
User Manual 
 

Part 1: Accessing the Pi 
 

Since the Pi is mounted in the GLV box, SSHing into it is very advantageous for debugging code and ac-
cessing files.  In order to do so, start by finding the pi’s address.   
 
 
Finding the Pi’s Address 
 
There are many ways to do so, but in my findings, the best way to do so is by first connecting a keyboard 
to the GLV.   
 
If the GUI is fullscreen, start by clicking <alt><F4> to exit the program, then using the touchscreen, open 
terminal. 
   
Once the terminal is open, type “hostname -I”.   
 
The terminal will return the current address of the Pi.   
 
 
SSHing into the Pi 
 
Once you have the address, you can SSH into the pi on any computer connected tot the same network by 
typing “ssh pi@address“ 
 
You will then be prompted for a password, which is “raspberry” 
 
Once your’e in the pi, the program is located in a VSCADA folder on the Desktop 
 
 
Running the program 
 
Since we are using QT to create our GUI, there is a restriction in that we are unable to run the program 
from SSH.  The tool we used to workaround this issue is called VNC Viewer.  This allowed us mirror the 
pi’s desktop on our personal machines. 
 
Once you are on the desktop of the Pi, launch the terminal. 
 
From terminal, change directories into the VSCADA folder by typing: “cd Desktop/VSCADA” 
 
Then, type: “sudo python3 getCANData.py” 
 
This will launch the UI on the GLV and and the dashboard.  In order for it work, the USB display must be 
plugged in, as the buttons on the display are important to the operation of the program.  
 
 
 
 



 
Running Candump 
 
The PiCAN 2 came with an example C library that has simple functions such as candump and cansend 
(documentation for this library available on the PiCAN 2 User Manual online).  The library is down-
loaded onto and Pi’s desktop and the makefile has been run.  In order to run candump, first get to the cor-
rect directory using the command: 
 
“cd Desktop/can-” 
 
Once in the directory, you run a full candump using the command: 
 
“./candump can0” 
 
To isolate one address from the CAN network, you can use a command like: 
 
“./candump can0 | grep 0F4” 
 
This will show you every time the packet address 0x0F4 shows up on the network. 
 
 

Part 2: Code Base 
 

The code base for the Pi is on a public repository hosted on Github (http://github.com/wat-
songd/VSCADA).  The code for receiving, processing, and displaying the CAN data is in the file 
“getCANData.py”.   
 
 

Part 3: Communicating with Dashboard Display 
 

The USB serial dashboard display requires serial communication and the manufacturer provided example 
code (Crystalfontz website).  In order to communicate with the display using python, C functions were 
developed and imported into C.  This is NOT the best way to do this.  It is very convoluted and requires a 
serial connection to be established and disconnected.  In the future, this serial communication should be 
done entirely in python and not using the example code. 
 
Buttons 
 
The dashboard display has 3 relavent buttons right now and three open buttons that could be programmed 
to do something. 
 
Green Check Mark: Start recording – system will begin logging data to the data base if and only if this 
button is pressed. We suggest pushing it at the beginning of a run to ensure all data is captured. GLV dis-
play will indicate when SCADA is recording. 
 
Red ‘X’: Stop recording – system will stop writing data to database after this button is pressed. Also ex-
ports the data files. 
 
Right Arrow: Data recovery – recovers previous session data incase of catastophic failure 

http://github.com/watsongd/VSCADA
http://github.com/watsongd/VSCADA


Part 4: Program Details 
 
Database and Sessions 
 
The database currently has one table that holds all data from every session. A session is just an integer 
that increments everytime a recording session is finished whether its by pushing the stop recording button 
or by the GLV turning off. The sensor_id, sensorName, dataValue, time, system, pack, flagged, csv_out, 
session_id.  
 
Sensor_id: a unique id that every sensor is assigned. You can see all of these values in the dictionary at 
the top of ‘getCANdata.py’ 
 
sensorName: Name of sesnor. Helps with readability 
 
dataValue: What is sent on the CAN network 
 
time: Time entry was logged relative to start time 
 
system: TSV, TSI, or MC 
 
pack: pack number (1,2,3,4) or 0 if not a pack sensor 
 
flagged: 1 if value is outside the given threshold in the config file 
 
csv_out: determines if the data in the entry will be written to the csv. Comes from config file 
 
session_id: Id of session 
 
Conifguration File 
 
The config file lists every sensor that is being sent over CAN. The config file can set thresholds for each 
sensor. If the user wants the car to drop out of drive mode if the data value is outside the thresholds that 
can be done in the config. If not the user will simply get a warning in the .log file. The entry will also be 
flagged if it lies outside the range. If the upper and lower thresholds are the same no check is performed. 
 
