w2 ∈ Rd+1, we have∣∣∣µ(~w1)
1/d − µ(~w2)

1/d
∣∣∣ ≤ 2 ‖~w1 − ~w2‖1/d1 , (9.6)

where ‖~w‖1 =
∑d

i=0 |wi| is the usual `1-norm of a vector ~w = (w0, . . . , wd) ∈ Rd+1.

If µ(~w1) and µ(~w2) are both less than some constant k, then applying (9.6) yields

|µ(~w1)− µ(~w2)| =
∣∣∣µ(~w1)

1/d − µ(~w2)
1/d
∣∣∣· d∑
i=1

(
µ(~w1)

d−i
d µ(~w2)

i−1
d

)
≤ 2 ‖~w1 − ~w2‖1/d1 ·dk

d−1
d .

(9.7)

We will shortly apply this observation with k = 2d. We assume T ≥ k1.
Let ~x be a vector in B04B1/T , and write

~x0 = τ(~x) = (~0m, ~x,~0n) ∈ Rd+1, and ~xT =

(
~̀

T
, ~x,

~r

T

)
∈ Rd+1.

Notice that µ(~x0) = µ(~x) because τ preserves Mahler measure, as noted in the proof of

Theorem 4.1.

Since ~x ∈ B04B1/T , it’s clear that either

µ(~x0) ≤ 1 < µ(~xT ). (9.8)

or

µ(~xT ) ≤ 1 < µ(~x0). (9.9)

must hold. In either case, we have

1− |µ(~x0)− µ(~xT )| ≤ µ(~x0) ≤ 1 + |µ(~x0)− µ(~xT )| (9.10)

First, suppose ~x is in B0, but not in B1/T , so (9.8) holds. Then, by (2.3) and our

assumption that T ≥ k1, we have

µ(~xT ) ≤ ‖~xT ‖∞
√
d+ 1 ≤ max{‖~x0‖∞, 1}

√
d+ 1 ≤

(
d

bd/2c

)√
d+ 1 max{µ(~x0), 1} ≤ 2d,

(9.11)

as in the statement of the proposition. Here we have used that
(

d
bd/2c

)√
d+ 1 ≤ 2d (see for

example [BG06, Lemma 1.6.12]). Note that the second inequality in (9.11) follows because
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T ≥ ‖(~̀, ~r)‖∞. On the other hand, if ~x is in B1/T , but not in B0, so that (9.9) holds, then

by applying (2.3) again, we have, in the same fashion as before:

µ(~x0) ≤ ‖~x‖∞
√
g + 1 ≤ max{‖~xT ‖∞, 1}

√
d+ 1 ≤ max{µ(~xT ), 1} ≤ 2d.

Since in either case we have that both µ(~x0) and µ(~xT ) are at most 2d, we may apply

(9.7) to achieve

|µ(~x0)− µ(~xT )| ≤ 2‖~x0 − ~xT ‖1/d1 · d(2d)
d−1
d . (9.12)

Note that

‖~x0 − ~xT ‖1 =
m−1∑
i=0

|`i|/T +
d∑

i=d−n+1

|ri|/T ≤ (m+ n)‖(~̀, ~r)‖∞/T,

which, combined with (9.12), yields

|µ(~x0)− µ(~xT )| ≤ δT .

Now we combine with (9.10), and conclude that 1 − δT ≤ µ(~x) ≤ 1 + δT . This completes

our justification of (9.3), which concludes our proof of Lemma 9.1. �

10. Reducible and imprimitive polynomials

In this section we begin to transfer our explicit counts for polynomials of degree at most d

to explicit counts for algebraic numbers of degree d, by counting their minimal polynomials.

In most cases, this simply means bounding the number of reducible polynomials, because

the hypotheses imposed in Theorem 1.1 don’t allow for any irreducible polynomials to be

counted other than minimal polynomials of degree d. We’ll apply a version of Hilbert’s

irreducibility theorem to achieve the most general bound, which will finish off the proof

of Theorem 1.1. However, in various special cases we work a little harder to improve the

power savings.

In the one case we consider outside the hypotheses of Theorem 1.1, namely polynomi-

als with no coefficients fixed, we must also address the presence of imprimitive degree d

polynomials and lower-degree polynomials.

Several times in our arguments we use the following estimate: if a ≥ 2, then

K∑
k=1

ak =
aK+1 − a
a− 1

≤ aK+1

a/2
= 2aK . (10.1)

We write

P (d) :=

d∏
j=0

(
d

j

)
, for d ≥ 0, and

Cm,n(d) :=

d−n∏
j=m

(
2

(
d

j

)
+ 1

)
, for 0 ≤ m+ n ≤ d.



SLICING THE STARS 29

10.1. All polynomials. Let M(d, T ) denote the number of integer polynomials of degree

exactly d and Mahler measure at most T , and let Mred(d, T ) denote the number of such

polynomials that are reducible. Recall that M(≤d, T ) denotes the number of integer poly-

nomials of degree at most d and Mahler measure at most T . By (2.2), for all d ≥ 0 and

T > 0 we have

M(d, T ) ≤M(≤d, T ) ≤ C0,0(d)T d+1 ≤ c02d+1P (d)T d+1, (10.2)

where c0 = 3159/1024, using Lemma A.3 from the appendix.

