SERIES CHEAT SHEET

BLAKE FARMAN

Lafayette College

Tests

Theorem (n^{th} Term Test for Divergence). If the sequence $\{a_n\}$ does not converge to zero, then the series $\sum a_n$ diverges.

<u>WARNING</u>: If $\lim_{n\to\infty} a_n = 0$ then the test is inconclusive!

Theorem (The Integral Test). Let $\{a_n\}_{n=1}^{\infty}$ be a sequence. Assume that there exists an integer $N \ge 0$ and a function f such that for all $x \ge N$ and for all $n \ge N$

1. $a_n > 0$,

2. $f(n) = a_n$, and

3. f is

- positive,
- continuous, and
- decreasing

Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if $\int_1^{\infty} f(x) dx$ converges.

Theorem (The Comparison Tests). Let $\{a_n\}$ and $\{b_n\}$ be sequences, and assume there exists some number N such that

 $0 < a_n \leq b_n$

is satisfied whenever $n \geq N$.

- (i) If $\sum a_n$ diverges, then $\sum b_n$ also diverges.
- (ii) If $\sum b_n$ converges, then $\sum a_n$ also converges.

Theorem (The Limit Comparison Test). Let $\{a_n\}$ and $\{b_n\}$ be sequences, and assume there exists some number N such that

$$0 < a_n, b_n$$

is satisfied whenever $n \geq N$. If there exists some number c > 0 such that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$$

then either

- $\sum a_n$ and $\sum b_n$ both converge, or
- $\sum a_n$ and $\sum b_n$ both diverge.

 $(1) \ 0 < b_n$

- (2) $b_{n+1} \leq b_n$
- (3) $\lim_{n\to\infty} b_n = 0$

then the Alternating Series

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$$

converges.

Theorem (Ratio Test). Let $\{a_n\}$ be a sequence and let

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

(i) If L < 1, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

(ii) If
$$1 < L \le \infty$$
, then $\sum_{n=1}^{\infty} a_n$ diverges.

(iii) If L = 1, then the test is inconclusive.

Theorem (Root Test). Let $\{a_n\}$ be a sequence and let

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|}.$$

(i) If
$$L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.
(ii) If $1 < L \le \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

(iii) If L = 1, then the test is inconclusive.

KNOWN CONVERGENT SERIES

Geometric Series,
$$|r| < 1$$
: $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \ldots + ar^{n-1} + \ldots = \frac{a}{1-r}$
p-series, $1 < p$: $\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \ldots + \frac{1}{n^p} + \ldots$

KNOWN DIVERGENT SERIES

Harmonic Series: $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} + \ldots$ Geometric Series, $1 \le |r|$: $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \ldots + ar^{n-1} + \ldots$ *p*-series, $p \le 1$: $\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \ldots + \frac{1}{n^p} + \ldots$