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Abstract 

This paper explores the effects of roadside vegetation and/or cover on the probability of vehicular collisions 
with deer by identifying and simulating dangerous animal-vehicle interaction scenarios. Deer motion is 
described by a simplistic model inspired by the literature on deer escape behavior, and a genetic algorithm 
identifies problematic combinations of model parameter values given a particular vehicle-driver-environment 
configuration. A nonlinear, planar bicycle model is used to simulate vehicle dynamics. Two simulated driver-
assist systems drive the vehicle model in simulation: the first applies brakes to approximate a “forward 
collision assist” system, and the second combines braking and steering inputs using model predictive control 
to avoid obstacles. Simulations of these driver-vehicle models interacting with deer are carried out for various 
configurations of roadside cover geometry. For the configurations explored in this study, the methodology 
produces recommended safe driving speeds for vehicles employing each driver assist system given a particular 
road configuration. 
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1. Introduction 

Estimates provided by the Insurance Institute for Highway Safety show that over 1.5 million 
deer-vehicle collisions occur per year in the United States, causing 150 occupant deaths, and over 
$1 billion in vehicle damage [1]. While a substantial body of literature addresses the danger of large 
animal collisions to humans [2], deer behavior and infrastructure-related factors in deer collisions 
[3, 4], patterns in deer-vehicle collisions [5], and human factors influencing the frequency of 
collisions [6], few studies have addressed how to accurately simulate intelligent vehicles interacting 
with animals on a roadway, and fewer still address collision avoidance system design with respect 
to animal-vehicle collisions specifically. 

Considering the millions of miles of self-driving vehicle tests already being conducted on public 
roads [7], it is important to consider the safety of self-driving systems in the event of a sudden 
animal crossing. While there has been some recent work in the intelligent vehicles community 
focusing on animal detection, e.g. in [8, 9], more work is needed to prepare collision avoidance 
systems to encounter animals on the road, and/or to prepare for possible regulatory or infrastructure-
related changes that may be necessary to make rural driving with self-driving vehicles as safe as 
possible. Combining what is known about animal-vehicle collisions, vehicular technology, and 
animal escape behavior will help inform Original Equipment Manufacturers (OEMs) and regulatory 
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bodies alike as level 3 and higher [10] vehicle automation penetrates vehicle markets, especially 
those markets that include rural driving. To this end, Cutrone et al. developed a simple, flexible 
model for deer motion during road crossing events [11]. A Genetic Algorithm (GA) was used to 
find particularly dangerous combinations of model parameters given a particular driver-vehicle 
system and sight distance to an animal’s initial position. However, the paper stopped short of 
actually making recommendations for reducing collision risk. Further, the study only used 
rudimentary approximations of self-driving vehicles with very basic collision avoidance capability, 
and simulations did not incorporate the presence or proximity of roadside cover. The present study 
extends Cutrone’s simulation methodology, incorporating more sophisticated driver models and 
including the effects of roadside cover on animal visibility to offer insights about how fast a 
particular vehicle-driver system should be permitted to travel on a particular road given its 
environmental geometry.  

To develop a methodology for identifying deer-vehicle collision risk for a particular vehicle as 
a function of road cover geometry and speed, it was necessary to integrate knowledge from several 
different fields. Approaching the question of how fast a vehicle equipped with a particular collision 
avoidance system should go in high-risk areas for deer-vehicle collisions requires some 
understanding of how roadside cover affects collision probability (at least in human-driven 
vehicles), how deer may move when confronted with a probable collision, and what kinds of 
collision avoidance systems are likely to be employed in future self-driving cars. 

Luckily, the effects of roadside cover on the frequency of deer-vehicle collisions have received 
a considerable amount of attention in the literature. For example, wooded areas are not only more 
likely to have higher deer density, but also hinder the driver and the sensors used in self-driving 
cars as they attempt to detect the presence of deer along the sides of the road [12]. In particular, 
Finder and Woolf [12] provided evidence that greater distance to forest cover decreased the 
probability of a road segment being a high deer-vehicle collision area. In other words, the closer 
the road was to a wooded area, the more likely a deer-vehicle collision was to occur. Considering 
collision data for Pennsylvania in particular, Bashore, Tzilkowski, and Bellis [13] found that high-
frequency kill zones in wooded areas tended to be longer than in non-wooded areas, meaning that 
a driver could expect to encounter a deer almost anywhere in these areas. This paper also indicated 
that being able to see a deer early when trying to avoid a collision is important, and showed an 
inverse relationship between speed limit and collision probability. Further supporting the 
importance of sight distance in avoiding collisions with animals, Waring, Griffis, and Vaughn [3] 
studied deer crossings in both wooded and open field areas, and found that the lack of visibility in 
wooded areas was a key predictor of deer-vehicle collision frequency. 

