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Short Papers

Lateral Vehicle State and Environment Estimation Using
Temporally Previewed Mapped Lane Features

Alexander A. Brown and Sean N. Brennan

Abstract—This paper proposes a model-based method to estimate lat-
eral planar vehicle states using a forward-looking monocular camera, a
yaw rate gyroscope, and an a priori map of road superelevation and tem-
porally previewed lane geometry. Theoretical estimator performance from
a steady-state Kalman-filter implementation of the estimation framework
is calculated for various look-ahead distances and vehicle speeds. The
application of this filter structure to real driving data is also explored,
along with error characteristics of the filter on straight and curved roads,
with both superelevated and flat profiles. The effect of superelevation
on estimator performance is found to be significant. Experimental and
theoretical analysis both show that the benefits of state estimation using
previewed lane geometry improve with increasing lane preview, but this
improvement diminishes due to increased lane tracking errors at distances
beyond 20 m ahead of the vehicle.

Index Terms—Bayes methods, dead reckoning, Global Positioning
System, inertial navigation, road vehicles, robot vision systems, sensor
fusion, simultaneous localization and mapping, state estimation, vehicle
dynamics.

I. INTRODUCTION

Knowledge of a vehicle’s previewed reference trajectory is central
to effective lateral and longitudinal vehicle guidance, and ever since
the first successful attempts at autonomous driving many researchers
and practitioners alike have made use of forward-facing cameras for
vehicle environment and ego-perception [1]–[13]. The fundamental
challenge of using vision-based systems for vehicle guidance is that
normal driving scenes can experience clutter, changing lighting con-
ditions, and severe occlusions; the premise of this work is that a
map-referenced temporal feature horizon with a relative motion model
for the road can significantly improve the robustness of vision-based
vehicle state estimation.

A review of vision-based vehicle guidance systems [13] reveals a
mixture of approaches. Some of these methods are computationally
simple and generally effective but do not make use of mapped infor-
mation to aid camera systems in their perception of the environment
or vehicle states [1]–[4], [14], [15]. Recently, researchers have sought
to combine cameras with map information to improve vehicle local-
ization, tracking, state estimation, and environment perception [6]–
[12], [16]. Others have used simultaneous localization and mapping
(SLAM) [17], [18] iterative searching [7], and similar algorithms.
For example, the work in [18] relies on corner-type features for
environment and ego-perception. The work in [17] uses instead an
ingenious method for motion recovery based on a biologically in-
spired optical-flow-based method. While these camera-based methods
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(similar to laser-based methods [19], [20]) hold great promise in
research settings, they pose problems in practical implementation due
to the computational complexity of the filtering and measurement
processes. Furthermore, it can be challenging to predict the algorithm
performance in practice as this depends strongly on how many mapped
features are available for recognition by the forward-looking sensors at
any given moment.

This paper complements the results presented in [21], which con-
sidered map-aided localization in the longitudinal direction using very
low-dimensional maps and pitch measurements. In particular, this
paper addresses the possibility of treating the longitudinal and lat-
eral estimation problems as independent by developing a lightweight
map-based lateral state estimator meant to operate using longitudinal
registration provided by a separate process. The lateral state and envi-
ronment model used in this paper is inspired by the work of Sharp and
Valtetsiotis in [22], which offers a unique look at preview-based lateral
vehicle control. The key contribution of this paper is that it combines
elements of the aforementioned ideas into a generic time-varying
Kalman-filter framework for a predictive vehicle state estimator. This
method is unique in that it leverages mapped road geometry without
tightly coupling longitudinal and lateral position estimation by using
the temporal preview concept, allowing for a much simpler Kalman-
filter estimator structure, similar to estimators already regularly used
within chassis-control engine control unit (ECU) systems. For the
sake of redundancy and reliability, it specifically combines information
from three sources: vehicle dynamic models, measurements from a
forward-looking camera and yaw rate gyroscope for measurements,
and a map of the right lane edge’s position. This estimator is then used
to establish a concrete relationship between camera look-ahead dis-
tance and theoretical estimator performance. The vehicle model used
is linear, the measurements of previewed road points are accomplished
using a monocular camera, and suspension motion is neglected as a
source of error, but the quality of the experimental results supports
these simplifications. In the form presented here, this estimator is likely
limited in application to situations where contributions of longitudinal
dynamics, suspension movement, and other nonlinearities to overall
vehicle motion are small, such as normal highway driving under cruise
control.

