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Abstract—While several commercial software packages for
simulating the dynamics of robot or human-ridden Single-Track
Vehicles (STVs) such as bicycles, motorcycles, or other Powered
Two-Wheelers (PTWs) are common in the literature, open-
source options for high-fidelity simulations of STV dynamics are
limited. This paper explores whether the open-source Webots
robot simulator is capable of representing the dynamics of
STVs with sufficient fidelity to allow for robotic rider design.
Data from a small-scale self-balancing PTW are compared
with both a linear dynamic model and with simulation results
from a nonlinear, multi-body model of the vehicle custom-
built in Webots. Results indicate that Webots’s physics engine
provides sufficient dynamic fidelity to accurately represent the
behavior of the vehicle in both simple step response tests and
in assisted teleoperation with automatic starting and stopping
via a motorized kickstand.

Index Terms—Safety Verification and Validation Techniques;
Vulnerable Road User Protection Strategies; Real-Time Con-
trol; Intelligent Transportation Systems; Single-Track Vehicles;
Powered Two-Wheelers

I. INTRODUCTION

Motorcycles, electric scooters, and other powered two-
wheelers (PTWs) are increasing in popularity, but pose seri-
ous challenges to traffic safety [1] [2]. Users of both bicycles
and PTWs have to contend with many safety challenges even
without the threat of collision with other vehicles. These
include but are not limited to the fact that Single-Track
Vehicles (STVs), including bicycles and PTWs, are often
open-loop unstable [3]. Active safety systems for PTWs in
particular represent an area for growth, and technologies such
as Automatic Emergency Braking are subjects of ongoing
study [4]. However, development of active safety systems
for PTWs is challenging due to their inherent dynamic com-
plexity, especially under acceleration and deceleration, and
when friction is scarce. Human-ridden testbeds for vetting
emerging safety systems are an option, but pose serious risks
to test riders. Self-stabilizing and/or self-driving test vehicles
mitigate this risk, and could therefore play an important role
in testing new active safety technologies, infrastructure-based
safety improvements, and/or safety gear for PTWs. For both
PTWs and human-powered STVs such as bicycles and push
scooters, robotically ridden test vehicles can also be used
in reliability testing to quantify the performance of detection
algorithms in other vehicles like autonomous cars and trucks,
as Persson et. al point out in [5].
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However, developing, improving, and validating the be-
havior of robot-ridden STVs is difficult. In many scenarios,
the design and/or validation of robotic STVs could benefit
from high-fidelity, nonlinear multi-body simulations either in
lieu of or in addition to physical experiments. Simulations
allow for large batteries of tests to be conducted quickly,
with zero risk, and at relatively low cost. This makes sim-
ulations valuable in many contexts relevant to self-driving
STV design, from their interactions with road features [6] to
system identification [7]. Simulations are also central to some
modern types of controller design, e.g. reinforcement learning
[8], [9]. While using low-order models for simulations is
sufficient in some contexts, having an open-source, nonlinear,
multi-body option allows researchers to access high-fidelity
dynamic simulations as they develop self-driving motorcycles
in efforts to improve rider and roadway safety. Open-source
options, in particular, dramatically improve both accessibility
and replicability of this type of work.

Efforts to model STV dynamics and control using high-
fidelity multi-body simulations are not new, with plentiful
examples that use custom simulation source code, e.g. [10],
or commercial multi-body software [11]-[15]. However, the
use of open-source multi-body simulation environments in
the design process for a self-driving STV is relatively scarce.
A head-to-head comparison between experimental data and
a multi-body simulation package for simulating self-driving
STVs appears to be totally absent from the literature.

To address this gap, this paper explores whether the open
source Webots robot physics simulator developed in [16]
and maintained in [17] is capable of accurately representing
the dynamics of a self-driving PTW. In a prior study [6],
we investigated whether Webots produces results consistent
with canonical models of motorcycle behavior. For the most
part it does, which is encouraging for researchers who either
prefer to use or must use open-source software in their work.
However, this initial study did not explore how Webots’s
predictions compare with experimental data. Therefore, after
reviewing related work in Section II, we present a small-scale
test vehicle, a low-order model used for controller design, the
design of a controller to stabilize the vehicle, and a multi-
body Webots representation of the vehicle in Section IIL
Section IV presents experimental results from a step response
in commanded roll angle for the vehicle, along with a
more complex teleoperation experiment including automated
starting and stopping using a servo-actuated kickstand. We
then compare the experimental results from those tests with
simulation results from Webots, finding that Webots not only



predicts the stability of the closed-loop system, but also that
its predictions are consistent with the performance of the
actual vehicle in experimental testing.

II. RELATED WORK

In studies spanning the last three decades and using a host
of different control techniques and models, researchers have
designed controllers for self-driving STVs and validated their
work primarily in simulation [18]-[26]. A substantially fewer
number of studies used simulations as an intermediate vali-
dation step, but also included results of real experiments with
self-driving STVs [27]-[32]. To accomplish self-stabilization
and/or path following, some researchers’ vehicles relied only
on steering action (torque and/or angle) to balance the
vehicle, capturing the primary way in which a human rider
stabilizes a STV, such as in [18], [19], [21], [23], [28], [30],
[32]. However, reflecting the fact that riders can also produce
corrective torque with their bodies, some autonomous STVs
were equipped with a secondary balancing system like a
reaction wheel [20], [24], [25], [27], [29] or an inverted
pendulum “balancer” [33].