Compared with finding forensic data on deer-vehicle collisions, studies helpful for predicting 
how a deer or similar large animal might move when confronted with an imminent collision are 
more rare. Most of the work in this area is focused on how deer react when approached by predators. 
A vehicle may or may not be coded as a “predator” by a deer, but without a substantial body of data 
on deer motion when confronted with a car on a road in controlled, repeatable conditions, there is 
little else to use when building a dynamic model of animal flight.  Additionally, while many of the 
studies describing deer motion in response to predator approach provide some metrics that quantify 
the gross behavior of the animals during flight, they generally do not provide a complete model of 
animal motion appropriate for simulation. For example, in [14], Lingle, Pellis, and Wilson studied 
escape gaits of different deer species in flight, but the study does not provide measures of flight 
direction. Some studies do provide some gross motion data on deer escape patterns, and some even 
mention how proximity to cover might influence behavior during flight. However, contradictions 
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between results presented in key studies such as the work of Rohm, Nielsen, and Woolf [15] and 
Grovenburg et al. [16] make sweeping generalizations difficult. If nothing else, this indicates that 
many complex factors likely interact to produce the trajectories that deer produce when fleeing. 
Significant factors influencing escape behavior aren’t limited to landscape, either. Some researchers 
have even found that a deer’s age can affect its escape behavior [17, 18]. For this reason, Cutrone’s 
model of deer escape behavior, which was developed in [11] specifically to simulate deer flight 
during a road crossing event, used very general trends about the probabilistic nature of deer flight 
direction observed in [19] to prioritize model flexibility. The model allowed the simulated animal 
to change direction one time during a road crossing event. The model used in this study and 
presented in Section 2.1 is very similar to Cutrone’s original model, allowing for wide ranges of 
model behavior to account for as much complexity in deer behavior as possible while keeping the 
number of model parameters to a minimum.  

Finally, in considering interactions between deer and vehicles equipped with Advanced Driver 
Assist Systems (ADAS) or self-driving capability, it is important to use a representative model of 
a vehicle’s collision avoidance system in simulation. While many approaches have been studied, 
algorithms that solve for an optimal input trajectory using a receding horizon approach have been 
relatively common for more than a decade, whether the optimization carried out is for path planning, 
or whether vehicle inputs are considered in the optimization directly [20]. For example, Falcone et 
al. [21, 22] have used Model Predictive Control (MPC) as a framework for vehicle control in 
multiple contexts. In [21], the authors developed an obstacle avoidance system capable of combined 
cornering and braking, and the optimization strategy directly produced vehicle control inputs that 
directed the vehicle around an obstacle. As is common [20], Falcone’s controller in [21] also 
estimated the future position of an obstacle in order to allow the system to act in an anticipatory 
manner. This is key to avoiding obstacles that move, because the system must plan and execute a 
path that considers where the obstacle will be, instead of simply where the obstacle is now. While 
some approaches, including [21], solve for vehicle steering angle directly in the optimization 
framework, others, such as [23], plan a vehicle’s path using a drastically simplified model. These 
approaches rely on low-level controllers to compute the required vehicle inputs needed to follow 
the optimal path.  

While designing a controller that assumes a constant-velocity model of obstacle motion has 
been shown to produce good controller performance [21], more recent advances in obstacle 
avoidance technology have incorporated more complex probabilistic models of obstacle motion 
[24, 25]. Even though the MPC controller developed in Section 2.3 uses a constant velocity 
approximation for obstacle motion, the results presented in Section 3 could be replicated for any 
controller architecture, including those that have more sophisticated methods for predicting obstacle 
motion.  

The remainder of this paper is organized as follows. Section 2 outlines the models for deer 
behavior, vehicle behavior, and driver behavior used in the experiments presented in Section 3. 
Section 4 discusses the results of two sets of simulation-based experiments that offer insights about 
maximum recommended speeds for the vehicle-driver model described in Section 2 given a 
particular roadside cover configuration, and Section 5 offers some general conclusions and 
recommendations for future work. 
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2. Simulation methodology 

2.1. Deer motion model 

In order to study the safety of an automated or partially automated driving system when 
confronted with a deer crossing the road, it is necessary to have a plausible model of how the 
animal’s motion might evolve during the interaction. In [11], Cutrone et al. developed a rudimentary 
model of deer motion. The model represents a step up in complexity compared with a constant-
velocity model, but remains flexible to accommodate a wide range of possible animal trajectories. 
In Cutrone’s model, an animal’s movement when crossing a road has the following three 
components or “phases.” 

1. Initial acceleration (phase 1) 
2. Deceleration and turn (phase 2) 
3. Final acceleration (phase 3) 
In [11], a GA was used to explore a broad parameter space, eventually finding particularly 

dangerous combinations of parameters governing each phase of the simulated animal’s motion 
given a particular driver model. Phase 1 represents the animal’s initial decision to cross the road. 
Phase 2 represents a moment when the animal assesses that the risk of collision with the vehicle 
warrants a change in direction, and phase 3 represents the animal’s final acceleration to a steady-
state speed to complete the road crossing event. It is important to note that in implementing this 
approach, allowing a GA to search for dangerous parameter combinations should not be confused 
with an attempt to find probable deer crossing scenarios. The algorithm simply explores the space 
of approximate deer trajectories that are plausible under the assumptions that the deer participates 
in the “phases of motion” listed above while crossing the road. It is possible that the “most 
dangerous” deer crossing event as identified by the GA will never occur on a real roadway. 
However, when human fatalities are a risk, even low-probability events are important test cases for 
evaluating a vehicle safety system. As more studies explore deer flight behavior, the model 
structures and parameters of this framework can be easily updated to improve simulation fidelity. 

The present study’s implementation of the deer motion model preserves the overall three-phase 
structure of the model presented in [11], with limited changes to make the resulting motion more 
physical and improve the model’s alignment with available data on ungulate flight behavior where 
possible. Figure 1 shows a plot of the forward velocity of the model through all three phases as a 
function of time, along with an illustration of key parameters as they progress through the three 
phases of motion.  