The remainder of this paper is organized as follows. First, the
estimation framework is derived in two parts: the vehicle model
is introduced and then the temporal road motion model is derived.
Following this, equations are presented that combine road and vehicle
motion equations into an augmented discrete state-space system. Next,
the overall estimator architecture based on this combined system is
described. The integration of the Kalman filter with the map in the
form of a state input is given, followed by the description of the camera
measurement noise model. A discussion follows of the theoretical
estimator performance for varying speeds and preview distances. The
paper concludes with an experimental implementation of the filter
framework and analysis of these results.
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Fig. 1. Setup of planar vehicle dynamic equations.

II. ESTIMATOR FORMULATION

The dynamic equation used to describe the motion of the combined
road–vehicle system used in this paper is similar in structure to the
one proposed in [22] as a basis for an optimal preview controller
for lateral vehicle state control and path following. The reader is
referred to [22]–[24] for a more detailed discussion of this preview-
based control structure. The basic idea of this approach is to use a
temporal horizon containing control-relevant information in the form
of a previewed reference trajectory. This allows an linear quadratic
regulator (LQR)-type controller to achieve anticipatory behavior and
has proven successful in replicating human driver behavior even at
high speeds. In this paper, the same concept is employed to improve
vehicle state estimates for control purposes using low-cost sensors.
In [25], the authors introduced two versions of the preview estimator
framework: the first, derived in global coordinates, is a direct analog
to Sharp and Valtetsiotis’ work in [22]. While the global coordinate
formulation has stronger ties to the literature, this paper focuses on the
more easily implemented body-fixed version of the estimator, derived
hereinafter.

A. Vehicle Model

To maintain this work’s focus on a simple but effective lateral vehi-
cle state estimation scheme, the familiar “bicycle model” for vehicle
dynamics is employed. The relevant coordinate systems, angles, and
tire forces are shown in Fig. 1.

The vehicle-referenced linear bicycle model equations in the In-
ternational Standards Organization (ISO) body-fixed coordinates with
x forward, y left, and z up are given below in (1).1 See [26] for
a complete derivation. This model neglects suspension motion and
lumps tire forces from front and rear tires into one effective tire at each
axle, but it has been proven accurate enough for lateral vehicle control
under nominal conditions in experimental testing. In the literature,
it has also been used with modifications to the linear tire model to
describe extreme high sideslip maneuvers, as in [27]. Because this
study is focused on highway or rural road constant-speed driving, tire
forces are assumed linear with constant cornering stiffness for each.
This is certainly a significant simplification, but the results section will
show its validity for the nonemergency driving scenarios considered
and with the cornering stiffnesses obtained from system identification
experiments. The equations are presented in state-space form in (1) as
functions of effective cornering stiffnesses Cf , Cr , mass and yaw mo-
ment of inertia m and Iz , forward speed U , lateral velocity V , yaw rate
r=(dψ)/(dt), road superelevation e, and b, a, δ defined as in Fig. 1 by[
V̇
ṙ

]
=

[ −(Cf+Cr)

mU
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bCr−aCf

IzU
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1The coordinate system defined is in ISO 8855:2011.

Fig. 2. Relative road movement from time step k − 1 to k.

This state-space representation of the vehicle dynamic equations is
discretized using a Tustin transform approximation so that the states
become sampled representations of lateral velocity and yaw rate, Vk

and rk. These equations for local lateral velocity and yaw rate are
independent of the road geometry in the xy plane, and the only
influence that the road has on the states is through the superelevation e.
The equation also assumes that the direction of V changes as the vehi-
cle rotates, which is convenient for a motion model with measurements
provided by a sensor attached to the vehicle.

B. Road Edge Motion Model

Similar to the model for road motion presented for use in an optimal
preview controller in [22], the world around the vehicle is modeled
as a set of points that moves past the vehicle with a known velocity.
Each of these is a state in the state vector of the combined vehicle-road
motion equations, presented later in (7). Instead of tracking individual
features according to their spatial relationship to the vehicle, each point
on the road ahead is assigned a future time step. The representation
of spatially distant road features as features that will pass under the
vehicle at a known future time is technically noncausal. Measurements
from the future are not available, but when vehicle speed is known and
constant and when the vehicle remains in its lane, the road’s future
position in time can be predicted with reasonable accuracy. This, in
turn, allows the state-space equations for the vehicle-road system to
remain linear and eliminates the need for the filter to track both x
and y locations for each previewed road point. This is a fundamental
simplification of SLAM. The derivation for this relationship is given
hereinafter.

