Critical Design Review

LFEV-Y6-2018

PART I: System overview, and demonstration plan

- 1. Introduction
- 2. Subsystems
 - a. Tractive System Voltage (TSV)
 - b. Tractive System Interface (TSI)
 - c. Vehicle Supervisory Control and Data Acquisition (VSCADA)
 - d. Ground Low Voltage (GLV)
 - e. Interconnect Cabling
 - f. Dynameter
 - g. Cooling System
- 3. Demonstration

PART II: Future plans, management, schedule, and budget

Introduction

Motivation:

• Get into the competition, Get into the competition, and Get into the competition!

Competition Details:

• April 30th - May 3rd @ New Hampshire Speedway

Two units, one team:

• Working in conjunction with Department of Mechanical Engineering

Introduction - subsystem's components

Tractive System Voltage (TSV)

• Battery based power system responsible for providing adequate and accurate current supply to the vehicle.

Tractive System Interface

- Provide interface between motor controller and TSV
- Determine throttle plausibility and provide isolated signal to motor
- Read Insulation Monitor Device (IMD) status for tripping safety loop
- Measure motor voltage and current inputs and sent to VSCADA
- Manage drive state and respond to startup/shutdown conditions

Grounded Low Voltage

- Provide 24V DC to power all low voltage systems
- Control safety loop and COCKPit indication light

Introduction - subsystem's components

Vehicle Supervisory Control and Data Acquisition (VSCADA)

• Stores, Displays, and Reacts to CAN bus data.

Cooling System

• Provides cooling to the motor/motor controller and keeps it at safe temperatures

Interconnect Cabling

- Transfers power to each subsystem
- Connects subsystem to subsystem
- Labeling and color coding promotes organization
- Fits subsystem design physically within the car

Dynamometer

- Control the motor in the Dyno room
- Read CAN bus data from the subsystems and sensor data from the motor


Tractive System Voltage (TSV) - Previous Status

• PacMAN

- Watchdog not working
- Non functional Interface
- Base for configurable parameters

Accumulators

- No CAN bus communication with VSCADA
- One cell dying
- Missing charging/LCO connections
- Non compliant HV connectors
- AMS
 - Mix of working/non working AMS boards

Tractive System Voltage (TSV) - Current State

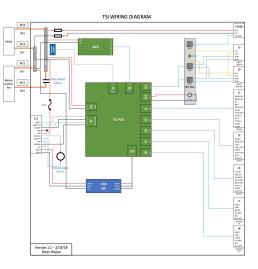
• PacMAN

- Working watchdog (might be too sensitive)
- Interface working correctly
- 4 PacMAN boards installed in packs
- Configurable parameters
- Accumulator
 - CAN communication of all 4 packs to VSCADA
- AMS
 - 28 functional AMS boards installed in segments
 - One board as a test board for rules committee
 - \circ New boards ordered

Tractive System Interface (TSI) - Previous State

Hardware

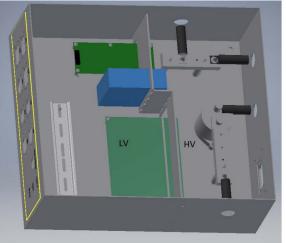
- PCB
 - TSI circuit board had most functionality
 - No way to adjust throttle plausibility windows
 - DC/DC converter underpowered for TSAL
- Enclosure
 - Ribbon cables made interface with external connectors difficult
 - HV cables were not liquid tight


Software

• Drive States existed but not much other major functionality

Tractive System Interface (TSI) - Current State

Hardware


- PCB
 - Different DC/DC converter selected for powering new TSAL according to rules (EV9.1)
 - Replaced ribbon cable/DIN terminals with Molex connectors
 - Added trim pots for adjusting throttle plausibility window
 - LED added for showing throttle implausibility
- Enclosure
 - Removed brake over-travel (BOT) relay to comply with rules (T7.3.1)
 - Removed several DIN terminals
 - Created cables for HV interface between TSI and motor controller
 - HV liquid tight connectors added to connector plate

Tractive System Interface (TSI) - Current State

Software

- System Measurements
 - Voltage, Current, Temperature, IMD Status, Drive State
- CAN Communication
 - Sending various system measurements to VSCADA
 - Receiving a "throttle control" signal from VSCADA to drop out of drive mode
- Drive States
 - Currently building upon last year's drive states

