LAFAYETTE Nuclear Power Fact Sheet

EGRS 352.01 Ivan Basurto

Overview

- Nuclear power provides almost 15 percent of the world's electricity
- Produce and control the release of energy from the splitting of atoms by fission (shown below)
- fissile atomic nucleus such as uranium-235 (²³⁵U) or plutonium-239

Nuclear Power energy generation

Current Use of Nuclear Power

 Breakdown of electricity production in Easton PA.

Status of U.S. Nuclear energy outages

Growth of Nuclear Capacity and Electricity Generation to 2050

Traditional Reactor Design

- Fission is a run away reaction which produces a large amount of heat.
- Uses large amount of water for cooling.
- A kg of ²³⁵U produces 3 million more energy than a kg of coal.
- Complications due to waste storage and disposal.

- · Moderator: water, 'heavy' water, graphite
 - Slow down neutrons
 - · Allows for sustained reaction

- Control Rods: rods composed of boron, silver, indium, or cadmium
 - Absorb neutrons,
 - Must be regularly replaced
- Resulted in a number of catastrophes
 - Three Mile Island 1979
 - Chernobyl 1986
 - Fukushima 2011
- Public opinion generally opposes nuclear power due nuclear meltdown
- Decline in nuclear use domestically and abroad

Design of Pebble Bed Reactors

- Energy production is governed by same principles as traditional reactor
- · Pebbles contained in reactor
 - Circulate about 5 times a year
- Inert (helium, etc.) gas cooling
- Gas circulated through vessel
 - Heated gas runs a turbine
- Temperature controlled
- Pebbles are made of pyrolytic graphite(which acts as the moderator), and contain thousands of micro-fuel particles called TRISO particles.

Criticisms

- Combustible graphite
 - If graphite of pebbles were to burn, fuel material could be released in smoke
- Lack of containment building
 - More vulnerable to outside attack
- Radioactive waste
 - Takes up larger volume in already limited storage areas
 - Radioactive dust from pebbles rubbing together

Pebble Design

- Figure of pebble and composition shown below. ²³⁵U surrounded by a coated ceramic layer of silicon carbide
- Produces 1000 times less radioactive gas than US equivalents

Benefits

- High temperature leads to higher efficiency than conventional nuclear plants
- Continuous fuel replacement
 - No month-long shutdown
- Considered passively safe and removes the need for redundant safety systems
- No risk of meltdown
 - Proximity and geometry of fuel causes a strong Doppler Effect
 - Negative feedback: as nuclear fuel heats up, uranium atoms move faster (harder to absorb neutrons & split), reduces reactor power
- Low fuel density of pebbles magnify negative feedback
- · Fuel spheres remain intact and undamaged
- No radioactive fluids
 - Gasses do not dissolve contaminants or absorb neutrons as water does used in traditional reactors

Current Applications

- Germany, U.S., and South Africa have experimented with the PBMR
 - Technical problems, lack of funding
- China
- Test pebble-bed reactor operating for over 10 years now (Tsinghua University, north of Beijing)
- Plan to build 50 nuclear reactors in next 5 years
- First commercial PBMR under construction in Shandong Province (19 units) (2011-?)

Nuclear Reference Sheet

EGRS 352.01 Ivan Basurto

Overview

Martin, William. "Nuclear Power." *Encyclopedia Britannica*. Encyclopedia Britannica. Web. 15 Apr. 2015.

http://www.britannica.com/EBchecked/topic/421749/nuclear-power.

Nuclear . 19 April 2015. http://www.iea.org/topics/nuclear/>.

Current Use of Nuclear Power

Nuclear and Uranium . 19 April 2015. http://www.eia.gov/nuclear/

Nuclear and Uranium . 19 April 2015. http://www.eia.gov/nuclear/

Nuclear . 19 April 2015. http://www.iea.org/topics/nuclear/

Traditional Reactor Design

Martin, William. "Nuclear Power." *Encyclopedia Britannica*. Encyclopedia Britannica. Web. 15 Apr. 2015. http://www.britannica.com/EBchecked/topic/421749/nuclear-power>.

Nuclear . 19 April 2015. http://www.iea.org/topics/nuclear/

Design of Pebble Bed Reactors

Koster, A., HD Matzner, and DR Nicholsi.
"PBMR Design for the Future." *Nuclear Engineering and Design* 222.2-3 (2003): 231-45. Print.

Reitsma, Frederik. *The Pebbel Bed Modular Reactor Design and Technology Featuers* . Johannesburg, South Africa: IAEA Interregional Workshop, 2011.

Criticisms

Koster, A., HD Matzner, and DR Nicholsi. "PBMR Design for the Future." *Nuclear Engineering and Design* 222.2-3 (2003): 231-45. Print.

Fig, David. Nuclear Energy Rethink? The Rise and Demise of South Africa's Pebble Bed Modular Reactor . Pretoria, South Africa: Institute for Security Studies, 2010.

Pebble Design

Reitsma, Frederik. *The Pebbel Bed Modular Reactor Design and Technology Featuers* . Johannesburg, South Africa: IAEA Interregional Workshop, 2011.

Benefits

Koster, A., HD Matzner, and DR Nicholsi. "PBMR Design for the Future." *Nuclear Engineering and Design* 222.2-3 (2003): 231-45. Print.

Emily Grubert, Brian Parks, Erich Schneider, Srinivas Sekar. "Pebble Bed Modular Reactors Vesus Other Generations Technologies: Cost and Challenges for South Africa." *Proceeding of Global 2011* (2011): 1-8.

Current Applications

Fig, David. Nuclear Energy Rethink? The Rise and Demise of South Africa's Pebble Bed Modular Reactor . Pretoria, South Africa: Institute for Security Studies, 2010.

[Anonymous]. "US and China to Combine Forces to Develop Pebble Bed Reactors." *Professional Engineering* 16.20 (2003): 8- Print.