The next two columns determine if the sensor data is placed in the database and if it is placed in the csv 
upon export. 
 
Config files follow this format: 
 
sensor_id lower_threshhold upper_threshold drop_out? log_en csv_en 

An extra column can be added to act as a comment to increase readability 
 
Example: 
 
13 2.7 3.6 0 1 1 

This will flag data values outside 2.7 and 3.6. It will not drop out of drive mode. It will log the data and 
export it to the csv. 
 



Data Files 
 
The system produces data after the ‘Stop Recording’ button on the dashboard is pressed. The data is 
stored in the following format as a .csv file: 
 
sensor_id Elapsed Time from Start Data Value Flagged? 

 
A single line from a data file might look like this: 
 
117 2:35 3.5 0 

 
The system exports two files at the end of every session. One file is called ‘car_data_all.csv’ and that con-
tains all of the data from every session in the database. The other is called ‘car_data_session_{id}’ which 
just includes the data from the current session.  
 
If the car shuts down unexpectedly for any reason the right button on the cockpit can be pressed and data 
from the previous session will be recovered and exported as a file called ‘car_data_recovery_{id}’. It can 
also be seen at anytime in the ‘car_data_all’ file after the next export. 
 
 
Flash drives and Files 
This program will work with any flash drive that has the two key files on it. The first is a file called ‘lafa-
yetteSCADA.txt’ which is just an empty text file. This indicates to the system that a valid flash drive is 
present and csv files should be exported there. If that file is not present csv files will be stored on the dek-
top of the pi in a folder called ‘VSCADA_CSV_FILES’.  
 
The second is ‘config.csv’ which tells the system to read the config file on the flash drive. IF ‘config.csv’ 
IS NOT PRESENT THE SYSTEM WILL USE THE CONFIG FILE FROM THE GIT REPO. This fea-
ture was added so that the configuration of the system could be changed quickly by pulling the flash 
drive, making changes, and restarting the program.  
 
We recommend that you put a conservative and safe ‘config.csv’ on the repo as a fall back and leave it 
alone. Then if you want to change the configuration use the flash drive. 
 

Part 6: Graphic User Interface 
PyQt5 GUI 
The GUI of VSCADA system is built using PyQt5 toolkit. PyQt is a set of Python v2 and v3 bindings for 
the Qt application framework and runs on all platforms supported by Qt including Windows, OS X, 
Linux, iOS and Android. Since PyQt brings together the C++ cross-platform application framework and 
the cross-platform interpreted language Python, it is a convenient and flexible tool to create a UI program 
that can be integrated to another Python program (VSCADA). The GUI and other parts of VSCADA run 
in parallel as multiple threads. In this way, the UI program can be modified by multiple programmers in 
different laptops or platforms without affecting other parts of VSCADA. 

The GUI of VSCADA will run only when PyQt related libraries are installed; otherwise, the built-in Qt 
commands in UI program cannot be executed. Libraries required are Python3, SIP, PyQt5. After Python3 
is confirmed to be installed, we ran the following commands to install the required libraries: 

sudo pip3 install SIP 



sudo pip3 install pyqt5 

VSCADA Display 

The GUI display is divided into 4 sections. The VSCADA section displays state, session number and ses-
sion time. A REC button in VSCADA section can be clicked and it can start or end recording vehicle data 
which will be exported as a file. MOTOR section displays speed, temperature and throttle voltage input of 
motor. TSI section displays IMD number, current drawn and throttle voltage output from TSI. The section 
that takes the bottom part of the screen is all for voltage, temperature and state information for 4 battery 
packs, motor controller and TSI. On the lower-right corner, there is log box which will display error mes-
sage from the car including when drive mode is dropped out. On the left, there are 2 green label which 
shows the status of air and brake. The background color of the label is green when airs and brake is on, 
and red when they are off. 

 

 