The key to the temporal horizon concept is that road points in the
state vector are assumed to move relative to the vehicle based on its
local velocity and yaw rate from time step k − 1 to time step k. This
idea is illustrated in Fig. 2. The movement of a vehicle with constant
forward velocity U from time k − 1 to time k is given simply by
ΔX,ΔY,Δψ where X and Y are aligned with x and y at time step
k − 1. Those small motions are approximately given by

Δx = UT ; Δy = Vk−1T ; Δψ = rk−1T (2)

when the time step T is small. When a simple coordinate transforma-
tion inclusive of the rotation Δψ is considered, the nonlinear equations
expressing the globally stationary point P from the transformed local
vehicle-fixed coordinate system at time k are given by (3). The notation
xi,j indicates the relative forward spatial location x of the road point
assumed to pass under the vehicle at i time steps in the future given
time index j.

xp,k =(xp+1,k−1 −Δx) cosΔψ + (yp+1,k−1 −Δy) sinΔψ

yp,k =−(xp+1,k−1−Δx) sinΔψ + (yp+1,k−1−Δy) cosΔψ. (3)
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Considering that most vehicles are only capable of r < 60◦/s in yaw
and that common time steps T for a filter of this nature are on the
order of 0.02 s, a vehicle could only reasonably achieve a Δψ of
approximately 2◦ from time step to time step, which falls well under
the definition of small angles. Using the small angle assumption for the
small movement of each point in the state vector between successive
samples and recognizing that, in this framework, xp+1,k−1 = (p+
1)UT , these equations lose their trigonometric terms, the following
is obtained:

xp,k = ((p+ 1)UT − UT ) + (yp+1,k−1 − Vk−1T )rk−1T

yp,k = −((p+ 1)UT − UT ) rk−1T + (yp+1,k−1 − Vk−1T ). (4)

Then, neglecting the small multiplicative nonlinear terms
−Vk−1rk−1T and yp+1,k−1rk−1T , the x-position of the road
at p time steps ahead, given current time k, becomes xp,k = pUT .
This is equivalent to the assumption that the road points “move
toward the vehicle” with a velocity approximately equal to U from the
vehicle’s perspective. The relationship between the road y-offset at
time k − 1 and the y-offset of that same point at time k is given by

yp,k = yp+1,k−1 − Vk−1T − rk−1pUT 2. (5)

Assembling the road edge dynamics under this new motion model, an
open-loop discrete-time motion model is obtained. This is shown in
(7). There, Ad and Bd are the corresponding matrix elements from
the discrete A and B matrices derived using a Tustin discretization of
(1). This augmented system represents the backward propagation of
road geometry states toward the vehicle using a unit delay operator. It
maintains all previewed road states in the state vector and is called
a “shift register” by Sharp and Valtetsiotis in [22]. It will also be
referred to as a shift register for the duration of this paper. The state
equations are excited by three inputs: the vehicle steer angle δ, the
road superelevation e, and the lateral position of the farthest road
point on the N -time-step preview horizon, mN−1,k, obtained from a
preexisting map of road geometry.

C. Kalman-Filter Design

Road position measurements come from a camera which—because
it is fixed to the windshield of the vehicle adjacent to the rear-view
mirror—is always assumed to measure road geometry in the vehicle-
fixed reference frame. Since each road point’s motion is coupled to
the vehicle motion, the measurement equation giving �zk in (7) for this
estimator is quite simple. The vehicle’s lateral velocity V and yaw rate
r are both observable if the yaw rate and/or road points are available
for measurement. The observability of the road geometry states is
determined by the farthest road point available for measurement by
the camera. Note, however, that a filter without measurements all the
way out to the preview horizon will still “see” road geometry because
the mapped road input is propagated toward the vehicle from the road,
steering, and superelevation inputs mN−1,k−1, δ, and e along with
estimates of V and r.

