

Lafayette College | Electrical and Computer Engineering

Critical Design Review Report
ECE 492 Spring 2017

Assembled by LFEV Team Spring 2017

Abstract
This document provides all materials or access to all materials relevant to the Critical Design
Review for the Lafayette Formula Electric Vehicle for Spring 2017. This document begins with a
system overview then describes all subsystems that have undergone major design iterations in
this semester. These systems include: VSCADA, the Cell Application, TSI, GLV, and the
Cooling System. Finally, a cost analysis and schedule are included for the overall LFEV team.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
1

Table of Contents

System Design 5
System Overview 5
System States 5
Overall Schematic 6

Subsystem Designs 7
Vehicle Supervisory Control and Data Acquisition (VSCADA) 7

Overview 7
Installation 7
CANBus Interface 7
Database 8
Web Server 9
Different Views 9

Cell Application 10
Overview 10
Process View 11
Development View 15
Data Structures 16
Layout Details 18
Testing Protocol 23
Documentation Protocol 24
Conclusion 25

Tractive System Interface (TSI) 26
Brakes 26

Brake Overtravel Switch 26
Brake Pressed Signal 26
Brake Light 26

Throttle 26
Accelerator Pedal Plausibility System (APPS) 26
Throttle to Motor Controller 26
Acceptance of VSCADA Throttle Control 27

IMD 27
Connected to Safety Loop 27
IMD Fault Light 27

Voltage and Current Measuring 27

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
2

Read Voltage and Current Values from TSV 27
HIgh Voltage Present Lights 28
TSMP 28

Shutdown System 28
State Diagram Compliant with Formula Hybrid Rules 28
Ready to Drive Button 29
RTDS 29
Drive Light 29

Motor Controller 29
FWD/REV Key 29
Precharge Relay 29
Interface via CAN Bus/Control System Cable 29

Grounded Low Voltage (GLV) 30
Overview 30
Design 30

GLV BoB 32
Old GLV/VSCADA/Safety BoB 32
New GLV BoB 33
GLV Power 38
Safety Loop 38
Vehicle User Interface 39

Vehicle Computer Interface 40
Safety Loop Monitoring 40
State of Charge Monitoring 41
CAN Bus Routing 41
Torque, RPM Reading and Load Control 41

Motor Controller Cooling System 42
Overview 42
Designed Details 42
System Connection Diagram 42
Coolant Flow Diagram 43
Compatibility and Independence 43
Automatic Fan/Pump Speed Control with Manual Override 43
Can Bus Interface 44
Safety Loop Interface 44

Acceptance Test Plan 45

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
3

Cost Analysis 46

Schedule 49
TSI- Tractive Systems Interface 50
VSCADA- Vehicle Supervisory Control and Data Acquisition 51
TSV- Tractive Systems Voltage 52
Cell App- Cell Application 53
GLV- Grounded Low Voltage 54
Controller Cooling System 55
DYNO- Dynamometer 56
IC- Interconnect 57
PHYS/CC- Car Physics Investigation / Cruise Control Modeling 58
MGMT- Management 59

Appendix A: Schematics 60
TSV 60

Appendix B: Bill of Materials 60

Appendix C: Safety Plan 60

Appendix D: CAN Bus ICD 60

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
4

System Design
System Overview
The objective for this system is to safely provide power to the motor in the electric vehicle. This
is achieved by using 6 major subsystems. The first subsystem, tractive system voltage (TSV) has
already been designed and it is just being implemented. The remaining 5 are in this document.
The brains of the car is controlled by the Vehicle Supervisory Control and Data Acquisition
(VSCADA) subsystem and it listens to the CAN network, the communication network between
all subsystems in the car. This data can be accessed by a remote computer or by a cell phone
app. This application shows information about the car as it operates. The tractive system
interface (TSI) connects the high voltage to the motor controller safely. The cooling system
allows the motor controller to operate at a safe temperature.
System States
The car has 5 major states. It is critical that it is clear how the car moves between the states.

The first state is off. While the car is in this state all electronics are turned off with the exception
of the AMS and the PacMAN. These boards take power straight from the cells and do not have
an off switch.
How to enter:

● GLVMS to off
● BRBLS pushed
● BRBRS pushed
● GLV battery completely discharged

The only state that the car can enter after a full shutdown is GLV powered. In this mode low
voltage power is provided to all subsystems. The safety loop is armed and the AIRs could be
armed in this state.
How to enter (AIRs off):

● BRBLS reset
● BRBRS reset
● MReset button on RS of car
● GLVMS on

At this point subsystems will be powered. Before drive mode can be entered the AIRs must be
closed.
How to close the AIRs:

● All subsystems must close the safety loop
● BRB Cockpit reset
● CPR reset

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
5

● Driver Reset
● TSVMS on

With the AIRs closed drive mode can be entered.
To enter drive mode:

● Throttle must not be pressed
● Drive button pressed

Once in drive mode there are a few options. The first choice is to exit drive mode and return to
the AIRs closed state.
To exit drive mode:

● Push the drive button
The throttle will disengage at this point and the car will come to a halt.

Another option is cruise control. This will hand control of the throttle over from the driver to
VSCADA. TSI goes into more detail about how this works.
To enter cruise control:

● Push the cruise button

To exit cruise control:

● Push the cruise button
OR

● Tap the brake
It will be clear that cruise control has been left due to a light on the cockpit.

There are three failure modes. The first mode is a standard fault. Depending on where it
happened in the system the driver may be able to reset it or they may need to get out of the car
and push the reset button. The second mode is a brake overtravel. In this case not only do all of
the reset buttons have to be pushed but also the brake overtravel needs to be reset. The final fault
mode is loss of GLV power. From here a full reboot sequence needs to start from GLV off.
Overall Schematic
http://sites.lafayette.edu/ece492-sp17/overall-system-diagram/

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
6

http://sites.lafayette.edu/ece492-sp17/overall-system-diagram/

Subsystem Designs
Vehicle Supervisory Control and Data Acquisition (VSCADA)

Overview
The SCADA software will be listening to a CANBus channel for packets sent from subsystems.
The ID of the packet received will be used as the ID for storing the data received in the database.
Both raw and calibrated data will be stored in the database to allow for easier comparisons to be
made when re-calibrating and comparing data logs. Once the data is stored, all there is left to do
is extract the data and send it out to be analyzed. An HTTP web server interacts with the
database to pull information requested through the API. For a full explanation of the system,
refer to the Software Maintainability Plan, in which you will find full documentation as well as
the course of action being taken to ensure longevity.