 

 

Figure 1. Deer model motion during a road crossing event 
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As Figure 1 shows, the simulated animal’s speed follows a first-order growth towards a steady 
state value, which is interrupted by a period of constant deceleration. This deceleration occurs 
during the animal’s direction change—the model assumes that large changes in angle require the 
animal to slow down to maintain a maximum “overall” acceleration. This total acceleration is 
governed by the deer’s acceleration time constant. Once the turn to a final escape angle has been 
completed, the simulated animal accelerates back towards its steady state speed. This model for 
deer motion is fully described by only five adjustable parameters, which are shown with their 
respective ranges in Table 1. 

 
Table 1: Deer model parameters and ranges 

 Symbol Description Range Units 
 Ψ! Initial heading [0,p] rad 
 𝑦" Initial offset from lane center [-4.0,-30.0] m 
 𝑣#$% Steady-state forward velocity [5.0,18.0] m/s 
 𝜏! Acceleration time constant [0.75,5.0] s 
 𝑑" Flight (phase 2) initiation distance [20.0,120.0] m 

 
In phase 1, the model’s velocity is governed by equation 1, approximating its velocity as first 

order. 
 

�̇�#$$%	 =
'
(!
(𝑣)*+ − 𝑣#$$%)      (1) 

 
In equation 1, 𝑣)*+ and τ! were chosen to represent a range of plausible deer flight speeds and 

time constants, consistent with [11]. Global X (down the road) and Y (across the road) coordinates 
are updated in all phases according to equation 2. 

 

*�̇�
�̇�
- = .𝑣#$$% sin𝜓#$$%𝑣#$$% cos𝜓#$$%

	 	 	 	 	 	 (2)	

	
In equation 2, Initial conditions are governed by the deer’s initial offset from the lane center and 

longitudinal position. For consistency, and to match the distance at which the simulated vehicle 
controllers can detect an animal in the absence of occlusion (see Section 2.3), all simulated deer 
began moving at x, = 60𝑚 farther down the road than the vehicle’s initial position for all 
simulations in this paper.  

As shown in Figure 1, 𝜓#$$% is given by 𝜓' during phase 1.  However, when the distance 
between the deer and the vehicle is less than or equal to the flight distance, 𝑑", the deer enters phase 
2, marking the model’s assessment that a collision is imminent. The range of distances allowed for 
𝑑" was taken from [19], in which the authors recorded flight behavior of black-tailed deer in 
response to foot pursuit by humans. 

In phase 2, the deer selects a single flight direction ψ$-. from the normal distribution 
𝒩(136∘, (28.3∘)0). This distribution represents a fit of the data presented for deer flight directions 
in [19]. In the present model,  ψ$-. is defined relative to the line connecting the deer and the vehicle 
at every instant, which means that the actual angle that the deer needs to achieve in the earth-fixed 
coordinate system depends on the vehicle’s position. 
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 Assuming that the deer’s overall “urgency” in acceleration is governed by the single parameter 
τ!, as in [11], the deer is permitted in simulation to accelerate in both the lateral and longitudinal 
direction with a maximum acceleration equal to the average acceleration that the deer experiences 
during the first τ! seconds of phase 1. This maximum acceleration, 𝑎)*+,  is given by equation 3. 

 
𝑎)*+ = 0.632 !"#$

(!
      (3) 

 
During phase 2, the simulated deer continuously computes the difference between its current 

orientation ψ# and the angle through which it must turn to achieve its chosen escape angle 𝜓$-.	 
relative to the car’s position. In the earth-fixed coordinate system, this “goal angle” is given by 𝜓0. 
At each timestep, 𝜓0is given by equation 4. 

 
𝜓0 = tan1' 2%&&'12()'

3%&&'13()'
+𝜓456     (4) 

 
If turning to the goal angle in one timestep would result in a centripetal acceleration greater than 

𝑎)*+, the deer decelerates longitudinally with 𝑣	̇ #$$% = −𝑎)*+ and turns with maximum centripetal 
acceleration according to equation 3 during that timestep. This process repeats until either the car 
has passed, or the deer achieves the desired escape angle 𝜓0. The maximum yaw rate the deer can 
achieve to maintain a lateral acceleration 𝑎)*+ is given by equation 5. 

 
𝜓	̇ )*+ =

*"#$
!*++,

       (5) 
 
This per-timestep turning behavior results in smoother simulation trajectories than the model 

presented in [11], where the deer was assumed to make its full turn in a single simulation timestep. 
After the deer completes phase 2’s deceleration and turn, it accelerates back towards its steady-state 
speed as given in equation 1 to complete phase 3. In all of the following simulations, the deer 
behavior described above is simulated using Euler integration in Python with a time step of 0.015s. 
For all experiments in Section 3, deer model parameters are “evolved” using a GA nearly identical 
to the one used in [11], with the GA attempting to minimize interquartile mean minimum distance 
between vehicle and deer during each test of a particular model configuration. In practice, this 
means that the GA attempts to find combinations of model parameters that are especially difficult 
to avoid. Just as in [11], The GA uses 5-bit resolution for each parameter, a population size of 15 
genomes, and 8 trials per genome to compute a score for each. In cases where generations resulted 
in nearly identical scores across individuals, 5 randomly generated individuals were added to the 
mating pool to help prevent the algorithm from remaining stuck in a local minimum. While many 
modifications to this deer motion model are possible, any modifications resulting from improved 
knowledge of deer behavior or modifications that lend more conservatism to the results (e.g. 
allowing the deer to accelerate to top speed more quickly) could easily be substituted into the 
simulations described below. 