In simulation, in experiment, or both, prior studies have
tested their controllers’ performance using several different
types of tests, including initial condition or homogeneous
responses, e.g. [19], [21], [23], [24], [32], step responses
in desired roll angle, e.g. [25], [30], and even vehicle path
tracking in [20], [26], [27], [31]. In the studies surveyed, most
of the simulations used to predict controller behavior were
based on (relatively) low-order models of vehicle dynamics
[18], [19], [21]-[23], [27]-[30], [32], with far fewer using
multi-body simulations in a controller validation context
[11]-[15], [20].

In contrast to studies dealing specifically with the design
of self-driving STVs, multi-body simulations are much more
common in studies that simulate human-ridden STVs. These
studies often explore advanced rider assist technology [11],
[12]. While the BikeSim commercial software package is
common for this purpose, other studies used Adams, another
powerful, custom muti-body dynamics simulation software
[13]-[15], [34].

Of the literature surveyed dealing with self-driving STVs,
only one study used an open-source multi-body simulation
package, Gazebo [20], in the design of an autonomous STV.
This indicates that although there is utility in and precedent
for using nonlinear, multi-body simulations for studying STV
dynamics, its use in self-driving STV design is uncommon.
Low-order models, which are most common in the self-
driving STV literature, are certainly suitable for the validation
of some controller types. However, nonlinear, multi-body
simulations can provide more realistic tests of controller per-
formance. This means that increasing and improving access
to multi-body simulation software could help speed up the
development of self-driving STVs. If an open-source software
package like Webots is suitable for this task, it provides a no-
cost way for researchers to test their vehicles and controllers
in a realistic environment before implementation.
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Fig. 1. 1:10th scale test vehicle

III. METHODOLOGY
A. Test Vehicle

In order to evaluate Webots’s suitability for realistically
simulating the dynamics of single-track vehicles under closed
loop control, we designed and built a small test vehicle
for this study. It consists of a chassis, front frame, and
wheels constructed from Polylactic Acid (PLA) plastic using
a Fused-Deposition Modeling (FDM) 3D printer.

The vehicle’s tires are 2-inch diameter rubber O-rings. Its
front frame and front wheel ride on two sealed ball bearings
each. The vehicle’s rear wheel is driven by a 6V-capable
micro gearmotor with a built-in encoder mounted to the
chassis. Steering action is achieved using a parallel linkage
from the steered frame to a MG90s micro servo modified
to allow position feedback to be read by the vehicle’s
microcontroller. A Second MG90s servo is used to actuate a
kickstand to allow the vehicle to start and stop on its own as
it receives goal roll angle and start/stop commands from a
433 MHz radio transmitter-receiver pair. Data are transmitted
to a laptop computer via an HC-05 Bluetooth module.

We designed a custom Printed Circuit Board (PCB) for the
vehicle with a DRV8838 bidirectional motor driver for the
rear wheel, a 5V power regulation system receiving input
voltage from a 3.7V, 600 mAh lithium battery, a Bosch
BNOOS5S Inertial measurement unit, and an Atmel AT32U4 8-
bit processor running at 16MHz. The firmware we developed
for the AT32U4 Microcontroller allows for a control loop
time of roughly 0.01 seconds.

The vehicle was built to be an approximate 1:10 scale
dimensional replica of a 450cc racing motorcycle. Using a
small-scale vehicle for this study both reduces cost and in-
creases the demand on the Webots software when considering
simulation fidelity, since smaller vehicles have faster open-
loop unstable eigenvalues according to the model in Section
III-B, and because small-scale test vehicles almost always
have lower quality sensing and actuating equipment than
more expensive, full-size vehicles. Additionally, the utility of
using small-scaled vehicles in the development of intelligent
vehicle technology is well known (e.g. [35]), with specific
application examples using scaled vehicles in localization
technology [36], human-vehicle interaction [37] and dynamic
maneuvers like lane changes [38] providing further support
for the value of small vehicles for technology evaluation
and development. The parameters of our test vehicle relevant



TABLE 1
VEHICLE PARAMETERS

Symbol Parameter Value
b Wheelbase 0.16 m
c Trail 0.008 m
A Steer axis inclination 1.04 rad
h Height of total mass center 0.060 m
a z-coordinate of total mass center 0.0676 m
me Total mass 0.161 kg

to controller design and Webots model implementation are
shown in Table L.

