SERIES CHEAT SHEET

BLAKE FARMAN

Lafayette College

TESTS

Theorem (nth Term Test for Divergence). If the sequence $\{a_n\}$ does not converge to zero, then the series $\sum a_n$ diverges.

WARNING: If $\lim_{n\to\infty} a_n = 0$ then the test is inconclusive!

Theorem (The Integral Test). Let $\{a_n\}_{n=1}^{\infty}$ be a sequence. Assume that there exists an integer $N \geq 0$ and a function f such that for all $x \geq N$ and for all $n \geq N$

- 1. $a_n > 0$,
- 2. $f(n) = a_n$, and
- 3. f is
	- *positive*,
	- continuous, and
	- decreasing

Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if $\int_1^{\infty} f(x) dx$ converges.

Theorem (The Comparison Tests). Let $\{a_n\}$ and $\{b_n\}$ be sequences, and assume there exists some number N such that

$$
0 < a_n \le b_n
$$

is satisfied whenever $n \geq N$.

- (i) If $\sum a_n$ diverges, then $\sum b_n$ also diverges.
- (ii) If $\sum b_n$ converges, then $\sum a_n$ also converges.

Theorem (The Limit Comparison Test). Let $\{a_n\}$ and $\{b_n\}$ be sequences, and assume there exists some number N such that

$$
0
$$

is satisfied whenever $n \geq N$. If there exists some number $c > 0$ such that

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0
$$

then either

- $\sum a_n$ and $\sum b_n$ both converge, or
- $\sum a_n$ and $\sum b_n$ both diverge.

Theorem (Alternating Series Test). Let $\{b_n\}$ be a sequence. If there exists some N such that for all $n \leq N$

- (1) $0 < b_n$
- (2) $b_{n+1} \leq b_n$
- (3) $\lim_{n\to\infty} b_n = 0$

then the Alternating Series

$$
\sum_{n=1}^{\infty} (-1)^{n-1} b_n
$$

converges.

Theorem (Ratio Test). Let $\{a_n\}$ be a sequence and let

$$
L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.
$$

(i) If $L < 1$, then $\sum_{n=1}^{\infty}$ $n=1$ a_n converges absolutely.

(ii) If
$$
1 < L \leq \infty
$$
, then $\sum_{n=1}^{\infty} a_n$ diverges.

(iii) If $L = 1$, then the test is inconclusive.

Theorem (Root Test). Let $\{a_n\}$ be a sequence and let

$$
L = \lim_{n \to \infty} \sqrt[n]{|a_n|}.
$$

(i) If
$$
L < 1
$$
, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.
\n(ii) If $1 < L \le \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

(iii) If $L = 1$, then the test is inconclusive.

Known Convergent Series

Geometric Series,
$$
|r| < 1
$$
:
$$
\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots + ar^{n-1} + \dots = \frac{a}{1-r}
$$

p-series, $1 < p$:
$$
\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots
$$

Known Divergent Series

Harmonic Series: $\sum_{n=0}^{\infty}$ $n=1$ 1 $\frac{1}{n} = 1 + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{3}$ $\frac{1}{3} + ... + \frac{1}{n}$ $\frac{1}{n} + \ldots$ Geometric Series, $1 \leq |r|$: $\sum_{n=1}^{\infty}$ $n=1$ $ar^{n-1} = a + ar + ar^2 + ar^3 + \ldots + ar^{n-1} + \ldots$ p-series, $p \leq 1$: $\sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n^p} = 1 + \frac{1}{2^p}$ $\frac{1}{2^p} + \frac{1}{3^p}$ $\frac{1}{3^p} + \ldots + \frac{1}{n^p}$ $\frac{1}{n^p} + \ldots$