	
2.2. Vehicle model 

A planar, single-track, non-linear “bicycle model” was used to simulate the behavior of a car 
moving along the road given inputs for acceleration, braking, and steering. Pacejka’s “magic 
formula” [26] was used to simulate the interaction between the tires and the road under combined 
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cornering and braking. The model is limited only to in-plane motion, and does not account for the 
effects of weight transfer, rolling, pitching, terrain disturbances, or changes in elevation. While this 
is a substantial limitation, a nonlinear bicycle model has been shown to capture much of the key 
vehicle behavior required for road safety simulations [27]. The vehicle state vector and coordinate 
system are illustrated in Figure 2 below. 

 

 
Figure 2: Vehicle model configuration and coordinate systems. 

 
In Figure 2, the velocity of the vehicle in the local x-direction is given by U, and the velocity in 

the local y-direction is given by V. The equations of motion for the model are given in equation 6, 
which employs the small angle approximation for the roadwheel steering angle δ. During all 
experiments, vehicle dynamics were simulated using 4th order Runge-Kutta integration 
implemented in Python with a timestep of 0.015s. 
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In equation 6, tire forces 𝐹89 , 𝐹8%,𝐹+. ,		 and 𝐹+%	are computed based on Pacejka’s formula for 

steady-state cornering behavior under combined cornering and braking [26], and are thus functions 
of both brake pressure and roadwheel angle δ. The roadwheel angle δ is computed assuming that 
the vehicle has a steering motor. The steering motor’s behavior is approximated by a second order 
transfer function in standard form that relates desired steering angle δ# to actual steering angle δ  
with a steady-state gain of 1 and ζ, ω< of 0.9 and 15 rad/s, respectively.  The vehicle mass and 
inertia properties were chosen to match a compact sedan with 𝑚 = 2000𝑘𝑔, 𝐽== = 1000𝑘𝑔 ⋅ 𝑚0, 
distance from CG to front axle 𝑎 = 0.8𝑚, and distance from CG to rear axle 𝑏 = 1.5𝑚. 

 
2.3 Driver models 

During all experiments described in Section 3, one of two simulated collision avoidance systems 
was used. The first, a simple “braking-only” controller, applies the brakes the moment an obstacle 
is visible, similar to a “forward collision assist” system in a commercially available vehicle. The 
other driver model was designed to approximate a collision avoidance system that might be present 
in a fully self-driving car. Both controllers react to the simulated deer as soon as it is visible, with 
visibility defined by whether the deer is “in the open” or occluded by roadside cover (vegetation).  
Specifically, the simulated controllers are able to detect and react to obstacles up to 60m away in 
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the absence of occlusion. This value could be adjusted for any configuration of sensors available 
on a vehicle. For both controllers, aggressive braking begins immediately once an obstacle is 
detected. In the case of the MPC controller described in Section 2.3.2, braking is modulated when 
the controller computes that steering is necessary to avoid a collision. Only single-obstacle 
scenarios are considered for all simulations presented in Section 3. To account for the effects of 
roadside cover on the success of a deer avoidance maneuver, a ray-casting algorithm was employed 
to detect whether the simulated deer was inside the boundaries of a roadside cover region. Each of 
the driver models is described below in more detail. 

 
2.3.1 “Braking only” controller 

This simplistic controller maintains a constant speed at the speed limit while searching for 
obstacles within its sensors’ range. The moment an obstacle is detected, the algorithm applies the 
braking force required to achieve a longitudinal deceleration of 0.6g to the wheels, which is 
conservative but consistent with the possibility that the system may operate on wet roads [27]. This 
continues until a full stop is achieved. The utility of this controller is two-fold. First, it represents a 
rough approximation of commercially available forward collision assist systems, which only apply 
brakes. Second, it requires no complex computations in simulation other than ray-casting. This 
allows the GA to be iterated through many generations far more quickly than is possible with the 
MPC algorithm described in the next Section. 

 
2.3.2 Model predictive controller 

To approximate the behavior of a vehicle under SAE level 3 automation or higher as defined in 
[10], several of the animal-vehicle interactions simulated in Section 3 employ an MPC vehicle 
guidance and collision avoidance system. As mentioned in Section 1, MPC is a relatively common 
choice for vehicle guidance and path planning [20], because it involves the computation of an 
optimal input trajectory for the vehicle given an objective function and subject to constraints. A 
more thorough treatment of MPC, also called “receding horizon control,” can be found in many 
texts, e.g. [28]. The controller used in this study was designed to balance tractability, computation 
time, and performance. While the goal here is certainly not to propose the best possible controller, 
a competitive, current algorithm was necessary to obtain simulations of interactions between 
animals and automated vehicles that capture key features of receding horizon control. It is important 
to note that any collision avoidance algorithm could be substituted into the simulations in Section 
3 to obtain collision probability results for a particular vehicle. 

Briefly, a discrete-time receding horizon controller predicts the state trajectory of a dynamic 
system 𝑁> timesteps into the future for a given input trajectory. The controller then computes the 
value of some objective function 𝐽 for the input vector 𝑢d⃗ 	 , and uses an optimizer to calculate the 
optimal input trajectory  𝑢d⃗ ∗  for which the value of 𝐽 is minimized. The controller executes only the 
first input 𝑢d⃗ ∗(0) of the computed optimal input trajectory. Then, at the next timestep, the controller 
repeats the entire process to calculate the new optimal trajectory 𝑢d⃗ ∗. This process creates implicit 
feedback, even though the optimal input trajectory 𝑢d⃗ ∗ is itself an open-loop control policy. In the 
simulations presented in Section 3, the MPC predicts the vehicle’s behavior and the obstacle’s 
behavior simultaneously to allow the vehicle to react predictively to projected future obstacle 
positions.  