Proposition 10.1. We have

Mred(d, T ) ≤

{
1758 · T 2 log T, if d = 2, T ≥ 2, and

16c204
dP (d− 1) · T d, if d ≥ 3, T ≥ 1.

Proof. For a reducible polynomial f of degree d and Mahler measure at most T , there exist

1 ≤ d2 ≤ d1 ≤ d − 1 such that f = f1f2, where each fi is an integer polynomial with

deg(fi) = di. Of course we have d = d1 + d2. Let k be the unique integer such that

2k−1 ≤ µ(f1) < 2k. We have 1 ≤ k ≤ K, where K = b log Tlog 2 c+ 1, and µ(f2) ≤ 21−kT .

Given such a pair (d1, d2), by (10.2) there are at most c02
d1+1P (d1)2

k(d1+1) choices of

such an f1, and at most c02
d2+1P (d2)(2

1−kT )d2+1 choices for f2. Assume first that d1 > d2.

We’ll use below that P (d1)P (d2) is always less than or equal to P (d − 1), by Lemma A.4

in the appendix. Summing over all possible k and applying (10.1), the number of pairs of

polynomials is at most

K∑
k=1

c02
d1+1P (d1)c02

d2+1P (d2)2
k(d1+1)(21−kT )d2+1 = 4c202

dP (d1)P (d2)(2T )d2+1
K∑
k=1

2k(d1−d2)

≤ 4c202
dP (d− 1)(2T )d2+1

[
2 · 2K(d1−d2)

]
≤ 8c202

dP (d− 1)(2T )d1+1 ≤ 16c202
d2d1P (d− 1)T d.

If instead d1 = d2 = d
2 , (so in particular d is even), then the first line above is at most

4c202
dP (d− 1)(2T )d1+1K.

In the case d = 2, note that for T ≥ 2 we have K ≤ 2
log(2) log T , and so

Mred(2, T ) ≤ 4c202
2P (1)(2T )1+1K ≤ 64c20T

2 2

log(2)
log T

=
128c20
log(2)

· T 2 log T ≤ 1758 · T 2 log T.

Whenever T ≥ 1 we have K ≤ 2T , and thus for even d ≥ 4,

4c202
dP (d− 1)(2T )d1+1K ≤ 8c202

d2d1P (d− 1)T
d
2
+1 · 2T ≤ 16c202

d2d1P (d− 1)T d,

so we have the same bound we had when we assumed d2 < d1.

Finally, for any d ≥ 3, summing over the possible values of d1 gives that

Mred(d, T ) ≤
d−1∑

d1=d d2 e

16c202
d2d1P (d− 1)T d ≤ 16c202

dP (d− 1)T d
d−1∑
d1=1

2d1

= 16c202
dP (d− 1)T d(2d − 2) ≤ 16c204

dP (d− 1) · T d.
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�

We follow the proof of [MV08, Lemma 2] in counting primitive polynomials, but we’ll

keep track of implied constants. For n = 1, 2, . . . , let Mn(≤d, T ) denote the number of

nonzero integer polynomials of degree at most d and Mahler measure at most T , such

that the greatest common divisor of the coefficients is n. We let Mn(d, T ) denote the

corresponding number of polynomials with degree exactly d, so M1(d, T ) is the number of

primitive polynomials of degree d and Mahler measure at most T . Recall that κ0(d) is a

function of d appearing in Theorem 7.1.

Theorem 10.2. For all d ≥ 2 and T ≥ 1 we have∣∣∣∣M1(d, T )− Vd
ζ(d+ 1)

T d+1

∣∣∣∣ ≤ (Vdd + 1

)
T +

(
C0,0(d− 1) + ζ(d)κ0(d)

)
T d,

where ζ is the Riemann zeta-function.

Proof. Being careful to account for the zero polynomial, we have

M(≤d, T )− 1 =
∑

1≤n≤T
Mn(≤d, T ) =

∑
1≤n≤T

M1 (≤d, T/n) .

By Möbius inversion (below we commit a sin of notation overloading and let µ denote

the Möbius function), this tells us that

M1(≤d, T ) =
∑

1≤n≤T
µ(n) [M (≤d, T/n)− 1] .

Combining this with Theorem 7.1 and (10.2), we have∣∣∣∣∣∣M1(d, T )− VdT d+1
∑

1≤n≤T

µ(n)

nd+1

∣∣∣∣∣∣
=

∣∣∣∣∣M1(d, T )−M1(≤d, T ) +
T∑
n=1

µ(n)
[
M(≤d, T/n)− 1

]
− VdT d+1

T∑
n=1

µ(n)

nd+1

∣∣∣∣∣
≤M1(≤d− 1, T ) +

T∑
n=1

|µ(n)|+
T∑
n=1

∣∣∣M(≤d, T/n)− Vd(T/n)d+1
∣∣∣

≤M(≤ d− 1, T ) + T +
T∑
n=1

κ0(d)(T/n)d ≤ C0,0(d− 1)T d + T + κ0(d)T d
T∑
n=1

1

nd

≤ T +
(
C0,0(d− 1) + ζ(d)κ0(d)

)
T d.