B. Low-Order Vehicle Model

To facilitate a controller design for the test vehicle de-
scribed in Section III-A, a linear, second-order vehicle model
was used. This model is essentially consistent with the
“inverted pendulum” type models such as those used in [5],
[39], and [40]. Our model, which we use for controller design
only, assumes that only the rear frame of the vehicle has
significant mass, that the tires maintain a no-slip contact point
with the ground and have infinitely thin “knife” edges, that
the vehicle is moving at a constant forward speed U, that it
only deviates slightly from the “straight running” condition,
and that all of the vehicle’s mass is concentrated so that
it is well-represented by a point mass as shown in Figure
2. This model is limited in its predictive capability, but
if high-fidelity multi-body simulations in the Webots robot
simulation software can justify its use, controllers based on
this model can be suitable for implementation on the test
vehicle in physical experiments, as we show in Section IV.

Examining the coordinate system for the vehicle model
shown in Figure 2, the model’s equation of motion about
the vehicle model’s only true energetic degree of freedom
is in the roll direction, i. While the vehicle is permitted
to yaw with a rate i about the k axis, the yaw angular
velocity of the vehicle is fully described (constrained) by its
steering motion about the €y direction. The vehicle’s forward
velocity U contributes to its kinetic energy as well, but its
speed is assumed constant for the purposes of this model.
Ignoring small contributions to yaw rate from steering rate §
and considering only contributions from steer angle J, yaw
rate can be approximated as a function of the steering angle
0, along with its steer axis inclination A\, wheelbase b, and
forward speed U, as shown in Equation 1. This equation
is a consequence of the vehicle’s kinematics while turning
and relies on the no-slip assumption for contact between the
ground and the vehicle’s tires.

= U S;n A

Using LaGrange’s method to derive the system’s equation
of motion under the assumptions outlined above, we can use
the roll angle ¢ as the system’s single generalized coordinate.
Writing the vehicle mass center’s velocity with respect to the
origin of the body-fixed coordinate system defined in Figure
2 yields Equation 2.
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Fig. 2. Low-Order Model Dimensions and Configuration
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Assuming that changes in the height of the vehicle’s center
of mass due to trail ¢ and steer angle § are small enough to
be neglected, the vehicle’s potential energy is defined fully
by its mass and the roll angle ¢. This means that the vehicle’s
Lagrangian L =T — V is given by Equation 3.
1 . . .
L=3m (U2 +a2? + h2? — 2ahw¢) — mghcosd (3)
Assuming small § and ¢ angles and applying the ap-
proximate relationship between ) and J given in Equation
1 allows for the computation of the approximate Euler-
LaGrange equation about the ¢ degree of freedom for the
system. Applying this linearization after computing the rele-
vant derivatives of L yields Equation 4.
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In Equation 4, the two non-conservative torques 7, we
consider in our model are both functions of steer angle
input 6. The first is due to the D’Alembert inertial reaction
at the vehicle’s mass center from the vehicle’s centripetal
acceleration, and the second is due to the lateral shift in
the vehicle’s mass center when it is steered. These torques,
linearized for small angles J, ¢ are given in Equation 5. More
detailed treatments of this model and these specific torques
can be found elsewhere in the literature, such as in [40].
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Substituting the non-conservative torques from Equation 5
into Equation 4 yields the final linearized equation of motion
for the system model. Converted to transfer function form
and representing the linearized open-loop dynamics of the
vehicle from steer input § to roll angle ¢, the final model is
shown in Equation 6. Note that the vehicle mass m can be
canceled from the model entirely since the vehicle’s mass is
assumed to be concentrated at a point.
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This model is one of the simplest possible that describes
a STV’s behavior as it is steered, and is only stable under



Fig. 3. Modified PID control structure

active control. However, as we will show in Section IV, it
is sufficient for the controller design and experiments in this
study. The success of this model in stabilizing the test vehicle
also offers a second independent evaluation of the Webots
multi-body simulation software’s predictions by facilitating
comparisons of the Webots simulation’s predictions with the
closed loop transfer function of the controlled vehicle.

C. Feedback Controller Design

This study’s goal is to determine whether the multi-body
Webots robot simulation software captures the key physical
processes involved in single-track vehicle stabilization well
enough to be used for controller design and evaluation. To
ensure that the results of the validation experiments described
in Section III-E are repeatable and accessible to a variety of
audiences, a classical control structure was chosen to stabilize
the vehicle as modeled by Equation 6 for the test vehicle’s top
speed, which is approximately U = 0.9m/s. Any number of
control algorithms from the literature summarized in Section
IT could be used in its place, but using a classical, linear
controller that relies on a low-order model offers a challenge
for both physical implementation and for simulating vehicle
dynamics in the Webots software. This is mainly because
linear, classical control is a relatively “fragile,” less robust
approach to stabilization of a nonlinear, open-loop unstable
system when compared with an approach that uses learning
(e.g. reinforcement learning or an artificial neural network),
a robust linear or nonlinear control approach, or even with a
linear controller that has access to full state feedback.

We chose to use a modified Proportional-Integral-
Derivative (PID) control scheme, shown graphically in Figure
3. This controller uses system output for the proportional and
derivative portion of the controller, C,(s), and error for the
integral portion Cy(s). This approach eliminates excessive
overshoot that often results from “true” PID control’s two
control zeros in the forward path of a system’s closed-loop
transfer function. The control scheme also includes a “pre-
filter” transfer function G, (s) applied to the desired vehicle
roll angle to smooth out abrupt transitions in the system
setpoint.