The MPC system predicts 𝑁> = 10 timesteps into the future with a prediction timestep Δ𝑡> =
0.1𝑠, which yields a temporal prediction horizon of 1 second for steering maneuvers. After 
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computing the optimal steering trajectory, the algorithm uses the first optimal steering input, 𝑢d⃗ ∗(0) 
to determine how hard the vehicle can brake without saturating the tires. It does this using a circular 
approximation of the tires’ friction envelope according to Equation 7 below: 

 

𝑎+,)*+ =	h𝛾@0 − 𝑎80      (7) 

 
In equation 7, accelerations 𝑎+ and 𝑎8  are lateral and longitudinal acceleration respectively.  𝛾@	  

represents the radius of the friction envelope. All simulations of the MPC controller presented here 
used a conservative value of 𝛾@	 = 0.6𝑔 to account for varying road friction conditions [27], lending 
conservatism to the controller’s maneuvers.  

All optimizations performed by the MPC were computed in Python using the Scipy library’s 
SLSQP algorithm, which is an implementation of the algorithm in [29]. The specifics of the 
controller’s predictions, objective function, and constraints are presented in the following 
subsections. 

 
2.3.2.1. MPC predictive models 

The inclusion of a complex vehicle model drastically increases the time required to compute an 
optimal input trajectory, and creates challenges in terms of objective function complexity and/or 
convexity. Therefore, the MPC developed here predicts the vehicle’s behavior using a simplified 
kinematic model. This model takes braking/driving acceleration and roadwheel steer angle in 
radians as inputs, and assumes zero sideslip. While this is a considerable simplification, simulations 
of the controller indicate that it performs well, even under aggressive combined braking and 
cornering. This is likely due to the implicit feedback inherent in repeated optimization that is a 
hallmark of MPC, where predictive model errors are compensated for as the controller continues to 
react to the vehicle and obstacle’s current states. Equations of motion for the kinematic model used 
in the present study is shown in equation 8. 
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     (8) 

 
In equation 8, the state variables and vehicle parameters (e.g. a, b) were matched to the nonlinear 

vehicle model presented in Section 2.2, and the time constant τ% was chosen to approximate the 
yaw rate dynamics of the nonlinear vehicle model.  

While the MPC’s prediction of the vehicle dynamics is central to its ability to plan an input 
trajectory (and thus a path) for the vehicle over the prediction horizon, its prediction of the obstacle 
(deer) motion is equally important. Because suitable models of deer motion are scarce, and to avoid 
predicating the results presented in Section 3 on an advanced model for obstacle motion, the control 
system implemented in this study uses a constant velocity prediction of deer motion throughout the 
horizon.  
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2.3.2.2 MPC objective function and constraints 

Much like the approach in [23], the objective function penalizes the vehicle’s distance from the 
road at each timestep in the prediction horizon, along with its lateral velocity and acceleration. It 
also penalizes the commanded steering velocity to avoid unrealistic, rapid steering maneuvers. For 
all simulations in this study, the objective function 𝐽 is given by equation 9. 

 
𝐽	 = ∑ (𝑞! ⋅ +𝑌(𝑘) −	𝑌&'$((𝑘)1

) + 𝑞) ⋅ +𝛿(𝑘) − 	𝛿(𝑘 − 1)1
) + 𝑞* ⋅ +𝑉(𝑘)1

) + 𝑞+ ⋅ 6𝑎,(𝑘)8
)
9-!

./! 	 (9) 
 
The weights in equation 9 were held constant for all experiments with [q1,q2,q3,q4] = 

[10,1,1,0.005],  and were chosen heuristically to provide good performance when simulating 
interactions with constant-velocity obstacles.  

In addition to minimizing the objective function, the controller must abide by a set of constraints 
which prevent the car from steering off the road and from hitting the obstacle at any point in the 
prediction horizon. This is similar to the structure of the constraints used for the receding horizon 
path planner in [23]. The set of constraints the MPC system is subjected to during each optimization 
is shown in equation 10. 
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 (10) 

 
For simplicity, only straight roads were simulated for this study. Therefore, the road boundary 

constraints in equation 10 used constant values obtained from Google Earth measurements of a 
rural two-lane road in Bucks County, Pennsylvania, USA. For all simulations, the center of the lane 
was located at 𝑌%G*# = 0, and lanes were 3.5m wide, with 2m wide shoulders. Consequently, 
𝑌)B<, 𝑌)*+ were set to -3.75m and 7.25m, respectively. Additionally, the value of C (the minimum 
distance to obstacle allowed in equation 10) was set to 2m for all experiments. In optimizing 
equation 9 given the constraints in equation 10, the MPC algorithm computed an optimal steering 
angle (and a subsequent allowable braking acceleration according to equation 7) every 0.1 simulated 
seconds. Each computation provided a requested roadwheel angle to the vehicle model’s steering 
actuator. In between MPC computations, the desired steering angle was held constant. 

