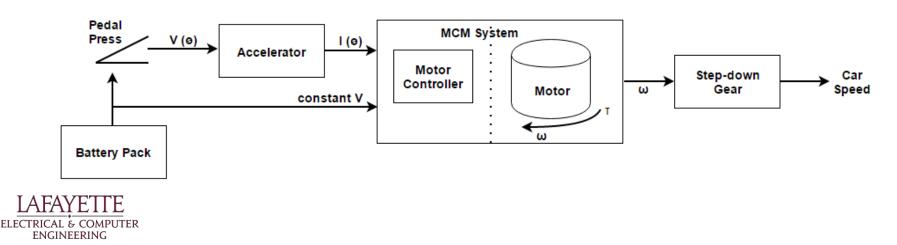


LFEV Project: Physics Modeling and Cruise Control

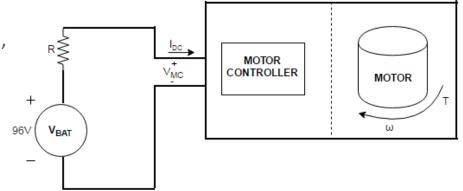

Zainab Hussein May 3, 2017

Physical Integration of LFEV

Two approach types:

- Physical model
 - Considers parameters with physical meaning, i.e. load torque, motor speed and supply current
- User (driver) controlled model
 - Considers parameters the driver can access in situ, i.e. throttle controlled by pedal press

Mathematical Relation of MCM I/O

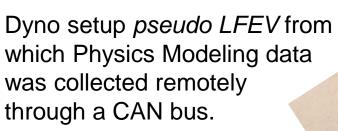

By conservation of power,

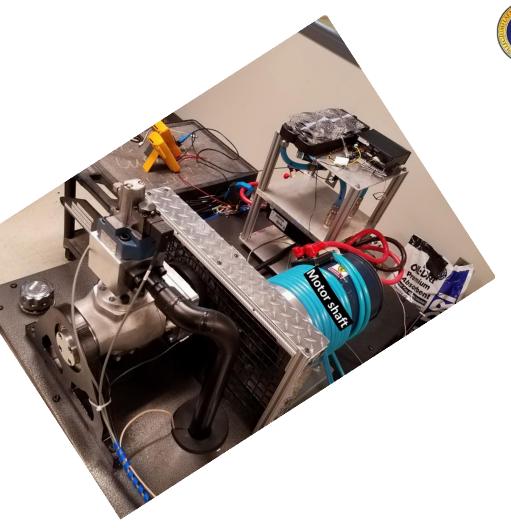
 $vi = \tau \omega$

 $P_{in} = vi$

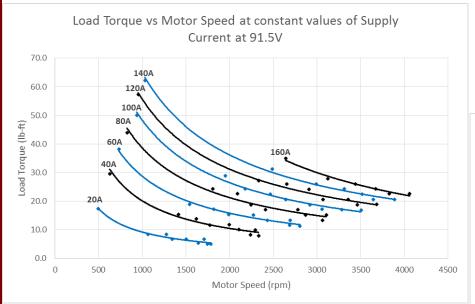
Where v (V) is supply voltage, I (A) is supply current , τ is load torque (Nm) and ω is motor speed (rad/s)

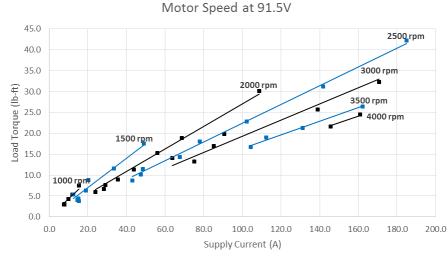
 $P_{out} = \tau \omega$ Where P_{in} and P_{out} are electrical and mechanical power (Watts) respectively.


Experiments and LFEV maintain constant supply voltage, resulting to changing of both τ and ω

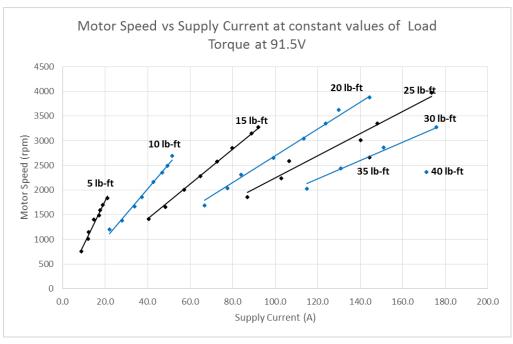

$P_0 = ki$	Eq.4
$P_0 = \tau \omega$	Eq.5

For constant power P_0 , I (A) is directly proportional to P (W) with constant voltage k (Eq.4), while ω and τ exhibit hyperbolic relationship (Eq.5). T and ω change at different degrees, thus to analyze changing current effect, one of the mechanical parameters is held constant.


