LFEV Spring 2016
Maintenance Manual

Do not be alarmed this is merely a draft

Table of Contents

GLV
Safety Loop
TSI

VSCADA
Hardware
Software

TSV
Data Acquisition

Charging

Dyno
Calibration

Software

GLV

Safety Loop

Safety Loop

State Diagram ALL_ON

In ALL_ON, the
START button Sy

requests SCADA COCKPIT_RESET COCKPIT_BRS ||

allow physical
throttle. SECONDARY_OPEN

Reset button will
only cause transition
if corresponding

BRBs are closed. SECONDARY_OFF BRB_LEFT || BRB|RIGHT

These states are
stored by the
physical position of
BRBs and Reset
buttons.

i)/

MASTER RESET BRB_LEFT || BRB_RIGHT|

PRIMARY_OFF

POWER ON

After Opening the Safety Loop

If the Safety Loop is ever opened, the user should find the source of the failure. Sources of
failures include:

IMD Fault

AMS Fault

BOTS flipped

VSCADA error

Motor Controller

Safety Loop physically disconnected
Loss of power from the GLV

Master Switches

Before resetting the Safety Loop, the user should fully inspect each element to
determine the cause of the Safety Loop opening. Do not simply reset the system with the
green button without determining the original source of fault.

HYIRN +
HVIN-—
MC_Voltages
IMD_Cerl
PCRelay
Throtile_IN

MC_CAN_IN

TSI

High Voltage system schematic of the TSI

. P27
ey ey
ErruseS ™ i gi
=
iy
LE]
hstba-; us i
128 ST a2t pa33 TSLISOLATOR oz
=5 1y 2 4 ail 1 TR = L L
25 pa3 L Piy s oy [247
00 g +HV_E +5¥
+= 2
Fuseh._] + —HLE GND =
+24VME Thisttle - 3
+12VHY GHD — e i
= ‘ i RTH ; 5
o | arrent Sens TLEA PR R i
-LA - =
Hy+ a2 Az +L - 1
TLEDE +— Hv— AL aL -L 1 Lo 3
i 45V +5¥ Relay_Closed 2 3
GND oND P = = C
1 TaE
- :'—1— Threttle 1
E oND PN
=l
U
IMD
vee ok -2
Hv+ HE e
HY+ MLs B
Hy— [T
Hi-
GND
Chassis_GND
Chassis_GND
uL
TslLv
10 n
Wl g1 SAFETYL SAFELE Salelel 421007
2 % SAFETY2 SAFETYZ s |
N 1 AlRst AlR4_E AlRss o3
L 1 GHD GND GHD 4
n B 76
S +5v +5v + 5 =
L — LV +1av FEET]
. = +30V 47av PO
. L CahH LANH CAN H g4
e 2 CanL CANL CAN | o5
— - GHD GHD GHD &
i T
IR & THVMSA AIRLED SlELEL g2
W11 J 2 % .
TEWME_B GND Safety_Loop_OUT
Safety_LoopIN = |MB_LED 1MD 1FD o3 T OnR
dll g3l CPERE_A GND CHD 4)
i = oL LV Pawer CAN_
GLVPawer/CANN | wiz 115 cram s ine el S L 5 GLvPower AN OUT
| syt CRESET_A GND Ll sl B Cockpit LED
TSYMS | 14 = CRESET_B CResetd Bpcet | Flg ockpl 5
| ER G Start_But_4 G
CReset/BRE/DRButtono—— |1 15 gt Start But @ PCRelay LED Thrattle
&} 5L GHD
wWi6 g1 s oo r 1
© o v 7 CRe
IPO5_SW Te Wiz 112 . " J2 e »PCRelay
[L gt 2l | w1 4 13 g mcm'": 4 wue X
Currenz_Sensor! 2 IGR Ctr | wia J s PC_Relay+ = —— > Buzzer/HYPresent LED
1 gL | b - PL_Relay+ 10y WaT
L¥HV_Measurandsl | fiefifieloys = 45 PFC_Relay— 2L} wha IMD_Ctrl
T a2 2 |
=L 3 e tazzer 1 e
—t — 4 D GND 2 WD ‘ iy
3 ght | o TSVLED 3 s, | Buzzer o3 £
4 oGl W20 g3 +HIA GND i g WD GHD 2
| FESaE —HY_A i = -
| I¥F) 3 THED o 1 W5 GHO s [
| | e —Hi_B 1HO_0K z wh | . T
Wil 5 FZAVHEH GND 3 Whh | +12Y 1
il e GHD W w55| IMD DK g2
- — GHD 5 | GNDO 3
- s GAD P
e = |wse GND 5
wh

HVOUT+
HVauT-

Current_Sensor

'_l—DL-:H\u‘Peasur:rd:

Throttle_OUT/Precharge
MC_CAN_OUT

VSCADA

Hardware

The main monitoring system will be a javascript applet similar to the one below. The applet will
be available to any browser capable device connected to the same network as the Raspberry
Pi. The dashboard will also be a javascript applet that you can navigate to on the 7” dashboard
touch screen. The dashboard touchscreen’s computer will be the SCADA Raspberry Pi 3. In
drive mode the dashboard should not have any detailed diagnostics according to the formula EV
so a warning light comes on when a problem is detected. If you want to know what the warning
was check the web page or the SCADA logs. In maintenance mode you may use the
touchscreen to navigate the diagnostic website.