To visualize how this MPC avoids a simple constant-velocity deer, a sample interaction with 
vehicle initial speed 𝑈, = 25𝑚/𝑠 is shown in Figure 4. For this interaction, the deer crossed the 
road with a constant velocity 𝑣#$$% = 13𝑚/𝑠 at an angle of 𝜓' = 173∘. The simulated constant-
velocity deer began 𝑥, = 60𝑚 ahead of the car and 𝑦, = −2𝑚 from the lane center. 
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Figure 3: Predictions and vehicle/obstacle trajectories during example collision avoidance 

maneuver. 
 

In the simulation presented in Figure 3, the vehicle decelerates long before it begins to steer, 
with the controller eventually producing an optimal steering and vehicle state trajectory over time 
that resembles a double lane change.  

To validate the MPC system’s performance, a battery of interactions between the vehicle-
controller system described in Section 2.3.2 and a constant-velocity obstacle with speeds and angles 
spanning the ranges in Table 1 were simulated. The MPC was able to avoid collisions for 98% of 
the obstacle velocities (in 1 m/s increments) and angles (in 1 degree increments) simulated, 
indicating that it performs as intended in cases except those in which the obstacle traveled at or near 
maximum speed while oriented directly towards the vehicle.  
 
3. Simulation Description 

Two different series of simulations were conducted to explore the effects of roadside cover on 
deer-vehicle interactions. In both, roadside cover was assumed to completely occlude a simulated 
deer from the vehicle’s sensors as described in Section 2.3. No other sources of animal occlusion 
or sensor failure were included. This choice keeps the simulation framework agnostic of vehicle 
sensor configuration. Obstacle detection methods vary, and not all are sensitive to the same 
environmental factors. For example, if a vehicle is equipped with LIDAR, it may be able to detect 
an animal just as well at night as in daylight. If a vehicle is only equipped with cameras for obstacle 
detection, lighting might become as important as physical occlusion in determining when an animal 
could be detected. If the simulation framework described here was applied to a specific vehicle with 
a specific sensor suite, these extra environmental factors could be included in the simulations as 
appropriate, but in the following simulations, physical occlusion is the only factor considered for 
generality. 

 The geometry of wooded areas on the side of the road was manipulated to explore effects of 
map geometry on allowable vehicle forward speed in the face of “worst case” deer model 
parameters, since wooded areas are known to increase the probability of collisions [13].  The first 
simulation experiment studied the effects of set-back distance for wooded areas that extend 
infinitely in front of and behind the car. The second simulation experiment implemented a 
procedure for automatically calculating maximum safe speeds given a rectangular patch of roadside 
cover. Both consisted of running simulations of an autonomous driver in different environments, 
and allowing the GA described in Section 2.1 to find challenging combinations of deer model 
parameters to assess collision risk. The two road configurations are shown in Figure 4. 
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Figure 4. (a) Simulation experiment 1 road configuration (b) Simulation experiment 2 road 

configuration 
 
3.1 Simulation experiment 1 description 

 
In simulation experiment 1, four artificial maps were created to simulate the presence of a dense 

wooded area at a fixed constant distance from the lane center. The edge of the region of cover was 
assumed to be straight in the direction of the road, and to extend infinitely in front of and behind 
the vehicle. The simulated deer described in Section 2.1 started 𝑥!, = 60𝑚 ahead of the starting 
position of the vehicle in the X-direction for all simulations. Because the initial deer lateral position 
𝑦,  is controlled by the GA, the deer is able to “hide” inside the region of cover to allow it to move 
towards the vehicle without being detected. For vehicle speeds ranging from 25 m/s down to 15 
m/s, the deer model was trained for 100 generations using the GA described in Section 2.1 by 
interacting with the “braking only” controller described in Section 2.3.1. The resulting “most 
difficult deer” for each speed was tested against both the “braking only” system and the MPC 
system for an additional 100 trials each to obtain a clear picture of the collision risk that the most 
difficult deer might pose to the vehicle/driver system.  

This procedure was repeated for four different configurations of the simulated environment with 
cover setback distances of 4𝑚, 7𝑚, 10𝑚, and ∞𝑚. Figure 4a shows the simulation’s road 
configuration. With 12 speeds tested, 100 generations tested at each speed, 10 new genomes tested 
at each generation, and 8 deer-vehicle interaction simulations per genome, the results from 
simulation experiment 1 represent 8,000 individual deer-vehicle interactions for each setback 
distance. An additional 100 deer-vehicle interactions were used to provide a picture of the collision 
risk of the “worst-case” genome, as discussed in Section 4.1. 
 
3.2 Simulation experiment 2 description 

 
Although “infinite” wooded areas like those shown in Figure 4a may help provide general 

design or regulatory guidance when determining safe driving speeds for self-driving cars, a 
methodology that could incorporate actual maps of regions of cover to determine “map referenced” 
safe speeds would be even more valuable. Therefore, a second simulation experiment employed an 
algorithm designed to search for safe speeds as a function of vehicle position. The idea is that if 
these simulations were conducted off-line before a vehicle was driven on a specific road, the 
algorithm might be able to produce a maximum safe speed profile as a function of road station for 
the vehicle through a high-risk area. This has potential as both a vehicle design aid and as a 
framework for regulatory decision-making. In simulation experiment 2, the road and cover 
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geometry considered is a straight, flat, two-lane road with a single patch of roadside cover, as shown 
in Figure 4b. 