Vehicle Supervisory Control and Data Acquisition (VSCADA)

Previous State

- Java program for storing and displaying data
- One display for cockpit
- Raspberry Pi
- USB to CAN converter (finicky)
- Some functionality but not in the car

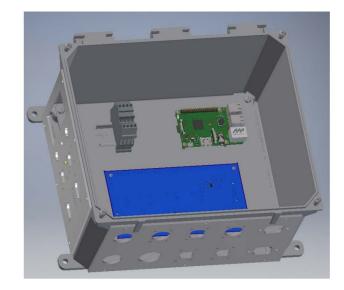
So, we started from scratch using Python and a new CAN interpreter

Vehicle Supervisory Control and Data Acquisition (VSCADA)

Current State:

- Successful collection of CAN data
- Touch screen mounted on GLV to monitor real-time data
- Successful monitoring of CAN data
 - \circ Drop out of drive mode
- Successful logging of CAN data

👅 🍥 🖻 🖬 🌞 🔇 🛄[VSCA	ADA]	@raspberrypi: ~/Des	sk Form	V2	* 🔋 * 🛄 1 %	_
		Form				_ @ X
	emp - °C beed - RPM]		Session 19		
	Stat	e IMC -) Ten	np		
	Pack1	Voltage 23.0 V	Current			
	Pack1 Pack2	23.0 V	0.058 A			
	Pack3	23.0 V	0.058 A			
	Pack4	23.0 V	0.056 A			
	TSV	- V	- <mark>A</mark>			


Grounded Low Voltage (GLV)

Previous State:

• Already fully functional

Current State:

- New case has been re-designed by ME team.
 - Re-wired and tested the GLV in the new enclosure
- SSOK lamps added to comply with rule EV 9.3
- VSCADA monitor added on the side of the GLV

Interconnect Cabling

Previous state:

- Cables scattered throughout 400 and 401, many out of date.
- All cables had some sort of label or indication

Current state:

- All interconnect cables organized in 400
- New orange shielded battery cable ordered and Amphenol Powerlok connectors ready for installation on TSV battery packs
- Fixed low quality cables that would not have passed tech inspection (exposed wiring, etc.)

Previous state:

- CAN bus and Huff box data did not display correctly
- Software CPU usage was too high

Current state:

- Software on Windows side collects CAN data from motor controller
- Software on Linux side communicates with Huff Box

Future Plan

• Move the software on Linux to Windows to improve performance

Previous State:

- Used an Arduino as the controller
- Was part of the safety loop
- Exported CAN data to VSCADA
- Not functional

Current State:

- No Arduino
 - Using controller from DYNO
- Added 24v to 12v DC converter
- Functional!

Demonstration Plan

What you should see in the actual integration:

- TSV: Connection of CAN Bus Show status on each pack display
- TSI: TSI Box integrated with the dyno and functional
- GLV: Safety loops operation, VSCADA integrated in the Case
- Cooling: Functional when GLV is turned on

What you should see on the GLV screen:

- Display real time data from packs and motor on GLV display
- Data will be stored in database
- Dashboard display will show placeholder data

Time to Demo!

Welcome Back!

Part II: Future plans for subsystems, schedule, and budget

Schedule

CDR and Demonstration	Week 6	02/26 - 03/04
Work	Week 7	03/05 - 03/11
Spring break	Week 8	03/12 - 03/18
Reach 100% of each subsystems, Dyno integration and testing	Week 9	03/19 - 03/25
March 29. Drop dead date. Car Integration	Week 10	03/26 - 04/01
Peer Evaluation: April 6,7,8	Week 11	04/02 - 04/08
Car Integration and testing	Week 12	04/09 - 04/15
Car Integration and testing	Week 13	04/16 - 04/22
Car Integration and testing	Week 14	04/23 - 04/29
Go to Competition!	Week 15	04/30 - 05/06

Tractive System Voltage (TSV) - Future Plans

- TSV 2.6 & TSV 3.1 Replace Fuses to comply with rules (3/9)
- TSV 3.3.4 Install amphenol connectors and replace busbars (3/23)
- TSV 3.5 Make and install LCO/Charging cable (3/9)
- Rule compliance
 - Pictures of boards
 - Final Configuration Parameters set
- TSV 2.5 Delay Switch Off of Safety Loop (3/9)