This in turn gives∣∣∣∣M1(d, T )− Vd
ζ(d+ 1)

T d+1

∣∣∣∣ ≤ VdT d+1
∞∑

n=T+1

n−(d+1) + T +
(
C0,0(d− 1) + ζ(d)κ0(d)

)
T d

≤
(
Vd
d

+ 1

)
T +

(
C0,0(d− 1) + ζ(d)κ0(d)

)
T d,

by applying the integral estimate
∞∑

n=T+1

n−(d+1) ≤ d−1T−d.

This establishes the theorem. �
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10.2. Monic polynomials. Next, let M1(d, T ) denote the number of monic integer poly-

nomials of degree d and Mahler measure at most T , and letMred
1 (d, T ) denote the number

of such polynomials that are reducible. Using (2.2), we have for all d ≥ 0 and T > 0 that

M1(d, T ) ≤ C1,0(d)T d ≤ c12dP (d)T d,

where c1 = 1053
512 , from Lemma A.3 in the appendix.

We’ll assume d ≥ 2. In estimating the number of reducible monic polynomials, we follow

the pattern of the proof of Proposition 10.1, noting that if a monic polynomial is reducible,

its factors can be chosen to be monic. Using the same notation as in that proof, we have

that the number of pairs of monic polynomials of degree d1 and d2, with d1 > d2, is at most

K∑
k=1

c12
d1P (d1)c12

d2P (d2)2
kd1(21−kT )d2 = c212

dP (d1)P (d2)(2T )d2
K∑
k=1

2k(d1−d2)

≤ 2c212
d2d1P (d− 1)T d−1.

Noting that
16c21
log 2

< 98,

we continue almost exactly as in Proposition 10.1 and obtain the following.

Proposition 10.3. We have

Mred
1 (d, T ) ≤

{
98 · T log T, if d = 2, T ≥ 2, and

2c214
dP (d− 1) · T d−1, if d ≥ 3, T ≥ 1.

10.3. Monic polynomials with given final coefficient. Next we want to bound the

number of reducible, monic, integer polynomials with fixed constant coefficient. For r a

nonzero integer, let Mred(d, (1), (r), T ) denote the number of reducible monic polynomials

with constant coefficient r, degree d, and Mahler measure at most T . Using (2.2), we have

for all d ≥ 0 and T > 0 that

M(d, (1), (r), T ) ≤ C1,1(d)T d−1 ≤ c22d−1P (d)T d−1,

where c2 = 351
256 , from Lemma A.3 in the appendix.

Let ω(r) denote the number of positive divisors of r. We’ll assume d > 2; if d = 2, we

easily have the constant bound Mred(d, (1), (r), T ) ≤ ω(r) + 1.

For a polynomial f counted by Mred(d, (1), (r), T ), there exist 1 ≤ d2 ≤ d1 ≤ d− 1 such

that f = f1f2, where each fi is an integer polynomial with deg(fi) = di, and of course the

constant coefficient of f is the product of those of f1 and f2. Define k as in the previous

two cases. Given such a pair (d1, d2), summing over the 2ω(r) possibilities for the final

coefficient of f1 there are at most 2ω(r)c22
d1−1P (d1)2

k(d1−1) choices of such an f1, and then

at most c22
d2−1P (d2)(2

1−kT )d2−1 choices for f2. The rest proceeds essentially as before,

and we find that:

Proposition 10.4. For T ≥ 1, we have

Mred(d, (1), (r), T ) ≤

{
ω(r) + 1, if d = 2

1
2ω(r)c224

dP (d− 1) · T d−2, if d ≥ 3.
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10.4. Monic polynomials with a given second coefficient. For our next case, we want

to bound the number of reducible, monic, integer polynomials with a given second leading

coefficient. Let Mred(d, (1, t), (), T ) denote the number of reducible monic polynomials of

degree d ≥ 3 (we’ll treat d = 2 separately at the end) with integer coefficients, second

leading coefficient equal to t, and Mahler measure at most T .

Proposition 10.5. For all t ∈ Z we have

Mred(d, (1, t), (), T ) ≤


1
2

√
t2 + 4T + 1, if d = 2, T ≥ 1;

96

log 2
· T log T , if d = 3, T ≥ 2; and

d22d−1P (d− 1) · T d−2, if d ≥ 4, T ≥ 1.

Proof. As before, we write such a polynomial as f = f1f2, with

f1(z) = zd1 + x1z
d1−1 + · · ·xd1 , and f2(z) = zd2 + y1z

d2−1 + · · · yd2 .