 
 For each initial vehicle location along the road 𝑥!,, and with the deer beginning 𝑥, meters ahead 

of the car, deer-vehicle interactions were simulated with an initial vehicle speed 𝑈, corresponding 
to the road’s speed limit. The GA attempted to find the “worst-case” deer genome by iterating 
through up to 20 generations. If the deer genomes produced in 20 generations did not result in any 
actual collisions (checked by approximating both vehicle and deer as rectangles), the vehicle moved 
down the roadway to check the next location in a similar way. If, however, one or more of the tests 
of a particular genome during training did result in a collision, the vehicle’s initial speed 𝑈, was 
reduced, and the process was repeated until a “safe” speed for that road location was found. This 
algorithm is illustrated graphically in Figure 5. 

 

 
Figure 5: Map-referenced “safe speed” search algorithm 

 
For this set of simulations, initial vehicle speed 𝑈, was chosen to be 25m/s (roughly 56mph) to 

reflect common speeds on rural highways in Pennsylvania. The deer’s initial position was set to 
𝑥, = 60𝑚 ahead of the car for all initial vehicle station coordinates 𝑥!, corresponding to the 
maximum sensor range without occlusion. This means that as the vehicle’s initial position 𝑥!,	was 
modulated by the algorithm, so was the deer’s initial position along the road. The deer’s initial 
lateral position 𝑦, was controlled by the GA at each location and speed simulated. 

To simulate roads with a patch of wooded area, each environment was created with a single 
rectangular patch of trees. The patch used setback distances of 𝑦-@ = 4𝑚, 7𝑚, 10𝑚,∞𝑚, a width 
𝑤. = 80𝑚, and a depth 𝑑. = 90𝑚 as illustrated in Figure 4b. The wooded area began at 𝑥. = 80𝑚, 
so that varying 𝑥!, between 0𝑚 and 120𝑚 in increments of 20𝑚 encompassed situations where 
the vehicle would encounter a simulated deer that began its motion before, within, and after the 
region of cover.  In theory, any mapped road cover geometry and any vehicle configuration could 
be tested in the same way.  
 
4. Results and Discussion 

4.1 Simulation Experiment 1 

Figure 6a shows the distribution of minimum distances as a function of speed for all four 
“inifinite cover” environment configurations, and Figure 7b shows collision probabilities for all 
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four environments and speeds, which were computed by modeling the deer and the vehicle as 
rectangles and checking for collisions for each of the 100 “test” simulations. 

 
(a)                   (b) 

Figure 6: Simulation Experiment 1 (a) average minimum distances, and (b) collision probabilities 
for varying speeds and cover setback distances 

 
Figures 6a and 6b show that the MPC generally outperforms the braking-only driver in situations 

where the cover occludes the simulated deer. For the 𝑦-@ = 	∞𝑚 case, the controllers perform 
similarly, which makes sense because the vehicle is able to start braking at the full sensor sight 
distance of 60𝑚. This full visibility case does indicate that these controllers should likely avoid 
speeds over about 19 m/s in high-risk areas that do not have significant terrain effects limiting 
visibility. The simulations also indicate that collision probabilities are highest for the smallest value 
of  𝑦-@ = 	4𝑚, where even speeds down to 13 m/s could be problematic if the “worst case deer” 
identified by the GA after 100 generations did appear. This general trend, along with the trend 
observed in the minimum distances as functions of speed in Figure 4b, are in agreement with the 
general trends indicated in studies of deer-vehicle collisions [12,13]. However, this simulation 
methodology could be applied for any collision avoidance system deployed on any vehicle to get a 
quantitative idea of what speeds might be appropriate in wooded areas that can be approximated by 
the geometry in Figure 4a. 

 
4.2 Simulation Experiment 2 

For the road configuration shown in Figure 4a, the algorithm summarized in Section 3.2 and 
Figure 5 produced estimated “safe speeds” given the 20-generation threshold per speed. Table 2 
shows the number of actual deer-vehicle interactions that produced the algorithm’s speed output at 
each road position 𝑥!, for each cover setback distance 𝑦-@. Figure 8 shows the “safe speed profile” 
for each road configuration and the MPC-driven vehicle described in Section 2.3. 
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Table 2: Number of Deer-vehicle Interactions at each 	
𝑥0"  resulting from the safe speed search algorithm (simulation experiment 2)   

𝑥0" 0m 20m 40m 60m 80m 100m 120m 140m 160m 180m 
𝑦12 = ∞𝑚 2,720 4,920 5,600 6,920 10,600 7,160 3,440 4,320 4,040 7,640 
𝑦12 = 10𝑚 4,968 3,712 7,240 6,680 6,200 7,160 3,000 3,200 3,280 1,880 
𝑦12 = 7𝑚 2,960 1,720 6,160 7,560 4,360 4,400 4,600 3,640 3,360 5,120 
𝑦12 = 4𝑚 4,720 6,040 4,920 5,960 4,160 7,160 3,680 2,960 3,240 2,680 

 