This controller configuration has a transfer function from
reference input ¢4(s) to roll angle ¢(s) given by Equation 7,
where P(s) is the open-loop transfer function of the vehicle
from steer angle to roll angle, given in Equation 6.
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Fig. 4. Steering actuator model vs. experimental data for a 30°step in
desired steer angle

A simple first order transfer function with a time constant
7 = 0.25s and a steady-state gain of 1 was used for G,(s),
which is shown in Equation 8.

1
Ts+1

G, (s) = )

The plant transfer function of the vehicle P(s) shown
in Figure 3 and Equation 7 is outlined in Equation 6. In
addition to the vehicle’s nominal open-loop behavior, actuator
dynamics representing the MG90s servo on the test vehicle
were included in the control loop’s forward path. The actuator
was modeled as a second-order transfer function in standard
form, shown in Equation 9.

2
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The values of ¢, = 0.7 and w, = 23rad/s were fit to
data from a 30° step response for the MG90s servo that
actuates the vehicle’s steering axis while the vehicle’s tires
were resting on the ground. The results of this test, along with
the model fit for G,(s) are shown in Figure 4. The control
transfer functions C;(s) = &L and C,(s) = K, + Kgs
represent the I (integral) and PD (proportional-derivative)
portions of the standard PID control law, respectively. These
are shown in Equation 10.

Gu(s) =

K
Ci(s) = TI (10)

OO(S) = Kp + Kgs

Note that in Equation 7, the closed-loop characteristic equa-
tion, defined by the transfer function’s denominator, shows
the sum of C;(s) and C,(s) multiplied by the vehicle’s plant
and the actuator dynamics. Defining Cr(s) = Cr(s) 4+ Co(s)
allows for the recovery of the “standard” PID control law,
which means that the derivative gain K, can be factored out
of the controller transfer function Cr(s). This allows the
system’s closed-loop characteristic equation to be written in
terms of two control zeros z; and zo as shown in Equation
11.

—1 (54 21)(s+ 22)

% . Go(s)P(s) (11)

In Equation 11, 2120 = f{(; and z1 + 29 = % This
formulation of the system’s characteristic equation facilitates
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Fig. 5. Root Locus of Vehicle-Actuator System under PID Control

the construction of a root locus plot for the system given
knowledge of the two control zero locations, and allows for
K to be treated as the system’s root locus gain. Placing the
control zeros at z; = 0.5 and zo = 19.5 ensures that the root
locus branches from the steering actuator G,(s) do not go
unstable, so that the closed loop system has a theoretically
infinite increased-gain margin once the gain is large enough
to bring the system’s open-loop unstable eigenvalues into
the left-half of the complex plane. Figure 5 shows the root
locus for the system under the direction of the modified PID
controller designed above.

Using Figure 5, a root locus gain Ky = 0.2 was selected,
yielding gains of K;, = 4 and K; = 2 to complete the
controller design. The closed-loop transfer function’s slowest
eigenvalue is real, and is located at s = —1.4 rad/s with the
chosen controller, predicting a 2% settling time of roughly
2.86 seconds.

D. Multi-Body Webots Model

The Webots open-source robot simulation software [16]
allows users to construct “robots” from rigid bodies con-
nected by standard joints. The software’s physics engine
solves constraints defined by the joints and forces due to
contact between bodies (e.g. tires and ground) numerically
as it simulates the physics of the system. It also allows
users to define a “PROTO,” which is a re-usable robot
configuration with adjustable parameters. In a prior study
[6], we built such a PROTO to simulate STV dynamics across
varying parameter values, and showed that Webots’s dynamic
predictions agree well with canonical models of motorcycle
dynamics. The configuration of this adjustable simulation
element is shown in Figure 6. For the present study, the
prismatic joint P; representing front suspension and the
revolute joint Ry representing rear suspension were disabled
because the test vehicle described in Section III-A has no
suspension. All other inertial and dimensional parameters in
the PROTO were matched to measurements from the test
vehicle for simulation in Webots. In addition to the bodies
and joints shown in Figure 6, the vehicle was equipped with
an automatic kickstand, built as a child of Rigid Body B
in the vehicle’s definition. The drive motor powering Rigid

Rigid body B (rear frame)

Revolute R1

Revolute R3 (steer axis)

Rigid body C (front frame)

Rigid body D (front wheel) Massless Link

Rigid body A (rear wheel)
Revolute R2 (rear suspension)

Prismatic P1 (front suspension)
Massless Link

Revolute R4 (front wheel bearing)

Fig. 6. Rigid body and joint configuration of test vehicle in Webots

Body A (rear wheel) through Revolute R1 and the steering
motor powering Rigid Body C through Revolute R3 both had
dynamic parameters fit to match those of the drive motor on
the physical test vehicle. The vehicle’s representation in the
Webots software is shown in Figure 7.
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Fig. 7. Webots representation of test vehicle

For the simulations in this study, the Coulomb friction
coefficient between tires and ground was set to 1.2 to
match typical friction between rubber tires and a hardwood
floor. The Coulomb friction coefficient between the vehicle’s
kickstand and ground was set to 0.2 to match the friction
of our smooth plastic kickstand on a hardwood floor. The
simulations described in Section III-E all used a simulation
timestep of 1ms and a controller refresh rate of 100H z to
match the control loop time of the test vehicle described in
Section III-A.