Also as before, we enforce 1 ≤ d2 ≤ d1 ≤ d − 1 to avoid double-counting, and we define k

as in the previous three cases. For 1 ≤ i ≤ d1 and 1 ≤ j ≤ d2, we have

|xi| ≤
(
d1
i

)
2k, and |yj | ≤

(
d2
j

)
21−kT. (10.3)

We also, of course, have

x1 + y1 = t. (10.4)

First assume d1 > d2 + 1. Observe that the number of integer lattice points (x1, y1) in

[−M1,M1]× [−M2,M2] such that x1 +y1 = t is at most 2 min{M1,M2}+ 1. So the number

of (x1, . . . , xd1 , y1, . . . , yd2) satisfying (10.3) and (10.4) is at most(
2 min{d12k, d221−kT}+ 1

) d1∏
j=2

[
2

(
d1
j

)
2k + 1

]
·
d2∏
j=2

[
2

(
d2
j

)
21−kT + 1

]
(10.5)

≤
(

2 min{d12k, d221−kT}+ 1
)
· C2,0(d1)2

k(d1−1) · C2,0(d2)(2
1−kT )d2−1

≤
(

2d · 21−kT
)

(2T )d2−12k(d1−d2) · 2d1−1P (d1) · 2d2−1P (d2)

≤ d2d−1P (d− 1)(2T )d22k(d1−d2−1),

using Lemma A.3. Summing over all the possibilities 1 ≤ k ≤ K, the number of possible

pairs f1 and f2 of degrees d1 and d2, respectively, is at most

d2d−1P (d− 1)(2T )d2
K∑
k=1

2(d1−d2−1)k ≤ d2d−12d2P (d− 1)T d2
[
2 · 2K(d1−d2−1)

]
≤ d2d−12d1P (d− 1)T d−2. (10.6)

Now, if d1 = d2 = d
2 (in this case d must be even), then the geometric sum above becomes∑K

k=1 2−k ≤ 1. So for d ≥ 4 again we obtain the estimate (10.6) we achieved assuming

d1 > d2 + 1. If d1 = d2 + 1 (so d is odd), then the number of possible pairs is at most

d2d−1P (d− 1)(2T )d2K, which does not exceed (10.6) for d ≥ 5, and for d = 3, T ≥ 2 is at

most

3 · 23−1P (2)(2T )1
2 log T

log 2
=

96

log 2
· T log T,
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which gives us the d = 3 case of the proposition. Finally, for d ≥ 4 we sum over the at most

d/2 possibilities for (d1, d2), yielding

Mred(d, (1, t), (), T ) ≤ d22d−1P (d− 1)T d−2.

For the case d = 2, we’ll see that the error term is on the order of
√
T . Note that we are

simply counting integers c such that the polynomial

f(z) = (z2 + tz + c) = (z + x1)(z + y1)

has Mahler measure at most T . Since we know |c| ≤ T , it suffices to control the size of

{x1 ∈ Z | |x1(t− x1)| ≤ T}, which is itself bounded by the size of {x1 ∈ Z | x21 − tx1 ≤ T}.
By the quadratic formula, that last set is simply {x1 ∈ Z | t−

√
t2+4T
2 ≤ x1 ≤ t+

√
t2+4T
2 },

which has size at most
√
t2 + 4T+1. To better bound the number of c of the form x1(t−x1),

note that such a c can be written in this form for exactly two values of x1, except for at

most one value of c for which x1 is unique (this occurs when t is even). So overall, the

number of such c with |c| ≤ T is at most 1
2

√
t2 + 4T + 1. �

10.5. Monic polynomials with given second and final coefficient. For our final case,

we want to bound the number of monic, reducible polynomials with a given second leading

coefficient t ∈ Z and given constant coefficient 0 6= r ∈ Z. We can clearly assume that d ≥ 3

since we’re imposing three coefficient conditions. We write Mred(d, (1, t), (r), T ) for the

number of reducible monic polynomials of degree d with integer coefficients, second leading

coefficient equal to t, and constant coefficient equal to r. We’ll show this is O(T d−3) in all

cases. While we don’t write an explicit bound for the error term, it should be clear from

our proof that this is possible.

Proposition 10.6. For all d ≥ 3, t ∈ Z, and r ∈ Z \ {0}, we have

Mred(d, (1, t), (r), T ) = O
(
T d−3

)
.

Proof. As before, we write such a polynomial as f = f1f2, with

f1(z) = zd1 + x1z
d1−1 + · · ·xd1 , and f2(z) = zd2 + y1z

d2−1 + · · · yd2 .

We always enforce 1 ≤ d2 ≤ d1 ≤ d − 1 to avoid double-counting. We’ll consider the

count in several different cases. First, if d2 = 1, then f2 = z + yd2 , so we must have yd2 |r
and yd2 + x1 = t. Thus there are only 2ω(r) possible choices of f2; each choice will in turn

determine xd1 and x1, so we have O(T d1−2) = O(T d−3) choices of f1 altogether, by Theorem

1.11. Note that this completely covers the case d = 3.

Now assume d2 ≥ 2, so d ≥ 4. There are again only 2ω(r) possible choices of yd2 , and

each one will determine what xd1 is (they must multiply to give r). Fix a choice of yd2 for

now.