Tractive System Interface (TSI) - Future Plans

• Hardware

- TSI 1.4 Build New Board/Populate new PCB (3/9)
- 1TSI 3. Wiring board into new enclosure (3/23)
- TSI 3.3 Calibrate voltage and current sensors and throttle plausibility pots (3/23)
- TSI 3.5 TSAL/RTDS Mounted and Wired (3/23)
- Software
 - TSI 2.5 Drive States Delivered (3/9)
 - TSI 2.1 Current Measuring Delivered (3/9)
- Integrated Subsystem
 - TSI 4.1 Create and execute acceptance test plan (3/26)
 - TSI 3.6 Grounding and sealing of TS cables (3/23)
 - Integrate into rest of car and test with other systems (3/30)

Ground Low Voltage (GLV) - Future plans

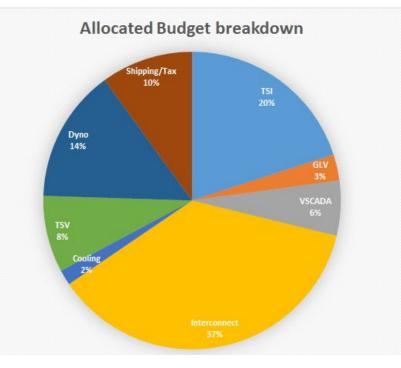
Enclosure:

• Wire organization (Done by 3/6)

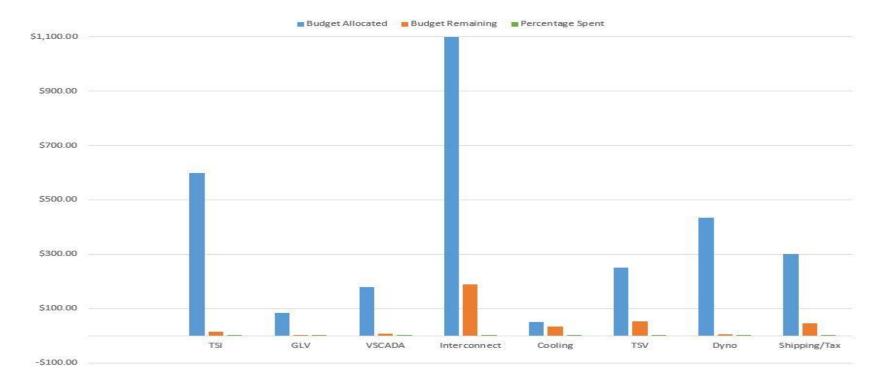
Integration with the car.

Vehicle Supervisory Control and Data Acquisition (VSCADA)

Future Plans:


- SCADA 3.4 Dashboard display
 - Write to screen
- SCADA 1.8 Export CSV (more reliably)
 - Mount USB to Pi
- SCADA 4.5 Mount Pi in the GLV
- SCADA 2.6 Ignore spikes in CAN data that could drop out of drive mode
- SCADA 3.8 Indicate when data is not being received from a sensor

Interconnect Cabling - Future Plans


- IC 1.3.3- Install Amphenol Connectors on TSV battery packs(03/21)
- IC 1.2.6 Replace black cable with orange shielded battery cable (03/23)
- IC 1.4.1- Give proper strain relief for necessary cables (03/21)

Budget

Subsystem	Spent to date	Budget Allocated	Budget Remaining	Percentage Spent	
TSI	\$586.04	\$600.00	\$13.96	97.67%	
GLV	\$82.22	\$85.00	\$2.78	96.73%	
VSCADA	\$172.59	\$180.00	\$7.41	95.88%	
Interconnect	\$910.02	\$1,100.00	\$189.98	82.73%	
Cooling	\$15.99	\$50.00	\$34.01	31.98%	
TSV	\$198.09	\$250.00	\$51.91	79.24%	
Dyno	\$430.57	\$435.00	\$4.43	98.98%	
Shipping/Tax	\$253.83	\$300.00	\$46.17	84.61%	
Total	\$2,649.35	\$3,000.00	\$350.65	88.31%	

Budget Spending Per Subsystem