The explicit relationship between the signals and operators in the
preview-filter system is given in Fig. 3, which shows how local
estimates of nonpreviewed vehicle states are fed back into the map
registration procedure along with coarse longitudinal registration from
GPS or an alternative odometric algorithm to obtain mN−1,k−1

through a coordinate transformation. This will be explained in detail in
the following section. Note that Fig. 3 shows a time-varying observer
gain Lk. In practice, Lk is updated according to the standard current-

Fig. 3. Block diagram layout of preview filter.

measurement Kalman-filter equations as derived in [28] and shown
briefly with time-varying system and measurement matrices in

x̂k|k−1 =Ad,k−1x̂k−1|k−1 +Bd,k−1uk−1

Pk|k−1 =Ad,k−1Pk−1|k−1A
T
d,k−1 +Qk

ỹk = zk −Hkx̂k|k−1

Lk =Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1

x̂k|k = x̂k|k−1 + Lkỹk

Pk|k =(I− LkHk)Pk|k−1 (6)

where the standard Kalman-filter terms are defined in [28] and Ad and
Bd are defined in (7).

Because the filter assumes that the forward speed of the vehicle, U ,
is constant, if there are periods of abrupt acceleration, then the linear-
time-varying filter structure presented here will likely not function
properly. This can be corrected by changing the measurement equa-
tions and state transition equations to allow for varying spatial intervals
in the preview horizon to maintain even temporal intervals based on a
model for vehicle longitudinal acceleration. While this would be fairly
straightforward to implement, it is not demonstrated here as the aim of
this paper is to introduce the map-based estimator, and thus, the focus
is to provide lateral vehicle and environment states during cruising.

D. Map Integration Through Road Input mN−1,k−1

Because a map of road geometry is available, the map information
can be used to generate a suitable vehicle-referenced mN−1,k−1 value
at time k − 1 by aligning the road marker map with the vehicle
coordinate frame through a basic coordinate transformation. This step
provides an input to the road geometry motion model as shown analyt-
ically in Fig. 3 and allows the road line offset to propagate backward
toward the vehicle as time marches forward. Lane position estimates
are then updated by the camera measurements when available as (7),
shown at the bottom of the next page.

Because road edge states are maintained in the filter structure in
vehicle-fixed coordinates, the map registration in the global reference
frame must be accomplished through a parallel process outside the
Kalman filter of (6). This is illustrated in Fig. 4 and reflected in the
signal diagram shown in Fig. 3. Vehicle yaw offset from the lane line
tangent, defined in

ψrel ≈
ŷ1,k−1 − ŷ0,k−1

UT
(8)
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Fig. 4. Map registration procedure for local-coordinate preview estimator.

and lateral position from the lane marker nearest the vehicle center of
gravity (CG), given by y0, are available in the augmented state vector.
Then, the vehicle’s global yaw angle is given by ψ = ψr − ψrel,
with ψr representing the mapped road tangent angle as shown in
Fig. 4. The estimator uses a road map where the station Sr or total
distance traveled along the road is available in the map along with the
Cartesian position (Xr, Yr, Zr) and orientation of the mapped lane
marker (φr, θr, ψr) at a number of discrete points. The use of the path
coordinate Sr (generally referred to as “odometry” in Fig. 3) allows
for a 1 : 1 lookup of the road marker pose, even for closed paths. At
each time step, an independent measurement of Sr is used to find
the nearest location of the vehicle in the map in path coordinates.
Specifically, a K-nearest neighbors search registers a low-cost GPS
position measurement to the map. Then, using the interpolation of
the map points and simple coordinate transformation equations, the
positions of the lane points within the preview horizon are computed
in current “road frame” coordinates as shown in Fig. 4. Finally, the
transformation from the road-aligned coordinate frame to the vehicle-
fixed coordinate frame is achieved using the lateral offset of the vehicle
from the lane line, given by ŷ0,k−1 and a simple estimate of the
vehicle’s yaw offset from the road tangent, given by (8), thus obtaining
the value of mN−1,k−1.

