QA Test Plan

Introduction

This is a preliminary document, to be discussed with initial ATP. It will be improved and the details of each test defined prior to CDR. It describes a high level plan that will prove that the final fabricated system meets all requirements.

TSV

QAR001a - Charge Algorithm

- 1. Mathematical analysis of battery charging. Model shall include voltage and temperature, and include coulomb counting.
- Testing on accumulator test stand.
 - a. charging starts appropriately, normal operation
 - b. charging stops appropriately, normal operation
 - c. charging stops appropriately, all failure modes
- 3. Charging a discharged TSV accumulator with LiFePO4 cells

QAR001b - Data Acquisition

- 1. Calibration Accuracy and Analysis (D011)
- 2. Test I2C messages
- 3. Test all CAN messages with Lab Terminal, in test stand, in all states
- 4. Test all CAN messages with VSCADA board, in test stand, in all states
- 5. Test all CAN messages with Lab Terminal, in Accumulator with LiFePO4 cells, in all states
- 6. Test all CAN messages with VSCADA board, in Accumulator with LiFePO4 cells, in all states

QAR001c - Displays and Indicators

- 1. Test all desired displays in test stand, in all states.
- 2. Test all desired displays in Accumulator with LiFePO4 cells, in all states.

QAR001d - Pack Controls

- 1. Test navigation to each desired data, or set value, in all states.
- 2. Set a range of values via controls, in all states.
- Reset PacMAN in all states.
- 4. Reset each AMS in all states.

QAR001e - Low Current Output

- 1. Apply load to draw 29 A.
- 2. Apply load to draw 31 A.

3. Test Charging functionality.

QAR001f - Delivery of 1 complete accumulator

- 1. Annotated photographs of wiring harness.
- 2. Documentation (Maintenance, User's Manual, BOM, etc.)
- 3. Demonstration of System States, and availability of TSV power

VSCADA

QAR002a QAR002c QAR002d QAR002e - General UI

- 1. Demonstrate dashboard UI functionality over wide range of time and values
- 2. Simulate CAN BUS
- 3. Receive actual CAN BUS from a working system

QAR002b - Safety loop integration

- Ensure that when safety loop is triggered and only when its triggered the UI displays it as such
- 2. Have VSCADA trip the safety loop

QAR002f - Throttle Control

1. Demonstrate being able to control the throttle level from any UI

QAR002g - Maintenance mode

 Control system parameters and these control parameters should correspond properly to the values being read in

QAR002h QAR002i - Drive mode and drive demo mode

 Drive mode must disable VSCADA throttle control and Drive demo optionally disables it

QAR002i - Plug and Forget Charging

- 1. Charge accumulator from empty
- 2. Charge accumulator from partial charge

QAR002k - Shut down mode

- 1. Allows VSCADA to not be powered on while rest of system is active
- 2. Logs when it shuts down

QAR002I - Data Logging

1. View and transfer large amounts of data that matches what is read by sensors

QAR002m - Data display

- 1. Display all promised statistics
- 2. Have displayed statistics match values obtained from external instruments

QAR002n - Data Scripting

1. Demonstrate values automatically being set

QAR002o - Event logging

1. Show logs of events such as safety loop trigger with expected times of recording

QAR002p, QAR002q - Modularity and documentation

1. Visual inspection of documents to ensure quality and usefullness

GLV/Cabling

QAR003b - GLV Safety

1. Test for safety loop operation under system faults

QAR003c - Vehicle User Interface Panels

1. Test that buttons and interfaces operate as expected

QAR003d - Tractive System Interface

- 1. Test that the TSI interacts properly with the safety loop and trips it as needed
- 2. Monitor that TSV remains isolated from the GLV and ground
- 3. Test that the Motor/Motor Controller can be engaged and disengaged from driver input

QAR003e - Vehicle Computer Interface Hardware

- 1. Observe various items displayed on the interface
- 2. Ensure interface hardware connects and acts properly

QAR003f - Throttle

1. Ensure that motor is able to be controlled via a throttle mechanism

QAR004a - Cabling

1. Test continuity and resistance of cables and connections at various points

Motor Characterization/Dynamic Model

QAR005a - Static Characteristics

- 1. All specified data measured across full range of operation for torque and RPM
- 2. Data calibration/accuracy falls within specified tolerances

QAR005b - Dynamic Characteristics

- 1. All desired model parameters estimated
- 2. Accuracy analysis determines that parameters are calibrated correctly within proper tolerances

QAR005c - Efficiency and Cooling

1. Motor + controller efficiency and cooling requirements have been successfully measured

2. Tests comparing expected cooling system behavior to measured values are successfully completed

QAR006a - Physics Model

1. Physics model output provides reasonable prediction of fully integrated system performance

QAR006b - Simulation

- 1. Simulation is able to provide outputs expected by the generated physics model
- 2. Working demonstration to professors successfully completed

QAR006c - Results and Conclusions

 All data and calculations included in results and conclusions documentation falls within required tolerances, and model provided generates expected outputs for fully integrated system