Installation
The target operating system is Linux, specifically Raspbian and Ubuntu. A link on the website
will download the latest snapshot. Anyone will have the capability to either download a
compressed file containing our code or will be able to clone the code down from our GIT repo.
Upon download/uncompressing the files, a user will be able to ‘cd’ into the VSCADA directory
and use the provided makefile to install (make install) any necessary software. They may then
either run ./scada (run the current SCADA software) or ./configuration (run the current
ConfigurationUI software) and the software will automatically start. Once properly installed, the
system shall automatically run necessary code on startup so there is no added effort on the part of
the user.

CANBus Interface
The CAN interface has been changed from previous years. The old implementation, as seen in
Figure 1 works however it is a little limited. As seen in the tables within Figure 1, each byte has
a specific mapping for it’s data value. This not only makes it more difficult from an
expandability standpoint, it also requires a very specific format for every packet of information
sent that both ends of the CAN communication must agree upon. In the new implementation, the
software will continuously be listening on the CANBus interface as with the old system;
however, it will be looking for key/value pairs. Every sensor in the system will have a unique ID,
as mentioned in the overview and again in more detail in the Database section. The unique IDs
will allow us to not only parameterize every sensor individually, it will allow us control to log
sensors at different rates, send data in an arbitrary order and even mix who’s sending information
easily. With this method it doesn’t particularly matter who is sending over CAN or what order
they send the information as the key/value pairs, ID/data in our case, as they will be mapped

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
7

based on their ID and not the order they are received in. This protocol allows for rapid expansion
as a user must only go into the configuration database and enter in the information of a new
sensor and send the sensor ID as well as its data over the CAN line and then the system shall
now be configured with the newly added sensor.

Figure 1. Old Protocol for Transmission Over CAN - Dyno Example

Database
The database will consist of multiple data tables that will store various components about the
SCADA system as a whole. This will include a primary table containing unique IDs for every
sensor. The unique ID will serve as the primary key in our database and each table will have that
primary key mapped to it for rapid access. This will limit the overall size of each table thus
making queries faster as a whole and making data insertion easier. With this method, we will
have normalized tables that can easily be expanded and rely more on inserting data and less on
editing a specific entry. Data shows on the server instantaneously, once new data is pushed over
the CAN, while the database will only update at a maximum rate of 60 times per second. We are
confident that this is the proper way to handle things as with this structure we can have one
reference/configuration table with many columns regarding the desired performance of a sensor,
and update that only when new parameters are specified. Tables such as the data table will
simply have the ID of the sensor we are logging, the raw data value, and the calibrated data per
the user specified calibration parameters. A similar protocol will be implemented for all other
tables such as the Error table which will track errors in the system. Each data point entered into
the system will have a timestamp attached to it automatically. When searching for data, users

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
8

will be able to search based on a given subsystem, or subsystems, as well as a given date, or date
range. The results returned will vary depending on the view that the user is currently in. For
example, if the system is in drive mode, only select information will be accessed/viewable
whereas in maintenance mode, everything is presented to the user.

Web Server
The HTTP web server is in charge of interacting with the database. To query the database, send a
GET request to one of the endpoints provided in the API. There are four filter parameters you
can set in a standard request to get only the information you want. These parameters are system
type, ID number, start date, and end date. Alternatively, you can request only the most recent set
of data. This will query the database for the most recent data entry from each individual
subsystem. The server will then query the database with the parameters sent in the request and
the database will respond. The server will convert the information into JSON format and send the
packet to the client. The API will provide the functionality to query based on system, a specific
date, a range of dates, or any combination of above. External applications such as the Cell App
and the various operating modes will be able to interact with the web API to retrieve this
information. For a full list of operations and how to use them, refer to the API.

Different Views
The different views available by the SCADA system shall directly align with the mode layouts
set forth in the SOW. In Maintenance mode, all sensor values will be available to the user, both
in calibrated and uncalibrated form. In this mode, all control functions, such as throttle or torque
with the Dyno shall have the functionality to be altered. The ConfigurationUI will allow a user,
with the password, the opportunity to change reference labels such as a sensors units, subsystem,
calibration factors etc. This will be done through a series of input boxes and confirmation pages
to ensure intended settings changes. This user shall also have the ability to enable or disable
various safety checks and interlocks that constrain functionality and state transitions.

In Drive mode only the most essential data shall be displayed. The most essential data is
effectively the data that is most important to the driver during a race. The current data
represented on the screen is the data as set forth by the SOW. Drive mode shall be most useful
for the dynamometer and vehicle/racing. The drive mode shall extend to a drive demo mode. It is
in this mode that the system shall use the parameters determined by a user to generate/simulate
real race data. Along with the system parameters, an onboard physics simulator shall be used to
better simulate various torque and load conditions as though the car were actually being used to
race.

The SCADA system shall also provide a Charging view which shall show key
information of the packs and their SOC. The system shall in addition provide means for a long
term shutdown. This will send codes to hardware peripherals signaling shutdown as well as close
the database and terminate the web socket connection.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
9

Cell Application

Overview
The cell phone application, called “LFEV-SCADA-Mobile” functions as an observation tool that
is available through both android tablet and phone environments. The users of
LFEV-SCADA-Mobile are people who are not necessarily knowledgeable about the LFEV
system itself. The users will also be provided a tutorial and so we aim to build a software that can
be used by basically anyone.

Key aspects of the project to be implemented:

● Application will be able to run both on tablets and cell phones
● Application Needs to use Java as the main language for easy accessibility for future

teams
● Application uses JSON formatted data from a web-server for information gathering
● Application generates various types of displays for expanded functionality
● Application is able to display data as per the requirements in the Statement of Work

R002k
● Application must abide by the Formula EV rules

Current priorities:

● Preset Charts/Diagrams -- High Priority
● Number Display -- High Priority
● Speedometer/Odometer -- High Priority
● Notifications + Threshold -- High Priority
● Log Messages -- High Priority
● Custom Chart Generation -- High Priority
● Time adjustment to Charts -- High Priority
● Dynamic View generation -- High Priority
● Tutorial -- High Priority
● Adding a new sensor that has same fields -- High Priority
● Adding an entirely new sensor that requires another field -- Medium Priority
● Creating preset displays -- Medium Priority
● Google Maps Coordinates -- Low Priority

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
10

Process View
In this section, some activity diagrams for the application are shown.