E. Experimental Design

Two experiments with accompanying simulations were
conducted to evaluate the fidelity of the multi-body Webots
simulation model described in Section III-D.

First, to compare Webots’s ability to predict vehicle roll
dynamics with both experimental data and with the predic-
tions of the closed loop linear model developed in Section
HI-C, a 0.15 radian step response in desired roll angle
was conducted at the vehicle’s maximum forward speed of
0.9m/s.

However, this simulation alone doesn’t highlight Webots’s
ability to predict single-track vehicle dynamics outside the
approximately linear region of the vehicle’s behavior. To
compare Webots’s predictions with experimental data in a
more complex dynamic task that involves nonlinear effects
like sliding friction along with vehicle longitudinal accel-
eration, the test vehicle was equipped with an automatic



kickstand and a Finite State Machine (FSM). This FSM is
summarized in Figure 8.
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Fig. 8. Finite State Machine for automatic starting and stopping

In Figure 8, elapsed times tg,,tsq represent the time in
seconds that the FSM has been in states “Swing-Up” and
“Swing-Down” respectively. The FSM’s actions combine the
linear controller of Section III-C with acceleration and decel-
eration from the rear drive motor along with the actuation of a
motorized kickstand. This results in behavior that can not be
modeled using a linear transfer function such as Equation 7.
The FSM achieves “swing-up” by using a kickstand-actuated
servo to thrust the vehicle upward in roll from rest as it
accelerates to top speed when a “go” command is received
from the vehicle’s remote control. During a test run, when
in the “Drive” state, the vehicle receives ¢4 commands from
the remote control as it drives and stabilizes itself. When
a “stop” command is received from the remote control, the
vehicle transitions into the “Swing-Down” state, in which
the control system receives a —5° goal roll command, and
deploys the kickstand into a supportive position so that the
vehicle lands back on its kickstand safely at the comple-
tion of the experiment. Using this automatic kickstand and
its accompanying FSM, a second experiment consisting of
controller-assisted teleoperation was conducted with the same
time-series of commands and controller signals applied to
the Webots simulation to allow for comparison of Webots’s
predictions with experimental data. That experiment both
began and concluded with the test vehicle in the “stopped”
state.

IV. RESULTS

The results of the step response test described in Section
III-E are shown in Figure 9. Visual analysis of Figure 9 shows
that the rise time, settling time, percent overshoot, and steady
state value of the vehicle roll angle predicted by the multi-
body Webots simulation match well with the data. The linear
model is similarly predictive, with a slightly lower steady-
state value. The linear model predicts perfect steady-state
tracking of the 0.15 radian goal roll angle, while the multi-
body simulation and experimental data show slight overshoot
of the goal at steady state, most likely due to nonlinearities
associated with violations of the knife-edged tire assumption
and/or the no-slip assumption in the linear model. Because of
the linear model’s prediction of a 2.86-second settling time
in closed loop, and because of the noise in IMU data during
the experiment, we conservatively used the mean of the

last 2 seconds of roll measurements to estimate steady state
roll from both the Webots simulation and the step response
experiment. These estimates were 0.1719 and 0.1604 radians
for Webots and experiment, respectively. This means that
Webots predicted the vehicle’s experimental steady state
roll angle within 7%. Further, the Root-Mean-Squared Error
(RMSE) between Webots’s roll angle predictions and the
experimental data was 0.023 radians, or roughly 1.31°, which
appears to be mostly due to a combination of disturbances
and sensor noise present in the experimental data that are
(for the present study) unmodeled in Webots.

The steering angle data in Figure 9 also show good visual
agreement between experiment and Webots. However, on the
test vehicle, steering angle was measured by soldering a lead
onto the steering servo’s integral potentiometer, which was
then read by the AT32U4 processor’s 10-bit analog-to-digital
converter. Therefore, the steering measurement is quite noisy
and not especially precise. In general, the steering data has
a much worse Signal-To-Noise Ratio (SNR) than the IMU’s
roll angle measurement, and is also subject to disturbances
during the experiment from floor surface irregularities and
unmodeled effects like mechanism free play that are difficult
to replicate in Webots. This explains the steering angle’s
far less impressive RMSE value of 0.153 radians. Still,
the agreement in shape and steady state value are strong,
indicating that Webots is capable of reasonably representing
control effort on the self-driving STV.
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Fig. 9. Closed loop vehicle behavior for a 0.15 radian step in desired roll
angle for linear model, Webots, and experiment

The results of the “free driving” tele-operation test with au-
tomatic swing-up and swing-down to and from the vehicle’s
kickstand, described in Section III-E, are shown in Figure 10.
A visual analysis of the roll angle panel of Figure 10 shows
that the multi-body webots simulation matches well with
experimental data, even during the periods of relatively high
acceleration and deceleration at the beginning and end of the
test. The RMSE in roll between Webots and experiment was
0.0271 radians for the 32-second test. The experimental data
show a more pronounced initial oscillation in the vehicle’s
roll angle during the swing-up acceleration phase, which
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Fig. 10. Closed loop vehicle behavior during swing-up, free driving via
teleoperation, and swing-down for both multi-body Webots simulation and
experiment

could be due in part to tire slip, which was not modeled in
Webots. While not included for this study, a higher fidelity
tire slip model is possible to add to the Webots simulation
after a thorough characterization of the test vehicle’s tires.