 
Figure 7. “Safe” speed profile resulting from simulation experiment 2 

 
As the vehicle approaches the patch of roadside cover, Figure 7 indicates that it must slow down 

significantly to ensure that it will be able to avoid collisions with an animal that appears from behind 
cover, and that this effect is more pronounced as the patch of cover lies closer to the road’s edge. 
This effect increases in severity with smaller road setback distances. It is also interesting to note 
that as the vehicle’s initial position 𝑥!, approaches 140 meters, the vehicle is still inside the region 
of cover but the simulated deer’s initial position is not. Because the deer is assumed to begin moving 
𝑥, = 60𝑚 in front of the car for each set of simulations, the indicated “safe speed” increases. 
However, this should most likely not be taken as evidence that the vehicle should speed up while it 
is still driving through the region of cover. In reality, an animal could begin moving from behind 
cover at distances far smaller than 60m in front of the vehicle. Therefore, the results presented in 
simulation experiment 1 (Figure 6) may offer more conservatism for determining how fast a vehicle 
should travel while still within a forested region, because the GA’s exploitation of the cover’s ability 
to conceal a deer offers some approximation of a deer that begins its motion closer than 60m to the 
vehicle. Still, simulation experiment 2 (Figure 7) does offer quantitative measures of how a 
vehicle’s speed should change as it approaches a region of cover. The algorithm predicts lower safe 
speeds with increasing setback distance between road and cover, and lower speeds while the vehicle 
is inside or approaching a region of cover. 

Note that the results shown in Figure 7 indicate some variability in the identified safe low-risk 
speeds, even in the absence of cover. Anecdotally, we found that running this battery of simulations 
in repeated trials resulted in some variability between trials, even with consistent cover geometry. 
Some of this is likely due to the inherent stochasticity in the GA—new genomes are developed 
using randomly chosen combinations of operations on each parameter, so the GA may need more 
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than 20 generations to find a truly “worst case” parameter set. The 100-generation trials in 
simulation experiment 1 were far more repeatable. In general, choosing an appropriate number of 
generations is a balance between the thoroughness of the search of the parameter space and 
computation time. 

Overall, these results show promise for finding speeds that will increase vehicle safety in areas 
where deer-vehicle interactions are likely. A vehicle manufacturer could substitute any control 
architecture into this simulation framework and obtain a safe speed profile for any road. This 
algorithm, run offline before a vehicle is released to market, could add a priori information to a 
vehicle’s semantic map so that appropriate speeds can be selected in high-risk areas. 
 
4.3 Limitations 

 
While the two batteries of simulations presented here were designed to cover a range of possible 

road configurations and used a relatively modern approach to collision avoidance for the simulated 
self-driving vehicle, it is important to point out several important limitations of the study. Results 
in Section 4 are intended primarily to demonstrate the flexibility of the simulation framework as a 
tool for assessing collision risk, rather than to provide specific regulatory advice.  

Both the vehicle and animal models in this study limit the generality of the results. The 
experiments only included one set of vehicle parameters and one obstacle avoidance controller, and 
it should be restated that higher-fidelity simulations of both vehicle and driver would improve 
simulation fidelity, perhaps at the cost of computation time. Additionally, the deer motion model 
developed in Section 2.1 is based on deer motion parameters from the literature, but many 
parameters use ranges that are estimated. All parameters used would benefit from increased 
availability of high-fidelity deer motion data. 

The simulation configuration space explored here also carries some caveats when interpreting 
the results. Although the methods presented in Section 3 are easily adaptable to any road geometry, 
the geometries used in simulation experiments 1 and 2 are simplistic, and certainly do not cover the 
entire range of possibility for deer-vehicle interactions. As mentioned at the beginning of Section 
3, sensor faults and variability in environmental conditions that could affect deer visibility are also 
not considered. These should be included if this framework is used for a particular vehicle with a 
known sensor suite. Finally, the assumption that the animal begins moving at a fixed distance (60m) 
in front of the vehicle is somewhat limiting, but is adjustable in the simulation framework.  

The sensitivity of the results to many of these limitations is planned for investigation in a future 
study. However, the results presented in Sections 4.1 and 4.2 show that using a genetic algorithm 
to explore animal-vehicle collision risk as a function of road geometry and vehicle position can 
provide a quantitative picture of collision risk given a particular intelligent vehicle and a particular 
environment. 
 
5. Conclusions and future work 

This paper presented two simulation-based experiments that explored the effects of roadside 
cover on an automated collision avoidance system’s ability to navigate around simulated deer. 
These deer exhibited stochastic behavior during interactions with a vehicle using a three phase 
model for their motion during an interaction, and the configuration of their trajectories was 
optimized to be as difficult to avoid as possible using a genetic algorithm.  

In the first set of simulations, the deer behavior was iterated through 100 generations of the 
genetic algorithm for four different map configurations and 10 different speeds. The resulting high-
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risk deer were tested for 100 trials against each vehicle controller. This procedure identified 
collision risk for each environment/vehicle/controller configuration as a function of forward vehicle 
speed. In the second set of simulations, an algorithm was iterated through vehicle start locations 
and speeds to automatically search for speeds that minimized collision risk as a function of vehicle 
position in a map.  

The results of the two simulation experiments shown in Section 4 show the utility of the 
simulation framework. The results largely agree with intuition, indicating that reduced speeds for 
self-driving cars are less likely to result in deer-vehicle collisions, and that increased cover setback 
distances are desirable. By using semantic maps of roadside features that may occlude animals as 
they begin to cross a road, this methodology could provide OEMs with a path towards identifying 
safe target speeds for autonomous vehicles on rural roads in high-frequency deer-vehicle collision 
areas. The methodology presented here may also offer regulatory guidance when setting speed 
limits for rural self-driving vehicles, and the results do indicate that when a controller’s modeled 
obstacle motion (constant velocity, in this case) and actual obstacle motion do not agree well, the 
control algorithm’s performance may be compromised. Therefore, caution in selecting vehicle 
travel speeds is warranted in high-risk animal-vehicle collision zones. 
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