Figure 2. Front-Page Activity Diagram -- Shows what options the user will have access to and

how the general application will update the display according to the choices of the user.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
11

Figure 3. Accumulator Chart Generator Activity Diagram -- This shows how a chart will be

generated according to the choices of the user. Examples of these are shown later in the
document.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
12

Figure 4. TSI Data Chart Generation Activity Diagram -- Similar to figure 2.3, shows the process

for TSI Data charts

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
13

Figure .: Custom Chart Generation Activity Diagram -- Custom chart generation will be fairly

simple but the options for the custom generation are not yet determined. Further documentation
will be provided with tutorial and later during development.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
14

Development View
Another important aspect of the application is the classes that will be created for the program.
Here we have created a Content UML diagram:

Figure 6. Development View -- Here you can see the classes and how they interact with each

other in a very high level case. Each of these classes will be tested individually and the
functionality will be demonstrated as the projects continues on. Two biggest components are

DisplayUpdater and SessionManager.

Reference the Maintainability document for why we have decided on such a structure and how
this provides expandability options in the application.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
15

Data Structures
Here is an example of how the data will be provided to to the application from the SCADA team
through the web-server:

Figure 7. Data from SCADA to Cell App

As you can see, the information is provided under fields. While the application will have a
display that will make it easier to choose which data to display, the data structures will be
simpler. We simply need a dictionary of values for each data for the provided information.
HashMap is the most efficient way to implement dictionary for Java. For different levels of
information we will need different dictionaries:

● One dictionary for the different timestamps provided by the SCADA system.
● Another dictionary for locating the specific sensor and the unit

Therefore, we will have a HashMap of HashMaps as our data structure in our application.

First, a higher level HashMap will have the combined name of the sensor as the “key” and the
“value” will be the second HashMap. For example, “tsvcell1voltage” which is a lower case
combination of System + Sensor + ID + Unit. This string will be used to create a hashcode that
will determine where the measurements will be stored.

This HashMap will have the values as other HashMaps, which will have timestamps are the
“key” and the Unit value as the “value”. For example, coming from “tsvcell1voltage”,
“03/03/2017 17:56:34” will correspond to value of “8.1”. Let’s see it in an example code:

HashMap<String, Hashmap<String, String>> allSystems = new HashMap<String,
HashMap<String, String>>;

HashMap<String, String> newSystem = new HashMap<String, String>;
newSystem.put(“03/03/2017 17:56:34”, “8.1”);
allSystems.put(“tsvcell1voltage”, newSystem);

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
16

System.out.println(allSystems.get(“tsvcell1voltage”).get(“03/03/2017
17:56:34”));

This block of code will store the voltage value for Cell 1 (which will be an internal designation)
at the specific time it was recorded. Then it will print out the Unit value that we have specified.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
17

Layout Details

Figure 8. This picture is taken with the apk run in a Moto G Osprey with the Android system of
7.1.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
18

The charts and graphs generated by the application will have very simple functionality of being
freely moveable.

In addition, these views are dynamically added to the display, meaning that the user will be able
to add in any view that they would like to see and be able to drag and drop it, creating
personalized unique displays.

Example XML files are found in the next page, and show how these views are generically
created. In addition, though the screen has simple buttons but this functionality will be moved to
an expanding tabs settings menu from top right.

This is the bar layout XML file.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="250dp"
 tools:context="com.lfev2017.ktdilsiz.cellapptest.DisplayGrafActivity">
 <com.github.mikephil.charting.charts.BarChart
 android:layout_width="match_parent"
 android:layout_height="200dp"
 android:id="@+id/bargraph" />
 <TextView
 android:layout_width="match_parent"
 android:layout_height="50dp"
 android:text="@string/hold_me_here"
 android:layout_below="@id/bargraph"
 android:gravity="center"/>
</RelativeLayout>

As you can see, this is simply created through an id of “bargraph” and connects to the third party
library we are utilizing. To populate the graph, you simply pass the values through our
BarChartGenerator class and it displays the data.

View myLayout = inflater.inflate(R.layout.​bar_layout​ , mainLayout, false);
mainLayout.addView(myLayout);

This is how simple it is to be able to dynamically add the views.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
19

In the next few pages, we will have some examples of how the user can create some specific
exemplary charts/graphs.

Figure 9. Single Pack vs Time display -- Here you can see that the time is adjusted to display the
data from every hour. And this graph is generated through Accumulator Chart generation which

is explained in figure 2.3. Only Pack 4 is shown here but it can be adjusted as the whole
accumulator or even a single cell.

Figure 10. 7 Cells are displayed at the same time in a pack. Here we are looking inside the Pack

4 and each cell has a data that is updated every time period specified by the user from the
web-server. This BarChart shows how the chart can be used easily to compare the cells to each

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
20

other. Also if you compare this figure to Figure 5.2, you can see how Bar Chart can be used both
against time for getting an update and also amongst the parts of the system for easy comparison.

Figure 11. Cells Line Chart -- Again similar to figure 4.3, here we are looking at the seven cells
from pack 4. However, this time we can see the data in a Vs time LineChart and combine the
functionality of comparing cells with the functionality of seeing time update. This again is an

example of accumulator chart generation from figure 2.3.

Figure 12. Emulator View Horizontal for Tablet emulator

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
21

Another important aspect of the user created charts, views is how the user will be able to access
this data and how easily they can navigate through the information. Under Data Structures
section, we have talked about how the data structures will be created with the names of the
sections. Such as “tsvcell1voltage”. A similar method will be used for creating an “expanding
tabs” interface for easily choosing the right data.

Figure 13. Here you can observe that the menus will be opening one by one through the

selections. “TSV” → “Cell” → “1” → “Voltage” will create the hashcode of “tsvcell1voltage”
and refer to the necessary hashmap created by the application.

 We are also planning to implement a ViewPager into the application to be able to
multiple displays that will have the dynamically inflating views capability.

Figure 14. This will create a display similar to how Android home pages are formed. You can

basically choose a display, drag and drop it anywhere, zoom in or out and even save your
displays. This is to be able to create a fully customizable experience.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
22

Testing Protocol
Testing will be done through Android Studio standards.

Figure 15. Here you can see how we have created separate unit test files for each class. There

will be two kinds of tests, “InstrumentedTests” and “UnitTests”.

Unit Tests run on the local JVM and Instrumented Tests run on the Android device. For more
information please visit: ​https://developer.android.com/training/testing/start/index.html

Example Unit Test Code:

/**
* Example local unit test, which will execute on the development machine
(host).
*
* @see Testing
documentation
*/
public class ExampleUnitTest {
 @Test
 public void addition_isCorrect() throws Exception {
 assertEquals​ (4, 2 + 2);
 }
}

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
23

https://developer.android.com/training/testing/start/index.html

Documentation Protocol
For documenting our methods and classes, we will use Javadoc structure.