Experimental setup

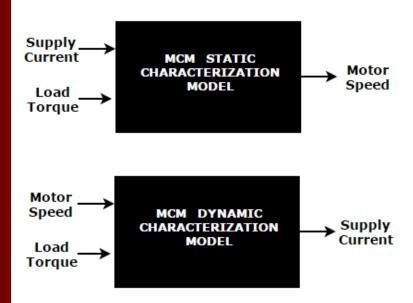


Electric Motor Plausibility for LFEV


At constant current, motor speed self-adjusts at a set load torque value to meet the power which the current is proportional to, resulting in hyperbolic relationship At constant motor speed, a set increase in load torque results to an increase in supply current to maintain the given constant motor speed.

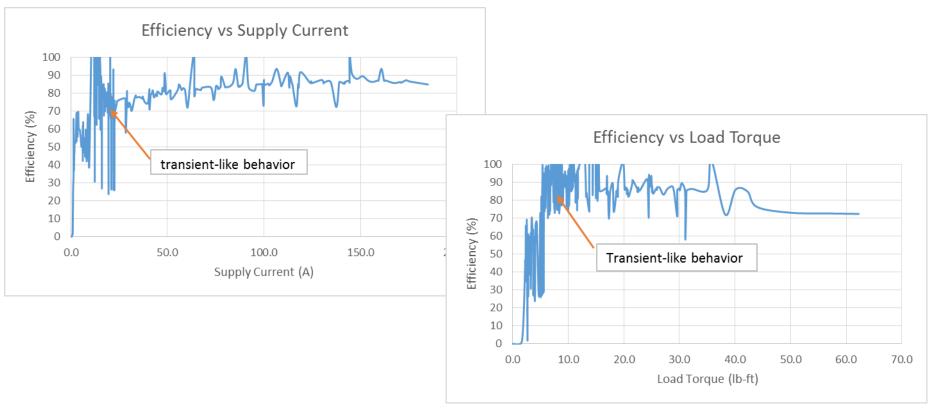
Load Torque vs Supply Current at high constant values of

Electric Motor Plausibility for LFEV

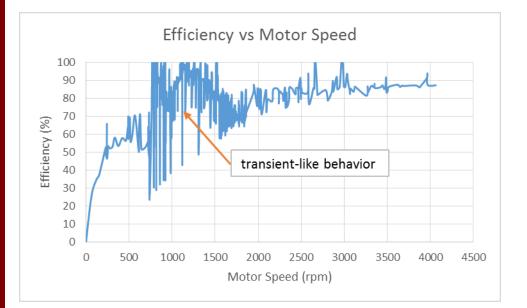

At constant load torque, a set increase in motor speed results to an
increase in supply current to maintain the given constant load torque.

Physical Parameter	Working Range
Load Torque (lb-ft)	0 – 70
Motor Speed (rpm)	0 - 4000
Supply Current (A)	0 – 185 (limited by PS)

Dynamic and Static Model Lookup Table


ID Number	τ (lb-ft)	i (A)	ω (rpm)	% load	v (V)	P_Elec (W)	New_i (A)
Zainab_4-6-2017	2.3	3.1	493	20	91.5	284.6	3.1
Zainab_4-5-2017	17.3	19.0	494	50	91.5	1738.5	19.0
Zainab_4-6-2017	2.7	3.5	510	0	91.5	321.2	3.5
Zainab_4-6-2017	2.5	2.9	510	5	91.5	264.0	2.9
Zainab_4-6-2017	2.4	3.4	518	25	91.5	311.1	3.4
Spring_2016	2.8	3.9	540	100	89.7	356.9	4.0
Diego_3-31-2017	24.5	30.8	570	0	89.6	2818.2	31.5
Spring_2016	2.8	5.3	613	100	89.7	485.0	5.4
Zainab_3-31-2017	2.8	4.5	614	0	89.6	411.8	4.6
Zainab_4-5-2017	29.6	40.7	629	50	91.5	3724.1	40.7
Spring_2016	3.0	5.7	644	100	89.7	521.6	5.8
Spring_2016	3.0	6.0	690	100	89.7	549.0	6.1
Spring_2016	3.1	6.2	721	100	89.7	567.3	6.3
Spring_2016	3.1	6.4	722	100	89.7	585.6	6.5
Spring_2016	3.1	6.3	722	100	89.7	576.5	6.4
Spring_2016	3.1	6.2	722	100	89.7	567.3	6.3
Spring_2016	3.1	6.2	722	100	89.7	567.3	6.3
Spring_2016	3.1	6.2	722	100	89.7	567.3	6.3

Sample section of the lookup table specific to the HPEVS AC50515X Motor used for the LFEV


MCM Efficiency

MCM Efficiency

Transient-like behavior possibly caused by:

- Motor unstable at the given physical parameter low range
 - Working range of motor specified excluding the transient.
- Data for plot is from all combined data collected.
 - Experimental data collected in spring '17 had irregularities cleaned. Spring '16 used as raw (no documented irregularities for data collection)

Conclusion

- Observed throttle (physically represented by pedal press) translation to supply current as direct proportionality.
- Determined electric motor plausibility for LFEV
- Accurate Physics model a good foundation for cruise control

Future Work

Cruise control Simulink simulation building from the physics model