Although Figure 10 also shows good visual agreement
between Webots and experiment for yaw rate and steer angle,
both signals suffer from a poor SNR, yielding less impressive
RMSE values of 0.62 radians per second and 0.15 radians,
respectively. Note that no filtering was applied to these
measurements in the controller’s code, so none was applied
to the data shown in Figure 10 either. The vehicle’s speed
during the experiment was predicted well by Webots with an
RMSE value of 0.09 meters per second.

In summary, visual agreement between Webots’s predic-
tions for both the step response test and the teleoperation
experiment are strong, even in the face of relatively noisy,
low-cost sensors on our test vehicle, and even in the face of
the fact that a small-scale STV’s eigenvalues are faster (and
therefore more difficult to replicate accurately) than those
of a full-size vehicle. This suggests that this agreement is
likely to generalize to larger vehicles. Numerical comparisons
between Webots and experiment for vehicle roll angle are
also strong in both tests. While numerical error metrics
for steering and yaw rate are less impressive, this can be
explained by poor SNR and sensor precision for these signals
rather than a shortcoming of Webots’s predictions.

V. CONCLUSIONS AND FUTURE WORK

This paper explores whether the nonlinear multi-body
Webots robot physics simulator is suitable for the prediction
of the closed-loop behavior of PTWs and other STVs. Using a
small-scale experimental PTW and a linear controller for roll

stabilization, this paper showed that the multi-body Webots
simulation served as a suitable intermediate controller vali-
dation step between the low-order model used for controller
design and data from the physical test vehicle. Our results
indicate that Webots has potential as a free, open-source
alternative to commercial multi-body software as a predictor
of the closed-loop performance of robotic STVs.

These results are encouraging, but they are not without
limitations that warrant future investigation. We have shown
that Webots can predict the behavior of one vehicle config-
uration under closed loop control. However, evaluations of
Webots’s predictions across a variety of vehicle parameter
ranges and under more aggressive maneuvers are necessary
before Webots could be considered a complete, equivalent
replacement for commercial multi-body software. Although
comparative analyses between Webots and other multi-body
simulation packages would be helpful for contextualizing
Webots’s relative accuracy, such comparisons are out of scope
for the present study, and are planned for future work.

Even in light of the limitations of the experiments and
simulations presented, our work shows that Webots could
have been used to predict our test vehicle’s closed-loop sta-
bility and dynamic responses in lieu of physical experiments.
This provides support for our hypothesis that Webots offers
researchers a free, open-source option for designing self-
driving STVs and related STV technology in the service of
improving road safety for STV pilots and the other road users
who interact with them.

REFERENCES

[1] A. Ragnoli, M. V. Corazza, and P. Di Mascio, “Safety ranking
definition for infrastructures with high ptw flow,” Journal of traffic
and transportation engineering (English edition), vol. 5, no. 5, pp.
406416, 2018.

[2] T. Koshizen, F. Sato, R. Oishi, and K. Yamakawa, ‘“Predicting motor-

cycle riding behavior using vehicle density variation,” in 2021 IEEE

Intelligent Vehicles Symposium Workshops (IV Workshops), 2021, pp.

114-121.

J. Meijaard, J. M. Papadopoulos, A. Ruina, and A. Schwab, “Linearized

dynamics equations for the balance and steer of a bicycle: a benchmark

and review,” Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, vol. 463, no. 2084, pp. 1955-

1982, Jun. 2007, publisher: Royal Society. [Online]. Available:

https://royalsocietypublishing.org/doi/10.1098/rspa.2007.1857

[4] G. Savino, M. Pierini, M. Rizzi, and R. Frampton, “Evaluation of an
autonomous braking system in real-world ptw crashes,” Traffic injury
prevention, vol. 14, no. 5, pp. 532-543, 2013.

[5] N. Persson, T. Andersson, A. Fattouh, M. C. Ekstrom, and A. V.
Papadopoulos, “A Comparative Analysis and Design of Controllers for
Autonomous Bicycles,” in 2021 European Control Conference (ECC),
2021, pp. 1570-1576.

[6] W. Li, P. Francis, R. McClosky, and A. Brown, “Webikes: a config-
urable, open-source add-on for simulating single-track vehicle dynam-
ics in the webots robot simulation software,” Advances in Transporta-
tion Studies, vol. Special Vol. 4, pp. 73-88, 2024.