Assume first that d1 > d2 + 1. Again we take k between 1 and K =
⌊
log T
log 2

⌋
+ 1, and

assume that 2k−1 ≤ µ(f1) ≤ 2k, so µ(f2) ≤ 21−kT . Almost exactly as in (10.5), we get that
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the number of (x1, . . . , xd1−1, y1, . . . , yd2−1) contributing toMred(d, (1, t), (r), T ) is at most

(
2 min{d12k, d221−kT}+ 1

)
·
d1−1∏
i=2

[
2

(
d1
i

)
2k + 1

]
·
d2−1∏
j=2

[
2

(
d2
j

)
(21−kT ) + 1

]
≤
(

2d · 21−kT
)
· 2k(d1−2)C2,1(d1) · (21−kT )d2−2C2,1(d2)

= d2d2C2,1(d1)C2,1(d2)T
d2−12(d1−d2−1)k

≤ 1

64
d2d2d2P (d− 1)T d2−12(d1−d2−1)k,

using Lemmas A.3 and A.4. Summing over all the possibilities 1 ≤ k ≤ K, the number of

possible pairs f1 and f2 of degrees d1 and d2, respectively, is at most

1

64
d2d2d2P (d− 1)T d2−1

K∑
k=1

2(d1−d2−1)k ≤ 1

32
d2d2d1P (d− 1)T d1−2 ≤ 1

32
d2d2d1P (d− 1)T d−3,

(10.7)

which is certainly O(T d−3).

Next, if d1 = d2 = d
2 (in this case d must be even), then the expression in (10.7), which

contains a partial geometric sum that’s bounded by 1, is at most

1

64
d2d2d2P (d− 1)T

d
2
−1,

which is certainly O(T d−3) since d ≥ 4. Lastly, if d1 = d2 + 1, (so d ≥ 5), then d2 ≤ d− 3,

and (using K ≤ 2T ) the expression in (10.7) is at most

1

64
d2d2d2P (d− 1)T d2−1K ≤ 1

32
d2d2d2P (d− 1)T d2 ≤ 1

32
d2d2d2P (d− 1)T d−3,

which is O(T d−3). Finally, we sum over the 2ω(r) possibilities for yd2 and the at most d/2

possibilities for (d1, d2) and obtain overall that Mred(d, (1, t), (r), T ) = O(T d−3). �

11. Explicit results

Let N(Qd,H) denote the number of algebraic numbers of degree d over Q and height at

most H. We give an explicit version of Masser and Vaaler’s main theorem of [MV08], which

follows from Theorem 7.1, our explicit version of [CV01, Theorem 3].

Theorem 11.1. For all d ≥ 2 and H ≥ 1, we have∣∣∣∣N(Qd,H)− dVd
2ζ(d+ 1)

Hd(d+1)

∣∣∣∣ ≤
{

16690 · H4 logH, if d = 2 and H ≥
√

2

3.37 · (15.01)d
2 · Hd2 , if d ≥ 3 and H ≥ 1.

Proof. We combine Proposition 10.1 and Theorem 10.2 to estimate the number of irre-

ducible, primitive (i.e. having relatively prime coefficients) polynomials of degree d and

Mahler measure at most Hd, and relatively prime coefficients; we write Mirr, prim(d,Hd)
for this number. Each pair of such a polynomial and its opposite corresponds to d alge-

braic numbers of degree d and height at most H (the roots). So we have N(Qd,H) =
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d
2M

irr, prim(d,Hd), and∣∣∣∣N(Qd,H)− dVd
2ζ(d+ 1)

Hd(d+1)

∣∣∣∣
≤
∣∣∣∣d2Mirr, prim(d,Hd)− d

2
M1(d,Hd)

∣∣∣∣+

∣∣∣∣d2M1(d,Hd)− dVd
2ζ(d+ 1)

Hd(d+1)

∣∣∣∣
≤ d

2

(
Mred(d,Hd) +

∣∣∣∣M1(d, T )− Vd
ζ(d+ 1)

Hd(d+1)

∣∣∣∣) ,
and it follows from Proposition 10.1 and Theorem 10.2 that

(d/2)−1
∣∣∣∣N(Qd,H)− dVd

2ζ(d+ 1)
Hd(d+1)

∣∣∣∣ ≤(Vdd + 1

)
Hd +

(
C0,0(d− 1) + ζ(d)κ0(d)Hd2

+

{
1758H4 log(H2), if d = 2 and H2 ≥ 2

16c204
dP (d− 1)Hd2 . if d ≥ 3 andH2 ≥ 1.

Here κ0(d) is the constant from Theorem 7.1, and c0 = 3159/1024. The d = 2 case of our

Theorem follows immediately, as(
V2
2

+ 1

)
+ C0,0(1) + ζ(2)κ0(2) + 2 · 1758 =

(
8

2
+ 1

)
+ 8000ζ(2) + 9 + 3516 < 16690.

We now turn to d ≥ 3, where we have∣∣∣∣N(Qd,H)− dVd
2ζ(d+ 1)

Hd(d+1)

∣∣∣∣ ≤ θ0(d) · Hd2

with

θ0(d) =
d

2

(
1 + Vd/d+ ζ(d)κ0(d) + C0,0(d− 1) + 16c204

dP (d− 1)
)

=

[
ζ(d) +

1

κ0(d)
+

Vd
dκ0(d)

+
C0,0(d− 1)

κ0(d)
+

16c204
dP (d− 1)

κ0(d)

]
dκ0(d)

2
.