/**
 * Returns an Image object that can then be painted on the screen.
 * The url argument must specify an absolute​ ​{@link URL}​. The name
 * argument is a specifier that is relative to the url argument.
 * <p>
 * This method always returns immediately, whether or not the
 * image exists. When this applet attempts to draw the image on
 * the screen, the data will be loaded. The graphics primitives
 * that draw the image will incrementally paint on the screen.
 *
 *​ ​@param​ url an absolute URL giving the base location of the image
 *​ ​@param​ name the location of the image, relative to the url argument
 *​ ​@return the image at the specified URL
 *​ ​@see Image
 */
 public Image getImage(URL url, String name) {
 try {
 return getImage(new URL(url, name));
 } catch (MalformedURLException e) {
 return null;
 }
 }

Example 7.1: Taken from:​ ​http://www.oracle.com/technetwork/articles/java/index-137868.html

Here as you can see javadoc requires the explanation for the method, the parameters, the return
object and the references for the code. This generates a very nice javadoc documentation that can
be easily converted into an API style HTML source.

This documentation will make the project sustainability much easier and also make the
application much more accessible to the future teams for further expandability.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
24

http://www.oracle.com/technetwork/articles/java/index-137868.html#%7B@link%7D
http://www.oracle.com/technetwork/articles/java/index-137868.html#%7B@link%7D
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@param
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@param
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@param
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@param
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@return
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@return
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@see
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@see
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html

Conclusion

Currently, the design has some major structure laid out and we are following these plans to be
able to create a product that is not only customizable but also maintainable and expandable.

We have looked into many different aspects of the application such as how the data structures
will be implemented and how the JSON parsing will be structures by the SCADA team.

In addition, we were able to observe how the layout is going to be implemented although it is in
a very primitive stage and we were able to see few examples of charts that could be implemented
through the planned application. We have talked about ViewPager and how we will be able to
slide in between different displays/fragments of displays.

The testing and the documentation is the standard protocol and we will be using the most
common tools that are easy to implement and maintain in the system. This makes it possible to
ensure that the future teams can easily update or maintain the system. An example would be the
usage of the most popular third party library for creating charts although implementation of
another one might be easier.

Also the activity diagrams and the development view provides a general overview of the planned
system. Currently, we are also working on creating a detailed UML diagram including every
class, every method and every connection in the system but this is not yet completed.

Lastly, although every feature is important and essential to the application. We had to make
some priority selections among the tasks to be completed. This is an example of how we have
some trade offs in the system to be able to complete an application that is of the most satisfactory
for the LFEV team of 2017 and for the future.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
25

Tractive System Interface (TSI)

Brakes

Brake Overtravel Switch

The brake overtravel switch is a manual reset limit switch that will actuate a normally open relay
in the safety loop. Voltage and signal will be sent and received from the TSI box.

Brake Pressed Signal

The brake pressed signal comes from a pressure-actuated switch in the pedal cluster. This is
treated like a normally open switch, and will be brought into the PCB and microcontroller to be
used in throttle control and system state decisions.

Brake Light

The brake light is controlled by the brake pressed signal, and is displayed using a 12V, 74 cm​ 2
golf cart red brake light compliant with DOT FMVSS 108 as a brake light (as required by the
Formula Hybrid Rules T7.4).

Throttle

Accelerator Pedal Plausibility System (APPS)

The APPS consist of two piston potentiometers connected to the throttle pedal. These two
potentiometers are offset from one another by 5V, with their wiper outputs used in a series of
checks used to ensure that a valid throttle value is sent to the motor controller. For one check,
the two signals are put through a differential op-amp, followed by a window comparator in order
to confirm the two signals remain within 10% of one another (0.5V). Separate checks are made
on each APPS signal individually, sending each signal through two other window comparators,
making sure that the signals are not open/short-circuited.

Throttle to Motor Controller

The throttle to the motor controller is sent from the low voltage side of the board to the high
voltage side by means of an isolated differential amplifier. This is a 0-5V signal fed directly into
the motor controller. On the low-voltage side, the throttle can be sourced from one of
twolocations. First, the analog voltage passed from the APPS may be sent through an analog
switch. The second option, which facilitates VSCADA control, is a PWM signal sent from the
microcontroller which is low-pass filtered (integrator with time constant of 1.6ms) then sent to
the switch. Selection of the throttle is done by the microcontroller. This gives the microcontroller

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
26

the ability to cut the throttle to the motor controller, by outputting 0V and selecting the
microcontroller output on the analog switch.

Acceptance of VSCADA Throttle Control

TSI has the ability to accept VSCADA throttle control over the CAN bus. VSCADA may request
to increase or decrease speed, which the TSI microcontroller may do by altering the PWM
throttle output. This allows the TSI to maintain safety checks, while still allowing VSCADA to
remotely request control of the throttle.

IMD

Connected to Safety Loop

The IMD we are using is the Bender ISOMETER IR155-3204 to meet Formula Hybrid Rule
EV7.9.2. This has two signal coming out of it that will be used for interacting with the safety
loop
and TSI system. One of these is the OK​ HS​ high or low voltage. Under normal operating
conditions, this is set to 24V as this is the GLV power the board will be receiving. If the IMD
senses the high voltage connections have connected to low voltage ground, this signal will
change to 0V. We will be using this to control the IMD safety loop relay.
The other signal we are using from the IMD is the PWM output of the measured resistance. This
will be sent through a low pass filter and into the microcontroller. It will then be decoded to
determine the resistance based on the duty cycle. This value will be sent over CAN to the
SCADA team.

IMD Fault Light

The IMD fault light will activate when the IMD is the reason the safety loop is broken. This will
be achieved by using the second output from the IMD relay used for the safety loop. The relay
we are using has two outputs based on the control signal so if the OK​HS​ goes to 0V, the output of
the relay will flow to the fault light instead of the safety loop.

Voltage and Current Measuring

Read Voltage and Current Values from TSV

To read the current provided from the TSV system, we will be using an Ametes BBM-01 current
sensor mounted to the metal power bar inside of the TSI box. For the voltage, we will be using
an isolated differential op-amp.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
27

HIgh Voltage Present Lights

The high voltage present lights will be activated by a DC-DC convertor. The TSV voltage will
go through buck converter, and will be scaled down to 24V. The buck converter will be set to
have an on voltage of 30V. The 24V will go to an isolated DC/DC converter that will scale it
down to 12V, which will be used to power the lights.