[71 M. Fouka, L. Nehaoua, H. Arioui, and S. Mammar, “Motorcycle
inertial parameters identification via algorithmic computation of state
and design sensitivities,” in 2018 IEEE Intelligent Vehicles Symposium
(1V), 2018, pp. 3926-3929.

[8] S. Vadlamudi, K. V. Lakshmi, A. Yaramala, C. Uppalapati, and P. K.
Kolluri, “Self balancing motorcycle using reinforcement learning,” in
2024 International Conference on Emerging Systems and Intelligent
Computing (ESIC). 1EEE, 2024, pp. 691-696.

[9] K. V. Lakshmi and M. Manimozhi, “Implementation of ddpg based
reinforcement learning control for self-balancing motorcycle,” IEEE
Access, 2024.

[3

[t}



[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

D. Limebeer, R. Sharp, and S. Evangelou, “The stability of motorcycles
under acceleration and braking,” Proceedings of The Institution of
Mechanical Engineers Part C-journal of Mechanical Engineering
Science - PROC INST MECH ENG C-J MECH E, vol. 215, pp. 1095—
1109, 09 2001.

M. Pryde, O. Alrazouk, L. Nehaoua, H. Hadj—Abdelkader, and H. Ar-
ioui, “Visual-inertial lateral velocity estimation for motorcycles using
inverse perspective mapping,” in 2022 17th International Conference
on Control, Automation, Robotics and Vision (ICARCV), 2022, pp.
217-222.

P.-M. Damon, H. Hadj-Abdelkader, H. Arioui, and K. Youcef-Toumi,
“Powered two-wheeled vehicles steering behavior study: Vision-based
approach,” in 2018 15th International Conference on Control, Automa-
tion, Robotics and Vision (ICARCV), 2018, pp. 355-360.

M. R. Garcia, D. A. Mantaras, J. C. Alvarez, and D. Blanco, “Stabi-
lizing an urban semi-autonomous bicycle,” IEEE Access, vol. 6, pp.
5236-5246, 2018.

V. Del Rosso, A. Andreucci, S. Boria, M. L. Corradini, R. Giambo,
and A. Ranalli, “Modelling and control of a self-balancing electric mo-
torcycle: Preliminary results,” in 2018 26th Mediterranean Conference
on Control and Automation (MED), 2018, pp. 867-872.

N. Persson, M. C. Ekstrom, M. Ekstrom, and A. V. Papadopoulos, “Tra-
jectory tracking and stabilisation of a riderless bicycle,” in 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC),
2021, pp. 1859-1866.

O. Michel, “Webots: Professional mobile robot simulation,” Journal
of Advanced Robotics Systems, vol. 1, no. 1, pp. 39-42, 2004.
[Online]. Available: http://www.ars-journal.com/International-Journal-
of- Advanced-Robotic-Systems/Volume-1/39-42.pdf

Webots, “http://www.cyberbotics.com,” open-source Mobile Robot
Simulation Software. [Online]. Available: http://www.cyberbotics.com
B. Xing, L. Guo, S. Wei, and Y. Song, “Dynamic modeling and robust
controller design for circular motion of a front-wheel drive bicycle
robot,” in 2016 IEEE International Conference on Mechatronics and
Automation, Aug. 2016, pp. 1369-1373, iSSN: 2152-744X. [Online].
Available: https://ieeexplore.ieee.org/document/7558762

Y. Sun, M. Zhao, B. Wang, X. Zheng, and B. Liang, “Polynomial
Controller for Bicycle Robot based on Nonlinear Descriptor System,”
in IECON 2020 The 46th Annual Conference of the IEEE Industrial
Electronics Society, Oct. 2020, pp. 2792-2797, iSSN: 2577-1647.
[Online]. Available: https://ieeexplore.ieee.org/document/9254572

X. Zhu, X. Zheng, Q. Zhang, Z. Chen, Y. Liu, and B. Liang, “Natural
Residual Reinforcement Learning for Bicycle Robot Control,” in 2021
IEEE International Conference on Mechatronics and Automation
(ICMA), Aug. 2021, pp. 1201-1206, iSSN: 2152-744X. [Online].
Available: https://ieeexplore.ieee.org/document/9512587

S. Vatanashevanopakorn and M. Parnichkun, “Steering control based
balancing of a bicycle robot,” in 2011 IEEE International Conference
on Robotics and Biomimetics, Dec. 2011, pp. 2169-2174. [Online].
Available: https://ieeexplore.ieee.org/document/6181613

G. Lei, H. Kai, S. Yuan, and X. Bin, “Robust controller design for 90
degrees stand motion of a front-wheel drive bicycle robot,” in 2016
IEEE International Conference on Mechatronics and Automation,
Aug. 2016, pp. 13561362, iSSN: 2152-744X. [Online]. Available:
https://ieeexplore.ieee.org/document/7558760

H. D. Sharma and N. UmaShankar, “A Fuzzy Controller Design
for an Autonomous Bicycle System,” in 2006 IEEE International
Conference on Engineering of Intelligent Systems, Apr. 2006, pp. 1-6.
[Online]. Available: https://ieeexplore.ieee.org/document/1703218