Software

HTTP/WS Server

The HTTP/WS server is loaded and, by default, serves a minimalistic web application which
dumps the entire system state. A configuration file can be used to serve files from a different
directory, allowing a better user interface to be easily loaded. In the event that the system
model cannot be created because of an invalid topology, this component is responsible for
generating an error page. The state of the system model is transmitted to clients over
WebSockets as JSON objects. For implementation details see “SCADA WebSockets API”
Document Logger

This component monitors the system model for changes in state--represented as
dictionaries--and logs the changes as documents in a NoSQL database. The concept of a
non-relational database can be frightening to some, but we believe this allows for simplicity of
implementation and better normalization of data in our use case.

Message Bus

Although not mentioned above, the components communicate through a message bus. Any
system can broadcast any kind of message to the other systems. This provides an elegant
method of calling multiple handlers at once, and synchronizing the multiple concurrent entities.
The broadcaster doesn’t have to be aware of who is interested in the message, and listeners
don’t need to be concerned with where a message came from. In our case, the data flow is
mostly unidirectional from the models to the logger and web api.

System Model

The system model is created on startup by looking at the “system_topology.yml file. Details of
the format of this file can be found in “SCADAd System Topology.” The system is divided into
two classes of subsystem: ‘Virtual’ and ‘physical’. Physical subsystems have a real world
counterpart and attempt to mimic the state of the counterpart. They are also associated with
logic (methods) to control the state of the real world system. Virtual subsystems are where the
system gets all it's uniquely specific functionality. There is nothing saying a battery pack has to
be part of a car, or that a car has to have a safety loop, until a virtual subsystem is written to
manage that. Several virtual subsystems are proposed by this team. The subsystems are
described below.

e Battery Manager - Aggregates all physical subsystems of type ‘BatteryPack™ and
broadcasts messages to all of them to coordinate global state.

e Mode Manager - This subsystem knows that the vehicle needs a power source. A
BatteryManager or power supply could satisfy that. It knows that a software throttle
should be used in maintenance mode, and the physical throttle used in drive mode. It
knows that a safety loop should be present. Et cetera.

The Event Loop

A system like this has a lot of things happening at once. In order to make it easy to express
concurrency, the software uses Python3.5's asyncio library. Subsystems typically have a loop
which waits for data from CAN, and then processes it. These loops are expressed as asyncio
coroutines. They are cooperatively scheduled, which means that the currently executing routine
will only change when it is explicitly allowed to. This makes the software more easy to reason
about than if it used a threaded approach, which would mean these routines are preemptively
scheduled. Python's GIL prevents any true parallelism, so there is no downside from not using
true threads. Some blocking libraries may need to be executed in a separate thread, but those

can be managed by the event loop.

RESET

System Modes

PHYSICAL
THROTTLE

IDLE &&
SET_DRIVE

IDLE &&
SET_TEST

DRIVE_TEST _ MAINTENANCE
IDLE &&
PHYSICAL / SET_MAINT K SOFTWARE
THROTTLE THROTTLE
_ IDLE && —
SET_TEST

DRIVE_TEST and MAINTENANCE states do not require a closed safety loop for operation.
Transitions to MAINTENANCE require a password to be entered.

A working, closed safety loop is required to provide power to the motor controller in DRIVE.
These states are set and stored by the Raspberry Pi 3.

IDLE is TRUE when no TSV current is flowing in TSI or PacMan, and motor RPM is 0.

Other Information on Maintainability

The system topology is specified in a YAML configuration file. The file maps to a hash table and
supports lists, numbers, booleans, strings, and comments, which make the configuration file self
documenting. There will be no auto detecting hardware because then there would be no way of
knowing if the system is completely online.

If the syntax of the configuration file is incorrect, the daemon will serve an HTTP 500 error page,
to indicate that the system model cannot be created. If the user neglects to describe parts of
the system in the configuration then the model will also be lacking. If the user describes
subsystems that do not exist then the model will contain them, but they will identify as “offline”
until contact is made. The configuration file can be modified by connecting to the machine
running the daemon over SSH and editing the file with a text editor (nano, vim, etc.)

To clarify the consequences of misconfiguration: Incorrect syntax will result in an error page and
no functionality. A subset of the real system will result in an online, but incomplete system, with
full SCADA support for the subsystems described. A superset of the real system will result in

offline components and full SCADA support.

Software will run on the heavily supported Ubuntu 15, be coded in python, and managed by

system.

SV

Data Acquisition

The PacMan computer monitors the overall pack current and voltage directly, and individual cell
voltages and temperatures via 12C communication with the AMS boards (see spring 2015
design documents). Calibration factors for these values are stored on PacMan and may be
modified with the control panel. PacMan also keeps track of accumulator state, state of charge,
and the state of the safety loop relay on PacMan. All of these data are regularly sent via CAN
frames to the VSCADA computer. The microcontroller communicates on the CAN bus through
a Microchip MCP2551 CAN interface IC. More details on CAN communication are provided in
the VSCADA section of this document.