TSMP

The TSMP will be mounted to the front of the TSI box. The inputs to each of the banana jacks
will be taken from the metal bars running through the box. At the beginning of the cables going
from the bars to the measuring points, a 10k ohm resistor will be added in series with a power
rating of 5W to meet Formula Hybrid rule EV10.3.5.
The third banana jack will be connected to the chassis ground provided to the TSI box for
intentionally causing a ground fault in the IMD.

Shutdown System

State Diagram Compliant with Formula Hybrid Rules

Figure 16. State Diagram for Shutdown.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
28

Ready to Drive Button

The ready to drive button will be mounted on the dashboard and accessible to the driver. This is
the last step in the startup sequence. In order for the button press to be accepted, the driver must
have his/her foot on the brake so the car will not move on startup.

RTDS

The RTDS will activate when the drive button is pressed and the microcontroller is in the state to
allow for driver control. It will sound for 2 seconds to meet Formula Hybrid rule EV9.2.1.

Drive Light

The drive light will be active after the drive button is pressed and the RTDS activates. This light
will be mounted on the dashboard to let the driver know they are able to move the car. This will
be controlled by the microcontroller that is in charge of the startup sequence.

Motor Controller

FWD/REV Key

A single-pull double-throw keyswitch will be used to select forward or reverse motion of the
motor controller. This will be mounted on the TSI box, out of reach of the driver. Voltage will be
supplied by the motor controller, with the signal sent directly back into the motor controller.

Precharge Relay

The precharge relay is automatically actuated by the motor controller after the internal start-up
sequence when TSV is applied.

Interface via CAN Bus/Control System Cable

The motor controller is connected to the system-wide CAN bus via a CAN bus isolator. This
allows motor controller information to be sent directly to VSCADA.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
29

Grounded Low Voltage (GLV)

Overview
The GLV system is responsible for managing the low voltage electronics of the vehicle. The four
main purposes of GLV are 1) providing 24V to all the main sub-systems of the vehicle, 2)
providing a physical user interface for the car, 3) providing a means for the sub-systems to
interface with the VSCADA computer and 4) providing a safety system to shut down systems in
the car. We have broken these four main purposes down into four main sub-systems of GLV,
respectively called GLV Power, Vehicle User Interface (VUI), Vehicle Computer Interface
(VCI) and the Safety Loop. We will now explain the general requirements for each of the four
GLV sub-systems.

The GLV Power system should deliver a 24V to all systems in the car and should be
rechargeable by means of a UL listed charging device.

The VUI includes physical panels, buttons, switches, screens and lights on the car, such as the
exterior panels and the cockpit panel. The wiring for these panels and how they interface with
the system is managed by GLV.

The VCI should deliver information about GLV Power and the Safety Loop to the VSCADA
computer and route the CANBUS to the VSCADA computer. Any other information that needs
to be relayed to the computer is managed by VCI.

The Safety Loop should serve as the direct means to control the Accumulator Isolation Relays in
the packs (enable/disable of high voltage systems). Under unsafe conditions, the Safety Loop
should make sure that the AIRs are closed.

All of the sub-systems have significant interdependencies. The detailed design of their
integration will be explained in the next section.

Design
In this section of GLV, we will discuss our design goals for this year, explain high level design
of our system, show proposed physical implementation of the systems and detail subsystem
functionality.

Our design goals for this year were to consolidate aspects from last year’s design into a cleaner
form and add more feature to meet all the requirements of GLV. To do this, we decided to move
all GLV functionality into a single box.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
30

Figure 17. High Level GLV System Connections.

As shown in Figure 17 above, the GLV Box now has all of its features self-contained and
connections between most external systems have been consolidated into a single connection.
Inside of the GLV Box is a BoB managing Safety Loop, VCI and GLV Power functionality, a
Raspberry Pi (VSCADA), and some connectors between the connectors and boards.

On the outside of the box, we expect to create a connector panel that can be mounted over a hole
in the box. Below in Figure 18, is a proposed layout for the connector panel of the box. Most of
the connections can be accomplished by using Deutsch DT-04 connectors.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
31

Figure 18. Connector Panel for GLV Box (subject to revisions).

Below in Figure 19, is our proposed layout of the system inside the GLV Box. The dark green
box represents the Raspberry Pi, the light green box represents the GLV BoB, the white box
represents the CAN2USB adapter, and the light gray box represents the DIN rail terminals.

Figure 19. GLV Box Layout (subject to revisions).

GLV BoB

Most GLV functionality is contained on the BoB inside of the GLV box. This board is a critical
component of our design and we had to make some design choices in considering how it would
be implemented.

Old GLV/VSCADA/Safety BoB

Last year’s team printed a PCB that managed aspects of the Safety Loop, VCI and GLV Power.
While their approach made sense and was a good start, it was not comprehensive in meeting all

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
32

the requirements of the GLV system and did not encapsulate as much of the system as we
desired. We considered using this board in this year’s design to save time and money; however
the design we implemented left out some key VCI components and was very messy in terms of
interconnect. We since have decided to create a new GLV BoB but have kept our design with the
old GLV BoB as a design alternative.

New GLV BoB

The main tasks we had in creating a new BoB were adding/simplifying VCI components and
making wiring and interconnect simpler for the whole GLV system. In order to do this we added
more routing to the board so that a larger portion of the Safety Loop is contained on the BoB. In
addition, we added Safety Loop and SOC monitoring systems to interface with the VSCADA
computer. While this board will likely have more screw terminals and be larger, it will be more
effective and simplify our design. In Figure 20 below, a high level block diagram for the new
GLV BoB is shown.

Figure 20. High Level GLV BoB Block Diagram.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
33

Figure 21.

In Figure 21 above, you can see how the full system would be implemented inside of the GLV
Box with the new GLV BoB on a detailed level. This design documents each wire that would be
found inside of the box and a tentative wire list for the implementation can be found below:

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
34

Figure 22.