Using a low-cost GPS sensor to obtain a longitudinal position
estimate for the vehicle does introduce errors in mN−1,k−1 for sharp
curves or for abrupt changes in lane geometry, as expected. However,
these errors are quickly corrected by camera measurements when
available. Furthermore, the low-cost GPS sensor used in the experi-
mental results (shown shortly) performed adequately for longitudinal
map registration, and the occasional low-frequency bias errors of 1 to 3
meters found through extensive testing appeared to have little influence
on the accuracy of the filter with respect to nonpreviewed states. This
is largely a result of two effects: 1) The filter’s weighting of the road
edge information far in front of the vehicle for use in current lateral
state estimation is relatively small, and 2) roads are generally painted

TABLE I
REPRESENTATIVE FILTER PARAMETERS

so that contiguous lane markers do not have large changes in lateral
position with respect to short longitudinal distance increments.

E. Preview Measurements and Noise Model

The following section explains how camera measurements are
brought into the filter for the measurement update step of the Kalman
filter as described by (6). To give appropriate weights to the lane
measurements in the Kalman-filter structure at each previewed time,
a basic noise model reflecting the physical uncertainty of a monocular
camera extracting lane lines ahead of the vehicle is now considered.
Any number of lane extraction techniques could be used for a filter
of this type, and some of these may increase lane extraction accuracy,
like those in [14] with built-in stabilization. Even stereo vision-based
lane detection techniques would work, as in [2] or others, and some
may be more robust to nonplanar road geometry in the preview
horizon. The estimation strategy developed in this paper is flexible to
implementations where multiple lane features are to be tracked (other
lines, pavement irregularities, etc.), as long as the mapped features
are stored with relative offsets from the lane center. However, for
demonstration purposes, a simple canny edge detector was used to
extract lane features.

The inverse perspective equations used to project identified pixel
coordinates of lane features into the vehicle-fixed frame assume that
the road in front of the vehicle is flat. This is inherently limiting but
representative of many common lane measurement methods [13]. To
model the expected noise in the lane position measured at each preview
distance, the road surface area captured by each pixel was computed
as a function of the preview distance for a VGA monochrome camera
with a downward tilt angle θcam of 2◦ and a focal length f of 1068
pixels mounted at 1.57 m above an ideal flat road surface. A third-
order polynomial fit of the total pixel area on the road surface versus
the preview distance was used as a basis for the diagonal measurement
noise matrix Rk in the Kalman filter of (6) and is shown in Table I.
In addition, this model for lane feature measurement also neglects

[�xk] =

⎡
⎢⎢⎢⎢⎢⎣

[Ad ] [ 02×N ]⎡
⎢⎢⎢⎣
−T 0
−T −UT 2

...
...

−T −(N − 2)UT 2

0 0

⎤
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[
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0 01×N−1

]
⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣
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⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
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...
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δ
e
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]
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]
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H

[ �xk ] . (7)
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Fig. 5. Variance of vehicle states versus preview distance.

the suspension motion of the vehicle leading to small changes in
camera pose over bumps and when steering, throttle, or brake inputs
cause roll, pitch, or heave motion of the suspension. To help mitigate
this method’s limitations, contributions of suspension motion and
road profile irregularities to camera measurement errors were lumped
into an inflated constant Gaussian noise term in the Kalman-filter
framework. This value is also shown in Table I as the constant term at
the end of the equation for σ2

cam,x. Because a yaw rate measurement
was also used, Table I also provides a representative Gaussian white
noise parameter for an L3G4200D micro-electromechanical system
gyroscope.

Finally, because map registration must be achieved through a mea-
surement of distance traveled in the S direction, there will be noise in
the vehicle’s estimated distance along the road, Svehicle. This causes
process noise affecting mN−1,k−1 in the filter design. The magnitude
of the variance in Svehicle, 1.5 m2, was chosen using values reported
in [29].

III. THEORETICAL ESTIMATOR PERFORMANCE

The estimator performance will change with increasing preview
distance and vehicle speed. To examine these effects, a series of
steady-state Kalman filters was designed using increasing numbers
of preview measurements for various fixed speeds. While the filter
was not implemented as a steady-state estimator in practice, a steady-
state analysis allows for a priori predictions of estimator performance,
which could aid a perception or control system designer in selecting
the correct sensors or setting a threshold for minimum visibility to
enable autonomous lane keeping. The resulting filters were used to
examine the steady-state covariance in each state estimate. These
covariance values are illustrative in that they represent the achievable
accuracy for a preview filter of a finite order for a given look-
ahead condition. These results thus estimate an analytical relationship
between look-ahead distance and achievable lateral state estimation
accuracy.