Note that the quantity in brackets above decreases for d ≥ 3 (for this it may be helpful to

consult Lemma 2.2 and compute a few values of Vd) and so is no more than

λ0 := ζ(3) +
1

κ0(3)
+

V3
3κ0(3)

+
C0,0(2)

κ0(3)
+

16c204
3P (2)

κ0(3)
.

So, using the notation of the end of the proof of Theorem 7.1, we have∣∣∣∣N(Qd,H)− dVd
2ζ(d+ 1)

Hd(d+1)

∣∣∣∣ ≤ θ0(d) · Hd2 ≤ λ0
dκ0(d)

2
· Hd2 ≤ λ0

2
ad3/4bdcd

2 · Hd2

≤ aλ0
2

(bc)d
2 · Hd2 ≤ 3.37 · (15.01)d

2 · Hd2 .

�

Next, we record an explicit version of [Bar14, Theorem 1.1] in the case k = Q, i.e. an

explicit estimate for the number of algebraic integers of bounded height and given degree

over Q. This explicit estimate follows from our Theorem 8.1, which improved the power

savings of [CV01, Theorem 6]. We write N(Od,H) for the number of algebraic integers of

degree d over Q and height at most H.
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Theorem 11.2. We have∣∣∣N(Od,H)− d · pd(Hd)
∣∣∣ ≤ { 584 · H2 logH, if d = 2 and H ≥

√
2

1.13 · 4ddd2d2 · Hd(d−1), if d ≥ 3 and H ≥ 1.

Proof. We follow the idea of the previous proof. Now that we require polynomials to be

monic, we never count two irreducible polynomials with the same set of roots, and so

combining Theorem 8.1 and Proposition 10.3 we obtain:

d−1
∣∣∣N(Od,H)− d · pd(Hd)

∣∣∣ ≤ κ1(d)Hd(d−1) +

{
98H2 log(H2), if d = 2, H2 ≥ 2

2c214
dP (d− 1)Hd(d−1), if d ≥ 3, H2 ≥ 1,

where c1 = 1053/512. We immediately have the d = 2 case of our theorem, as κ1(2) = 96.

Assuming d ≥ 3, we have∣∣∣N(Od,H)− d · pd(Hd)
∣∣∣ ≤ θ1(d) · Hd(d−1),

where

θ1(d) = dκ1(d) + 2c21d4dP (d− 1)

= dκ1(d)

[
1 +

2c214
dP (d− 1)

κ1(d)

]
.

The quantity in brackets decreases for d ≥ 3, and so is no more than

λ1 := 1 +
2c214

3P (2)

κ1(3)
≤ 1.13,

and the result follows from the estimate for κ1(d) stated in Theorem 8.1. �

We can also prove an explicit version of our Corollary 1.3, albeit with worse power savings.

Theorem 11.3. For each d ≥ 2, ν a nonzero integer, and H ≥ d · 2d+1/d|ν|1/d, we have

∣∣∣NNm=ν(d,H)− dVd−2 · Hd(d−1)
∣∣∣ ≤


(

64
√

2|ν|+ 8
)
· H+ 2ω(ν) + 2, if d = 2

0.0000063|ν|ω(ν) · d34d(15.01)d
2 · Hd(d−1)−1, if d ≥ 3,

where ω(ν) is the number of positive integer divisors of ν.

Proof. Our proof proceeds very similarly to the last two. Let r = (−1)dν. Using Theorem

9.3 and Proposition 10.4, we have for all H ≥ d · 2d+1/d|ν|1/d:

d−1
∣∣∣NNm=ν(d,H)− d · Vd−2 · Hd(d−1)

∣∣∣
≤ κ

(
d, (1), (r)

)
Hd(d−1−1/d) +

{
ω(r) + 1, if d = 2

1
2ω(r)c224

dP (d− 1) · Hd(d−2) if d ≥ 3,

where κ
(
d, (1), (r)

)
is as defined in Theorem 9.3, and c2 = 351/256. Consider the case

d = 2. By definition (stated in Theorem 9.3) we have

κ
(
2, (1), (r)

)
= (0 + 1)20+1

[
24 · 22(1 + 1)|r|

]1/2
V0 + (0 + 1)κ0(0) = 32

√
2|r|+ 4,

using V0 = 2 and κ0(0) = 4. Therefore
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∣∣NNm=ν(2,H)− 2 · V0 · H2
∣∣ ≤ 2

(
(32
√

2|r|+ 4)H+ ω(r) + 1
)

=
(

64
√

2|r|+ 8
)
·H+2ω(r)+2.

Now we assume d ≥ 3, and we have

∣∣∣NNm=ν(d,H)− d · Vd−2 · Hd
2−d
∣∣∣ ≤ θ2(d, r)Hd2−d−1,

where, using (9.4) and letting a, b, and c be as in the end of the proof of Theorem 7.1, we

have

θ2(d, r) = d

(
κ
(
d, (1), (r)

)
+

1

2
ω(r)c224

dP (d− 1)

)
≤ d · (2 + a)d(d− 1)22d−1+1/d|r|(bc)(d−1)2 +

d

2
ω(r)c224

dP (d− 1)

≤ d322d−1|r|ω(r)(bc)d
2

[
(2 + a)d(d− 1)21/d

(bc)2d−1ω(r)d2
+
c22P (d− 1)

d2(bc)d2 |r|

]

≤ d322d−1|r|ω(r)(bc)d
2

[
(2 + a)21/d

(bc)2d−1
+
c22P (d− 1)

d2(bc)d2

]
.