Wire Number Conn A Conn B

1 Battery + High Amp Circuit Breaker In

2 Battery - DIN Terminal (GND)

3 High Amp Circuit Breaker BoB (+24VBatt)

4 CHAS GND DIN Terminal (CHAS)

5 BoB (-BATT) DIN Terminal (GND)

6 BoB (Chas_GND) DIN Terminal (CHAS)

7 DIN Terminal (GND) GLV Power Out (GND)

8 DIN Terminal (CHAS) GLV Power Out (CHAS)

9 DIN Terminal (GND) Int Panel Power (GND)

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
35

10 DIN Terminal (CHAS) Int Panel Power (CHAS)

11 BoB (GLVMS_A) Ext Panel RS (GLVMS)

12 Ext Panel RS (BRBRS) BoB (BRBRS_B)

13 BoB (BRBLS_A) Ext Panel LS

14 Ext Panel LS BoB (BRBLS_B)

15 BoB (Safety1) SL OUT (SL1)

16 SL OUT (SL2) BoB (Safety2)

17 BoB (Mreset_A) Ext Panel RS (Mreset)

18 Ext Panel RS (Mreset) BoB (Mreset_B)

19 BoB (BRB_CP_A) Int Panel (BRB_CP)

20 Int Panel (BRB_CP) BoB (BRB_CP_B)

21 BoB (CPR_A) Int Panel (CPR)

22 Int Panel (CPR) BoB (CPR_B)

23 BoB (TSVMS_A) Ext Panel RS (TSVMS)

24 Ext Panel RS (TSVMS) BoB (TSVMS_B)

25 BoB (AIRs+) SL OUT (AIRs+)

26 BoB (AIRs-) SL OUT (AIRs-)

27 BoB (Test_CTRL_A) 100V Supply Disconnect A

28 100V Supply Disconnect A BoB (Test_CTRL_B)

29 BoB (GLV_Power) Low Amp Circuit Breaker In

30
Low Amp Circuit Breaker
Out GLV Power (24V)

31 BoB (GLV_LED) Int Panel (GLV_LED)

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
36

32 BoB (SL_LED) Int Panel (SL_LED)

33 BoB (AIRs LED) Int Panel (AIRs LED)

34 BoB (Fault LED) Int Panel (Fault LED)

35 BoB (TSE LED) TSE Light (+)

36 BoB (GND) TSE Light (-)

37 BoB (CAN_H) CAN (H)

38 BoB (CAN_L) CAN (L)

39 BoB (GND) CAN (GND)

40 From HUFF (Torque) BoB (Torque)

41 From HUFF (RPM) BoB (RPM)

42 From HUFF (Load) BoB (Load)

43 BoB (UART_TX) UART (TX)

44 BoB (UART_RX) UART (RX)

45 BoB (GND) UART (GND)

46 Ethernet Pi (Ethernet)

47 USB Pi (USB)

48 BoB (+5V) Int Panel Power (5V)

49 Pi (I/O) Int Panel (Buttons)

50 Pi (I/O) Int Panel (Buttons)

51 Pi (I/O) Int Panel (Buttons)

52 Pi (I/O) Int Panel (Buttons)

53 Pi (HDMI) Int Panel (HDMI

54 BoB (10 Pin Header) Pi pins

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
37

55 BoB (2 Pin Header) Pi pins

We will now provide a more detailed explanation for how each of the sub-system functionality is
being implemented.

GLV Power

We have decided the best way to deliver 24V to all systems on the car is with a 24V Lithium Ion
Phosphate (LiFePO​4​) Battery. Since our battery is commercially manufactured, plug-an-forget
capability and protection against over-voltage, over-current and over-charge is already
implemented in the battery as a Battery Management System (BMS).

The battery will be housed in its own separate box and interfaces directly with the GLV box with
a two wire (Power, GND) cable. Power should be delivered to the subsystems after the GLV
master switch is thrown and the two exterior BRBs are closed.

Another important aspect of GLV Power is the max and nominal current draw from the system.
The max current draw from opening the AIRs we have measured at 4.6A. The rest of the current
will be drawn from TSI, the cooling controller, VSCADA, and the LEDs, relays and displays.
TSI has estimated a 2A max pull and Cooling Controller is estimated to pull 5A max. This gives
us a possible max current pull of 12A. Thus the first circuit breaker placed directly after the
battery is 15A, which is at least 25% more than the expected max possible current in our design.
The second placed directly before the TSI and Cooling Controller power lines we have set at 8A,
also 25% more than the expected max possible current draw. These numbers and choices are
subject to change as we get more accurate estimates for current draw.

The nominal current draw to keep the AIRs open is .5A. The nominal current draw from TSI and
Cooling Controller has been estimated at 2.5A. This gives an overall nominal current draw of at
least 3A. Under these conditions, our 10Ah battery, should be able to last a little less than a 3
hours.

Safety Loop

The basic design of the safety loop was taken from Y4 (2016). See Figure # below:

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
38

Figure 23. Safety Loop Diagram from 2016.

The safety loop requires the flipping of several switches and the safety status of the TSI and
battery packs to be OK in order to power the AIRs. In addition to this, VSCADA can control a
relay which allows it to trip the Safety Loop at any point. We have kept a lot of this design the
same but have made a couple important additions. See Figure # below:

Figure 24. Safety Loop Diagram From 2017.

In specific, we added the cooling controller to the safety loop, the point where GLV sub-systems
are powered up and moved the TSVMS to the point directly before the AIRs. Other than this, the
Safety Loop design is exactly the same as last years.

We have moved the routing of the safety loop on to the new GLV BoB and have provided
connections on the GLV Box to all of the control panels for the Safety Loop.

Vehicle User Interface

The VUI design can be thought of as the three main panels on the car, the left side exterior panel,
the right side exterior panel and the interior panel. The two exterior panels provide controls for
interacting with the start-up and shut-down procedures of the car, i.e. the Safety Loop.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
39

Figure 25. Exterior Panel Combining LS and RS for Dyno Room.

The interior panels includes buttons to control the start up the car and reset the safety loop, LEDs
to indicate the status of the car, and the VSCADA I/O. The VSCADA I/O includes an LCD
screen and three buttons for the driver to move through the display and initiate cruise control.

Figure 26. Interior Panel for Dyno Room

Vehicle Computer Interface

The VCI system implementation is heavily integrated with the other sub-systems. All of the VCI
functionality has been worked onto the new GLV BoB and we have added several new IC’s on
the board in order to achieve the requirements for the system.

Safety Loop Monitoring

In order to deliver the status of the Safety Loop to the VSCADA computer we have decided to
use optoisolators to monitor the presence of 24V at different points in the safety loop. When
different parts of the Safety Loop fail, we will be able to detect which points are still receiving
24V and then give 5V high or low signal to the VSCADA computer indicating such. In our
design we have chosen to detect the status of the Safety Loop after going through all of the other
sub-systems on the car and at the point which the AIRs are powered.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
40

Figure 27. Optoisolator connections for safety loop monitoring.

