Combined Heat and Power

A feasibility study for Lafayette College

Hannah Goldstein, Claire Hoober, Drew Losito, Abby Studen, Monica Wentz

What is Combined Heat and Power?

http://www.igsgeneration.com/distributed-generation/combined-heat-power/

We were faced with the challenge of how to help CHP gain enough momentum to be a competitive initiative amongst other pressing priorities.

Social Analysis

CHP @ Bucknell

In 1998, Bucknell converted from coal fired boilers to a steam-run cogeneration plant

- Emissions reductions
 - 1996 60,000 MTeCO2
 - 1997 37, 756 MTeCO2
- Savings = \$1,000,000/year

Other Colleges & Universities:

•	Williams	2004
	Williams	2004

- Smith College 2005
- Holy Cross 2010

Forbes	America's Top Colleges	
	#49 Bucknell University	Pennsylvania
Hamilton	#50 Hamilton College	New York
Holy Cross	#51 College of the Holy Cross	Massachusetts
Bates	#52 Bates College	Maine
WHITMAN COLLEGE	#53 Whitman College	Washington
THH COLLECTION DED	#54 Smith College	Massachusetts
LAFAYETTE COLLEGE	#55 Lafayette College	Pennsylvania

If a school comparable to Lafayette implemented CHP on campus almost two decades ago, why hasn't Lafayette College?

Current Issues

- Wanting to be a more self-sustaining campus
 - In 2008, President Daniel Weiss signed the Presidents' Climate Commitment (APUPCC)
 - Students & Sustainability
 - SEES
 - LEAP
 - Engineers Without Borders
 - LaFarm, etc
- Power outages due to storms and severe weather conditions
 - Hurricane Sandy
 - Lack of a strong environmental identity

Research & Findings

- GHG Inventory : calculates emissions from 2005-2013
- Entech's Energy audit 2007
- Climate Action Plan 2011
- Z&F Consulting 2012
- Energy Policy

A selection of On-Campus Building's Energy Consumption from Entech's 2007 Energy Audit (Climate Action Plan, 20).

Conclusions: Lafayette Moving Forward

- Lafayette's first Sustainability Coordinator and Energy Manager started in November
- President Byerly announced the college's plan to expand the size of our campus over the next 6-8 years
- Dependent on whether Lafayette College Administration makes CHP a priority

Technical Analysis

Prime Mover: Steam Turbines & Reciprocating Engines

Synchronous Generators

- Self-exciting
- Complex
- Costly to safely connect to the grid
- Provides greater electrical power reliability

Radial System

- Most common type of distribution grid system
- Single path for power flow
- Easiest and least costly

Technical Analysis Conclusion

Policy Analysis

Federal and State

"A number of issues can affect decisions to invest in CHP. They can include government policy towards climate change and carbon emissions, energy policy including trading arrangements, planning and power station consent policy, and fiscal incentives." - Dr. Mark Hinnells, Centre for Alternative Technology

Lafayette Policy

- Environmental Sustainability - College Values Statement
- 2. 2008 President's
 - Climate Commitment
- 3. Energy Policy

Lafayette Process Analysis

Economic Analysis

Costs & Perceived Benefits of CHP

Cash Flow Analysis

 Using data from the US Dept. of Energy 2016 and adjusting it to Lafayette College, this data table was created to depict cost breakdowns of the two CHP technologies of interest.

Costs	Reciprocating Engines	Steam Turbines	
Principal	\$7,085,600	\$3,542,800	
Annual	\$1,120,625	\$880,625	7
>0&M	\$560,000	\$320,000	
>Natural Gas	\$416,625	\$416,625	
>Electric	\$144,000	\$144,000	

Decisions

• Steam turbine CHP technology is the most advantageous to Lafayette College

- Cost is the least negative over its life-cycle.
- Payback period is short at 1.9 years when looking at incremental cash flows.
- Calculated annual costs for O&M and heat/power production is reduced through turn act as savings or cash Lafayette College now "has".

Savings	CHP Reciprocating	CHP Steam
PW	\$ 14,957,541.31	\$ 21,491,221.31
AW	\$ 1,200,563.42	\$ 1,724,695.98

Calculated Incremental Cash Flows

Environmental Analysis

Life-Cycle Analysis

- In comparison to a conventional system CHP system has <u>a reduced</u> <u>environmental impact</u>
- The fuel used greatly depends on the ultimate environmental impact

Efficiency

Conventional Energy Systems

Cogeneration System

Potential Impact of CHP

- Further Infrastructure Management and Construction
- Sustainable Design and Development for Curriculum
- More Renewable Energy

Conclusions

Conclusion

1. Recommendations

• Lafayette College should pursue implementing CHP

2. Next Steps

- Complete a Technical, Economic, and Environmental Assessment based off Lafayette College data (not provided at this time)
- Work to update policy and improve recognition of energy and heat production and consumption
- Review and advise how CHP can be integrated into Campus Master Plan