Charging

The Tractive System Voltage is provided by four accumulators in series to provide the power
necessary to operate the motor. An accumulator is comprised of a battery of 7 LiFeP04 cells
(3.2 V nominal) connected in series.

crimp connector rings (lel
onnect:

Gy
CELLI- A~
-

16 AWG

ANDERSON POWERPOLE

e

CONNOLXOP1E P1724 AWG (Included)

oo / N

6 ARG)

b

EFLFUUApuv

=i-18 awG

28 AWG RIBEON

7128 AWG RIBBON

CRINF_CON

ol Ee
1) 5

a0

1032 1 o
= FE LS s el sy
: Soa o

L T | |

CONNTEX04 AR 1 ey gy
i

Supervisor: Chris Madovich
AIR Engineer: Geoff Nudge
Lafayeite College

Sheet:
File: accumulator.sch

Wiring Diegram

[Date: 2016-03-09
iCad DA, kicad 4.0.2-44622538ubuntul4.04.1—stable

R

I 13 I

Connections on the accumulator are, a 4 pin safety loop in, 4 pin safety loop out, 6 pin
GLV/CAN in, 6 pin GLV/CAN out, a 4 pin low current port, and 2 high current ports. The
accumulator high current output is available through ITT Cannon connectors.

Transitions to LOW_CURRENT, CHARGE and CHARGED are

locked when system is in DRIVE or DRIVE_TEST, PacMan State
FAULT includes cell temp >60 C, cell voltage >4 \V or <2.5 V., Diagram
pack voltage >26 V, and unresponsive AMS board.

DEAD
CAN, LCD, and 12C operate the same in all states, SL_OPEN
CHRG_OPEN C_DETECT

SOC0
C_DETECT

READY

CHARGE
SL_CLOSED ' SL_OPEN
IFAULT CHRG_OPEN CHRG_CL
T t SOC100

BOOT IFAULT
RESET SL_OPEN
S CHRG_OPEN CHARGED
SL_OPEN
CHRG_OPEN

FAUL p— LOW_CURRENT
SL_OPEN SL_OPEN
@ CHRG_CL
PACK_FAULT

S0Co

On reset the computer checks for faults. Faults are temperature over limit, voltage out of range,
and an unresponsive AMS board. If any of these are present, the pack fault state is transitioned
to, and the safety loop relay is left open. If none are present, the pack transitions to the READY
state. In this state the safety loop relay is closed and the accumulator is able to provide power
through its high current outputs if a closed safety loop is connected the safety loop in port of the
accumulator.

From the READY state, a transition to the CHARGE state occurs if a charger is detected. If the
accumulator is fully charged while in the CHARGE state, a transition the CHARGED occurs.
The safety loop relay is opened in these two states and the charging relay is closed in
CHARGE.

From READY, a transition to LOW_CURRENT occurs if a low current output is detected.
Similar to the charging state, the safety loop relay is opened and the charging relay is closed.

All states have transitions to the FAULT state if any of the possible faults are detected. The
computer transitions to READY when the fault is no longer present.

Dyno

Calibration

Refer to the torque calibration document. This lists the entire procedure involved with
calibrating the torque sensor.

Maintenance

Water Cooling System Maintenance:

In its current state the water cooling system is not maintainable. The water reservoir can not be
emptied without removing the entire motor controller stand from the dynamometer. This issue
must be addressed next year. A possible solution to consider is to move the main water basin
off the dynamometer. This will let the water be changed more easily as well as air would be able
to escape the system.

Dynamometer Oil Maintenance:

The oil in the dynamometer does not need to be changed or replaced unless there is a spill. In
the case of a spill there is oil absorbent located in AEC 402. After consulting an advisor proceed
to apply the adsorbent followed by a clean up of the room when the oil has been absorbed.
Once the new oil has arrived to replace the oil you must get the oil pump from the mechanical
engineering workshop. They will instruct you on how to use this to refill the dynamometer with
oil.

The Dynamometer system schematic is provided below to better understand the interfacing
between subsystems in AEC 401. This was all completed previously by the class of 2015 whose
schematic is provided below.

[E=es] | W
[y
—_—
Brrip i ad v
B | i -
ur ¥ ¥ [Fesmp_Seeor]
st [e—— A
- ey et
i
Chisad s
Addddd 14
i 44 4 4
BEEEIEAE 3 g.l. A
= LTS BT
il 2. 5 EF EF
O | =hr] e
L} e e AN - e
[— O =+ iy - e [EL
Frer oy o [— [pr i n m i
ur =H o= seramn [
[— [il
r [T Lefapriin
W g i3 =
[- a5 EIEE
Fas -
iy
T meed |_
[o
ut
Fran S
€ ammi
WITIZ OFY coamction VELADs i i
] e ez
e o o remted i imin Bisaie
-~ > b
b [P Y
ere— Sy R
Ty oa
fap b Mot beve sy air et shosied = 3
et el iz by pica