With this design VSCADA is able to know when there is an OK status from all the sub-systems
and when the AIRs are powered.

State of Charge Monitoring

In order to deliver the SOC of the GLV battery to VSCADA, we are using the INA226 current
shunt and power monitor to talk over I^2C to the computer. Using this chip we can constantly
keep the computer updated on the total GLV current and GLV SOC. This chip is placed on the
GLV BoB.

CAN Bus Routing

The routing of the CANBUS is achieved with a two pin connector into the GLV box. On the
GLV board, the differential traces of the CAN_H and CAN_L signal are sent to the CAN2USB
adapter connected to the GLV board.

Torque, RPM Reading and Load Control

There are two ADC’s on board the BoB to read incoming analog signals from the Huff box about
Torque and RPM. There is also a DAC on the BoB to allow VSCADA to set the Load on the
Huff Box.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
41

Motor Controller Cooling System

Overview
The 24VDC powered motor controller cooling system is able to cool the motor controller based
on temperature sensors’ readings, to provide system status (such as fan RPM, coolant flow speed
and sensor readings) to SCADA via CAN bus and to interface with LFEV safety loop with a fail
safe design.

Designed Details
The whole cooling system works on 24VDC provided by GLV team and the core system
controller is one Arduino Uno. The system controller will have the ability to measure the inlet,
outlet fluid temperature, and fluid flow rate and these data will be accessible over the CAN bus
(by using Arduino CAN bus shield) and will be shown on a LCD display connected to the
system controller; it will also have the ability to control the fan and pump speed automatically
based on fluid temperature (parameters for the control algorithm, as well as manual override,
shall be possible); moreover, it will be able to interface with the LFEV safety loop and contain a
fail-safe design that will open the safety loop when when fluid temperature is too high.

System Connection Diagram

Figure 28.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
42

Coolant Flow Diagram

Figure 29.

Compatibility and Independence
The same as the old cooling system, 13x19mm PVC tubing is used across the water cooling
system as well as Koolance QD4 disconnects and other connectors. To the largest extent possible
the system is using components purchased from Koolance that are identical to or compatible with
the existing cooling system, so testing of the water cooling system can be easily done by
replacing the old system with this new one. Though the new cooling system will be independent
that can run on its own. Also, the water pump will be compatible with the 24VDC provided by
team GLV.

Automatic Fan/Pump Speed Control with Manual Override
Based on temperature readings on the motor controller and temperature readings on coolant, the
fan and pump speed are automatically controlled by Arduino Uno to keep the motor controller
cool based on specified temperature thresholds, which can also be modified by using push
buttons and switches connected to Arduino without re-programming the board.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
43

Figure 30. Diagram showing the threshold overriding process

Can Bus Interface
The CAN bus interfacing will be done using a stackable SparkFun CAN bus shield using SPI
interface on Arduino Uno. Raw CAN_HI, CAN _LOW and GND signal will be extracted from
the standard 9-way sub-D port on the CAN bus shield and will be fed into SCADA software. The
CAN signal can also be tested by displaying the CAN_HI and CAN_LOW signal on
oscilloscope.

Safety Loop Interface
The cooling system is also connected to the 4-wire LFEV safety loop, when the coolant
temperature is too high the cooling system should shut the system down by opening the safety
loop.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
44

Acceptance Test Plan
See ​ATP-Overview​ for information about system testing.
For information about subsystem QA testing click ​here

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
45

http://sites.lafayette.edu/ece492-sp17/testing/atp/
http://sites.lafayette.edu/ece492-sp17/testing/atp/qa-testing/

Cost Analysis
As you can tell from the table and images, we are a bit under budget from what we had

originally anticipated. Part of the reason for this is because the Mechanical team has offered to
pay for several of our items, such as the ~$600 GLV battery and ~$400 of subsystem boxes.
Additionally, since most teams are behind schedule (see “Schedule” section below), some teams
will fail to have all purchases completed by the hardware purchasing deadline. This delay means
teams, such as GLV and TSI, have yet to place orders to fabricate PCBs and for all of the
components they will need to populate them. We anticipate to be below budget by a reasonable
amount, and purchases needed to be made in the upcoming weeks will increase.

Note:​ All diagrams and the table below reflect purchases made until 2pm on March 8th, 2017.
For the most up-to-date data and diagrams, along with all purchase orders, visit the ​financial
section of our website​.

Subsystem Allocated
Budget

Total Spent Budget
Remaining

Percentage Spent

TSI $1,000 $153.61 $846.39 15.36%

GLV $1,000 $126.48 $873.52 12.65%

VSCADA $50 $0.00 $50.00 0.00%

Cell App $125 $0.00 $125.00 0.00%

Controller
Cooling

$600 $410.47 $189.53 68.41%

Interconnect $1,000 $1000.62 -$0.62 100.06%

Dyno $50 $0.00 $50.00 0.00%

TSV $500 $388.95 $111.05 77.79%

Shipping / Tax /
Misc

$1,175 $319.52 $855.48 27.19%

TOTAL $5,500 $2399.65 $3,100.35 43.63%

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
46

http://sites.lafayette.edu/ece492-sp17/management/financials/
http://sites.lafayette.edu/ece492-sp17/management/financials/

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
47

*HPD = Hardware Purchasing Deadline (March 9th, 2017)
** Ideal curves are based off of a simple exponential graph since purchasing was expected to
grow exponentially across the semester.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
48

Schedule
The schedules are done based off each individual system’s WBS, which can be found on the
WBS page​ of the website. Represented below are the graphs of the current state of affairs, based
off Individual Progress Reports (IPR). These are culminated into weekly Project Status Letters
(PSL), which also can be found on the website’s ​PSL page​. Our goal is to be no more than 20%
off track, however, there are some unkown unkowns that we cannot anticipate. It should be
noted that PSL did not start until week 4, as many teams were getting acclimated and WBSv0.1
was being structured.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
49

http://sites.lafayette.edu/ece492-sp17/management/wbs/
http://sites.lafayette.edu/ece492-sp17/management/psl/

TSI- Tractive Systems Interface

Causes of delay:

- There was an initial delay of 1.5-2 weeks as the engineers began to acquaint themselves
with all pertinent resources and materials.

- The crux of TSI design is a PCB, which is undergoing constant and iterative review.
- ESF forms required a thorough and detailed cataloguing of all design choices, which took

a week.
- Poor existing documentation required further attention.