As the quantity in brackets just above decreases for d ≥ 3, it does not exceed

(2 + a)21/3

(bc)5
+
c22P (2)

32(bc)9
≤ 0.0000126,

completing our proof. �

We can immediately state the following explicit unit count, since counting units amounts

to counting algebraic integers of norm ±1.

Theorem 11.4. For each d ≥ 2 and H ≥ d · 2d+1/d, we have

∣∣∣N(O∗d,H)− 2dVd−2 · Hd(d−1)
∣∣∣ ≤ { (

128
√

10
)
H+ 8, if d = 2

0.0000126 · d34d(15.01)d
2 · Hd(d−1)−1, if d ≥ 3.

Finally, since Proposition 10.5 gives an explicit bound, it is also possible to obtain an

explicit estimate for NTr=τ (d,H) similar to that of Theorem 11.4; we leave this to the

interested reader.
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Appendix: combinatorial estimates

This appendix contains estimates for the combinatorial functions appearing in some of

the constants in this paper. For any integer d ≥ 0, define

P (d) :=

d∏
j=0

(
d

j

)
;

Cm,n(d) :=

d−n∏
j=m

(
2

(
d

j

)
+ 1

)
, for 0 ≤ m+ n ≤ d;

A(d) :=

d∑
k=0

P (k)P (d− k), and

B(d) :=
d−1∑
k=0

P (k)P (d− k)γ(k)d−k−1γ(d− k)k.

where γ(k) :=
(

k
bk/2c

)
.

Stirling’s inequality is the following estimate for factorials, which we will use several

times:
√

2π · kk+
1
2 e−k ≤ k! ≤ e · kk+

1
2 e−k, ∀k ≥ 1. (A.1)

Using this we can easily see that

γ(k) ≤ e · 2k

π
√
k
. (A.2)

Lemma A.1. For all d ≥ 1 we have

A(d) ≤
(

10
4
√

2π3/4e−3
)
e

1
2
d2+d(2π)−d/2d−

1
2
d− 1

4 .

Proof. We write

Φ(d) :=

√
ed2+d

(2π)dd!
.

Note that of course the first and last factor appearing in the product P (d) are 1, so they

may be omitted when convenient. Also notice that

P (d) =
d∏

k=1

kk

k!
.

Using Stirling’s inequality we have

P (d) =
d∏
j=1

jj

j!
≤

d∏
j=1

ej√
2πj

=
exp

(
1
2(d2 + d)

)
√

2π
d√
d!

=

√
ed2+d

(2π)dd!
. (A.3)

We therefore have

P (d) ≤ Φ(d), ∀d ≥ 0. (A.4)
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Now, for all d ≥ 1, we have

A(d) =
d∑

k=0

P (k)P (d− k) ≤
d∑

k=0

Φ(k)Φ(d− k)

=
d∑

k=0

√
ek2+k

(2π)kk!
·

√
e(d−k)2+d−k

(2π)d−k(d− k)!

= Φ(d)
d∑

k=0

√(
d

k

)
ek

2−dk = Φ(d)

(
2 +

d−1∑
k=1

√(
d

k

)
ek

2−dk

)
. (A.5)

Now, since k2− dk = −k(d− k) ≤ −(d− 1) when 1 ≤ k ≤ d− 1, we can easily estimate the

sum

d−1∑
k=1

√(
d

k

)
ek

2−dk ≤ 2d · e1−d = e · (2/e)d. (A.6)

The interested reader will easily verify that

A(d)

Φ(d)
≤ A(2)

Φ(2)
= 10π

√
2e−3 ≈ 2.21198 (A.7)

for 0 ≤ d ≤ 8, and by (A.5) and (A.6), we can easily check that

A(d)

Φ(d)
≤ 2 + e · (2/e)d < 2.2

for d ≥ 9.

Finally, we estimate Φ(d) using Stirling’s inequality again:

Φ(d) ≤

√
ed2+d

(2π)d
· ed√

2πd · dd
= e

1
2
d2+d(2πd)−

1
2
d− 1

4 . (A.8)

Combining with (A.7) completes the proof. �

Lemma A.2. For all d ≥ 0 we have

B(d) ≤ 2d
2
.