D. A. Bravo M., C. F. Rengifo R., and J. F. Diaz O., “Comparative
Analysis between Computed Torque Control, LQR Control and
PID Control for a Robotic Bicycle,” in 2019 IEEE 4th Colombian
Conference on Automatic Control (CCAC), Oct. 2019, pp. 1-6.
[Online]. Available: https://ieeexplore.ieee.org/document/8920870

A. Suebsomran, “Balancing control of bicycle robot,” in 2012
IEEE International Conference on Cyber Technology in Automation,
Control, and Intelligent Systems (CYBER), May 2012, pp. 69-73.
[Online]. Available: https://ieeexplore.ieee.org/document/6392529

N. Getz and J. Marsden, “Control for an autonomous bicycle,” in
Proceedings of 1995 IEEE International Conference on Robotics and
Automation, vol. 2, 1995, pp. 1397-1402 vol.2.

N. Aphiratsakun and K. Techakittiroj, “Autonomous AU
Bicycle: Self-Balancing and tracking control (AUSB2),” in 2013
IEEE International Conference on Robotics and Biomimetics

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

(36]

[37]

[38]

[39]

[40]

(ROBIO), Dec. 2013, pp. 480-485. [Online]. Available:
https://ieeexplore.ieee.org/document/6739505

C. Xiong, Z. Huang, W. Gu, Q. Pan, Y. Liu, X. Li, and E. X. Wang,
“Static Balancing of Robotic Bicycle through Nonlinear Modeling
and Control,” in 2018 3rd International Conference on Robotics and
Automation Engineering (ICRAE), Nov. 2018, pp. 24-28. [Online].
Available: https://ieeexplore.ieee.org/document/8586765

N. He, Q. Hu, J. Chen, and K. Zhang, “Self-Balancing Bicycle Based
on Control Moment Gyroscope,” in 2023 42nd Chinese Control
Conference (CCC), Jul. 2023, pp. 4493-4498, iSSN: 1934-1768.
[Online]. Available: https://ieeexplore.ieee.org/document/10240993

L. Guo, Q. Liao, S. Wei, and Y. Zhuang, “Design of linear
quadratic optimal controller for bicycle robot,” in 2009 I[EEE
International Conference on Automation and Logistics, Aug.
2009, pp. 1968-1972, iSSN: 2161-816X. [Online]. Available:
https://ieeexplore.ieee.org/document/5262628

F. Li, “Research on self-balancing unmanned bicycle based on
cascade PID control,” in 2021 IEEE 2nd International Conference
on Information Technology, Big Data and Artificial Intelligence
(ICIBA), vol. 2, Dec. 2021, pp. 442-446. [Online]. Available:
https://ieeexplore.ieee.org/document/9687999

L. Guo, Q. Liao, and S. Wei, “Design of Fuzzy Sliding-
mode Controller for Bicycle Robot Nonlinear System,”
in 2006 IEEE International Conference on Robotics and
Biomimetics, Dec. 2006, pp. 176-180. [Online]. Available:

https://ieeexplore.ieee.org/document/4141860

L. Keo and M. Yamakita, “Controller design of an autonomous
bicycle with both steering and balancer controls,” in 2009
IEEE Control Applications, (CCA) & Intelligent Control, (ISIC),
Jul. 2009, pp. 1294-1299, iSSN: 1085-1992. [Online]. Available:
https://ieeexplore.ieee.org/document/5281010

Y. Feng, R. Du, and Y. Xu, “Steering angle balance control method
for rider-less bicycle based on adams,” in Proceedings of the Second
International Conference on Intelligent Transportation.  Springer,
2017, pp. 15-31.

G. Ozbilgin, A. Kurt, and Ozgiiner, “Using scaled down testing to
improve full scale intelligent transportation,” in 2014 IEEE Intelligent
Vehicles Symposium Proceedings, 2014, pp. 655-660.

M. S. Hamza, O. M. Shehata, E. I. Morgan, and C. M. Elias, “Vision-
based indoor positioning system for connected vehicles in small-scale
testbed environments,” in 2024 IEEE Intelligent Vehicles Symposium
(IV), 2024, pp. 144-148.

P. Scheffe and B. Alriface, “A scaled experiment platform to study
interactions between humans and cavs,” in 2023 IEEE Intelligent
Vehicles Symposium (IV), 2023, pp. 1-6.

W. He, X. Wang, G. Chen, M. Guo, T. Zhang, P. Han, and R. Zhang,
“Monocular based lane-change on scaled-down autonomous vehicles,”
in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, pp. 144-149.
S. Vatanashevanopakorn and M. Parnichkun, “Steering control based
balancing of a bicycle robot,” in 2011 IEEE International Conference
on Robotics and Biomimetics. 1EEE, 2011, pp. 2169-2174.

K. J. Astrom, R. E. Klein, and A. Lennartsson, “Bicycle dynamics and
control: adapted bicycles for education and research,” IEEE Control
Systems Magazine, vol. 25, no. 4, pp. 26-47, 2005.