Plan to mitigate:

- Seek/ consult with engineer Flynn’s expertise in PCB design layout.
- Any further competition forms will be handled by Management and other engineers.

Breakdown:

- 36 tasks at present moment x 2.778 weightage = 99.72% of total TSI system

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
50

VSCADA- Vehicle Supervisory Control and Data Acquisition

Causes of delay:

- Initial design discrepancies between MongoDB and generic DB took a week to decide
best course of action.

- Existing code maxed out a core of the processor, therefore, they rewrote the code in a
more robust language.

- Views layout design required extra time.
- Some design choices needed to be compatible with Cell App team.

Plan to mitigate:
- Engineers Lombardo and Wiles will use Java DB with a SQL backend.
- Rewrote code from Java and Python.
- Outsourced layout generation to engineer Beggs.

Breakdown:

- 23 tasks at present moment x 4.34 weightage = 99.82% of total VSCADA system.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
51

TSV- Tractive Systems Voltage

Causes of delay:

- There is no delay, as this team had the most usable previous years’ work.
- Engineers Guro and Grybos did not have design work, and were implementing existing

design.
Plans to Mitigate:

- There is no need for a mitigation plan. They are ahead of schedule.
Breakdown:

- 29 tasks at present moment x 3.44 weightage = 99.76 % of total TSV system.
Further note:

- Team plans on being able to sufficiently implement basic functionality by week 8.
Afterwards, they will improve upon existing design/aid other teams with their potential
backlogs.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
52

Cell App- Cell Application

Causes of delay:

- There did not exist any cell application functionality before this year, therefore, the
engineers had to start from the foundation.

- The team was working closely with the engineers on VSCADA, and had an iterative and
ongoing review process. (databases, data handling etc.)

- There is an inherent dependency in that the application needs data from the VSCADA
team to display.

- Engineers will use
Plan to mitigate:

- Engineers Dilsiz and Birru will be using “dummy data” with reasonable defaults to
maintain feasibility, to populate displays they have created.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
53

GLV- Grounded Low Voltage

Causes of delay:

- Initial hesitation of respinning BoB versus adding a separate board for current sensor.
- ESF forms required 1 week of potential design time.
- Hesitation of purchasing/designing box caused several days’ hiccup.
- Waiting for parts to arrive prevented engineers Bennett, Phillips, and Sluke from testing

to ensure functionality within a day.
Plan of mitigation:

- Seek/consult engineers Flynn/Townley’s experience in design.
- Purchase box with help of MECH-E team.

Breakdown:
- 27 tasks at present moment x 3.703 weightage = 99.9 % of total GLV subsystem.

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
54

Controller Cooling System

Causes of delay:

- ESF forms caused a work halt for about 2 days.
- Waiting for parts to arrive prevented engineers Guo and Han from testing to ensure

functionality within a day.
- Electrical schematic approval is an ongoing and iterative progress.

Plan to mitigate:
- Team is advised to build to specifications of commercial system or existing system in

Dyno such that they can swap if necessary.
Breakdown:

- 27 tasks at the present moment x 3.703 weightage = 99.9% of cooling system

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
55

DYNO- Dynamometer

Causes of delay:

- Existing documentation was bleak and code was not commented to a usable grade.
- Engineer Diego needed to rewrite portions in Python.

Plan to mitigate:
- Consult with engineers Martocci/Flynn for best course of action.

Breakdown:
- 23 tasks at present moment x 4.34 weightage = 99.68 % of total system

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
56

IC- Interconnect

Cause of delay:

- Waiting for parts to arrive prevented engineers Chiesa and Port from assembling them.
- The system block diagram has been revised many times, and engineers needed to keep

tracks of updates/refactor inventories/update .
- Double shielded cable research/ plan was still unsure of which cable exactly to purchase

Plan to mitigate:
- Due to the large number of cables to assemble, we anticipate that any member of

Management/other teams to help in this assembly.
Breakdown:

- 41 tasks at present moment x 2.43 weightage = 99.63 % of interconnect subsystem

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
57

PHYS/CC- Car Physics Investigation / Cruise Control Modeling

 Cause of Delay:

 PHYS:
- The data that existed was not sufficient/ was not accurate enough to draw correct

conclusions.
- Iterative review process that needs constant feedback.
- Further testing needs to be implemented

CC:
- The data that existed was not sufficient/ was not accurate enough to draw correct

conclusions.
- Further testing needs to be implemented

Plan to mitigate:
PHYS: Seek further guidance on memos (Prof, Boekelheide/Mech.E. professors)
CC: Seek further guidance on memos (Prof, Boekelheide/Mech.E. professors)

Breakdown:
PHYS: 17 items at the present moment x 5.88 weightage = 99.96 % of Physics modeling
delivered
CC: 4 items at the present moment x 25% weightage = 100% of Cruise Control Modeling
delivered

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
58

MGMT- Management

Causes of delay:

- WBS took a while as teams were getting acclimated.
- PSL were incorrect at times (items were thought to be approved when they weren’t).
- ESF forms took a larger period of time than expected

Plan to mitigate:

- Proposed “further investigation” column on PSL so not to confuse unapproved items as
approved.

Breakdown:

- 44 tasks at present moment x 2.27 weightage = 99.88 % of total MGMT subsystem

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
59

Appendix A: Schematics
TSV
PackMAN
AMS

Appendix B: Bill of Materials
The most up-to-date bills of materials can be found on our website:
http://sites.lafayette.edu/ece492-sp17/management/financials/bills-of-materials/

Appendix C: Safety Plan
We have not made any modifications to the safety plan. As a result we intend to use the same
plan as last year.

https://sites.lafayette.edu/ece492-sp16/files/2016/03/2016SafetyPlan.pdf

Appendix D: CAN Bus ICD

https://sites.lafayette.edu/ece492-sp17/files/2017/01/CAN-Bus-ICD.pdf

LAFAYETTE COLLEGE | ELECTRICAL AND COMPUTER ENGINEERING
60

https://sites.lafayette.edu/ece492-sp17/files/2017/01/PacMAN_Hardware_rev_0_8.zip
https://sites.lafayette.edu/ece492-sp17/files/2017/01/AMS_Schematic_Rev_0_4_2016.pdf
http://sites.lafayette.edu/ece492-sp17/management/financials/bills-of-materials/
https://sites.lafayette.edu/ece492-sp16/files/2016/03/2016SafetyPlan.pdf
https://sites.lafayette.edu/ece492-sp17/files/2017/01/CAN-Bus-ICD.pdf