Proof. We can readily verify the inequality for d ≤ 3, so we’ll assume below that d ≥ 4, and

proceed by induction. Suppose that B(d− 1) ≤ 2(d−1)
2
. Notice that

P (d) =
dd

d!
P (d− 1), (A.9)
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and also that γ(d) ≤ 2γ(d − 1) for all d ≥ 1. We also easily have P (d) ≤ e
1
2
d2+d from the

previous proof. Using these facts, we have

B(d) = P (d− 1) +

d−2∑
k=0

P (k)P (d− k)γ(k)d−k−1γ(d− k)k

≤ P (d− 1) +

d−2∑
k=0

P (k)
(d− k)d−k

(d− k)!
P (d− k − 1)γ(k)d−k−2γ(k)2kγ(d− k − 1)k

≤ P (d− 1) +
d−2∑
k=0

[
ed−k2k√
2π(d− k)

γ(k + 1)

]
P (k)P (d− k − 1)γ(k)d−k−2γ(d− k − 1)k

≤ P (d− 1) +
d−2∑
k=0

[
ed−k2k√
2π(d− k)

e · 2k+1

π
√
k + 1

]
P (k)P (d− k − 1)γ(k)d−k−2γ(d− k − 1)k

≤ P (d− 1) +
d−2∑
k=0

[
e
√

2

π3/2
· ed (4/e)k√

(d− k)(k + 1)

]
P (k)P (d− k − 1)γ(k)d−k−2γ(d− k − 1)k.

We note that (d− k)(k + 1) ≥ d for 0 ≤ k ≤ d− 2, and continue:

B(d) ≤ P (d− 1) +

[
e
√

2

π3/2
· e

d (4/e)d√
d

]
d−2∑
k=0

P (k)P (d− 1− k)γ(k)d−1−k−1γ(d− 1− k)k

= P (d− 1) +

[
e
√

2

π3/2
· 4d√

d

]
B(d− 1) ≤ P (d− 1) +

[
e
√

2

π3/2
· 4d√

d

]
2(d−1)

2

= P (d− 1) +

[
e
√

2

π3/2
· 4d√

d

]
2

4d
2d

2
= P (d− 1) +

[
e · 23/2

π3/2
√
d

]
2d

2

=

[
P (d)d!

dd2d2
+
e · 23/2

π3/2
√
d

]
2d

2 ≤

[
e

1
2
d2+d · e

√
d

ed2d2
+
e · 23/2

π3/2
√
d

]
2d

2

=

[
e
√
d

(√
e

2

)d2
+
e · 23/2

π3/2
√
d

]
2d

2 ≤ 2d
2

for d ≥ 4.

�

Lemma A.3. We have

C0,0(d) ≤ 3159

1024
· 2d+1P (d), ∀ d ≥ 0; (A.10)

C1,0(d) ≤ 1053

512
· 2dP (d), ∀ d ≥ 0;

C1,1(d) ≤ 351

256
· 2d−1P (d), ∀ d ≥ 1;

C2,0(d) ≤ 2d−1P (d), ∀ d ≥ 1; and

C2,1(d) ≤ 1

2
· 2d−2P (d), ∀ d ≥ 2.
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Proof. We’ll prove the bound for C0,0(d), and leave the other cases as exercises. The in-

equality (A.10) is easily verified for d ≤ 3, and we have equality for d = 4. If we set

R(d) :=
C0,0(d)

2d+1P (d)
=

d∏
j=0

2
(
d
j

)
+ 1

2
(
d
j

) ,

then to establish (A.10) it will suffice to show that

R(d+ 1)

R(d)
≤ 1, for d ≥ 4.

We’ll use the standard identity (
d+ 1

j

)
=

d+ 1

d+ 1− j

(
d

j

)
.

We have

R(d+ 1)

R(d)
=

∏d+1
j=0

2(d+1
j )+1

2(d+1
j )∏d

j=0

2(dj)+1

2(dj)

=
3

2

d∏
j=0

(
d
j

)(
d+1
j

) · 2
(
d+1
j

)
+ 1

2
(
d
j

)
+ 1

=
3

2

d∏
j=0

d+ 1− j
d+ 1

·
2 d+1
d+1−j

(
d
j

)
+ 1

2
(
d
j

)
+ 1

=
3

2

d∏
j=0

2
(
d
j

)
+ d+1−j

d+1

2
(
d
j

)
+ 1

=
3

2

d∏
j=0

1− j

(d+ 1)
(

2
(
d
j

)
+ 1
)


≤ 3

2

d∏
j=d−2

1− j

(d+ 1)
(

2
(
d
j

)
+ 1
)


=
3

2
· 4d6 + 10d5 + 6d4 + 8d3 + 20d2 + 24d+ 18

6d6 + 15d5 + 12d4 + 9d3 + 15d2 + 12d+ 3

=
2d6 + 5d5 + 3d4 + 4d3 + 10d2 + 12d+ 9

2d6 + 5d5 + 4d4 + 3d3 + 5d2 + 4d+ 1
≤ 1, for d ≥ 4.

�

Lemma A.4. If d ≥ 2 and 1 ≤ k ≤ d− 1, then

P (k)P (d− k) ≤ P (d− 1).

Proof. We have

P (k)P (d− k) =
k−1∏
j=0

(
k

j

) d−k−1∏
i=0

(
d− k
i

)
≤

k−1∏
j=0

(
d− 1

j

) d−k−1∏
i=0

(
d− 1

i

)

=
k−1∏
j=0

(
d− 1

j

) d−k−1∏
i=0

(
d− 1

d− 1− i

)
=

k−1∏
j=0

(
d− 1

j

) d−1∏
j=k

(
d− 1

j

)
= P (d− 1).

We have equality if and only if k = 1 or k = d− 1. �
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