The camera measurements of a road lane line in front of the vehicle
were assumed to be no closer than 2 m from the vehicle’s CG to
account for the vehicle’s body obscuring the ground directly under
the vehicle. The camera noise parameters derived earlier for a typical
monocular camera arrangement were held constant for each filter. The
filters were designed for a vehicle with parameters given in Table I at
constant forward speeds of U = 20 m/s to 35 m/s, which represent
a range of speeds expected during highway driving. The resulting

Fig. 6. Filter results overlaid with camera image, 55 mph.

theoretical steady-state covariances on each state as a function of
preview distance for each test speed are given in Fig. 5.

Fig. 5 shows that very good accuracy can be expected when using
previewed lane line position and yaw rate alone for vehicle state
estimation, even on difficult to estimate states like lateral velocity. The
plot also indicates that an increasing number of temporally previewed
features does, in general, benefit the task of vehicle state estimation.
However, the figure also indicates that measurements of lane position
at distances greater than 20 m become less useful for improving vehicle
lateral position accuracy across highway driving speeds, at least for
this specific camera and gyroscope arrangement.

The effect of vehicle speed on predicted estimator accuracy is
also apparent in Fig. 5. Low speeds tend to give better estimator
performance on the nonpreviewed road offset y0. This is primarily
due to the fact that, for a finite filter dimension, which represents a
particular look-ahead time, higher speeds mean looking father out in
front of the vehicle in distance. These distant camera measurements
contain more noise, which is reflected in the Kalman filter. This
illustrates a tradeoff between accuracy and simplicity—keeping the
number of states in the estimator the same across speeds means looking
farther ahead at higher speeds but at a more coarse distance interval.
The trend of increasing speed decreasing accuracy is echoed in yaw
rate estimation as well, as seen in Fig. 5. Interestingly, lateral velocity
estimation accuracy actually increases with increasing speed. This is
likely due to the fact that lateral velocity magnitudes are small at low
speeds and grow with higher speeds; for most vehicles, the signal-to-
noise ratio of lateral velocity increases with increasing speed.

While this a priori analysis is useful for seeing trends in how
vehicle speed and look-ahead distance may affect estimator accuracy,
the reader should tread carefully when interpreting the performance
predictions in Fig. 5 literally. In practical implementations of the filter,
not all previewed states will be available for measurement at all time
steps, and unmodeled camera and vehicle dynamics could contribute
significantly to error. Suspension-induced motion of the camera could
distort lane measurements, tire nonlinearities could corrupt the model-
based Kalman-filter estimates, and very large longitudinal map reg-
istration error could affect the road input mN−1,k−1 significantly.
Fortunately, the filter weights lane measurements close to the vehicle
far more than measurements that are far in the future, and thus, these
effects are small, as shown in the following section.

IV. VALIDATION AND ERROR ANALYSIS

With the derivation of the filter equations in vehicle-fixed coordi-
nates as described earlier, the estimator is readily applied to collected
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Fig. 7. Mapping of the Penn State test track.

Fig. 8. Test trajectory and speed profile.

video, odometric, and inertial data to estimate vehicle states during live
driving. Fig. 6 shows a sample of the match between an actual forward-
looking camera image and the mapped lane feature (right lane line)
obtained using a preview filter during a straight-road traversal. The
visual agreement between the camera image and mapped lane geom-
etry indicates a good estimate of local (and thus global) vehicle yaw
angle and lateral position. The filter implemented used N = 50 and
T = .02 s to put the preview horizon at 1 s, offering the majority of the
accuracy benefits of preview for the camera used, according to Fig. 5.

A. Map Generation

Maps were generated using the RTK GPS/INS system and a
downward-facing Sick LMS500 LIDAR sensor. Lane edges were
extracted from the LIDAR data using a threshold on infrared reflectiv-
ity. At Pennsylvania State University’s Larson Transportation Institute
test track, multiple laps were performed to ensure repeatability in the
mapping process and to confirm the fidelity of the Novatel Span DL4
GPS/INS system. A sample overlay of mapped LIDAR points onto
the forward-looking camera image during the high-fidelity mapping is
shown in Fig. 7.

Instead of saving all mapped intensities and positions in a grid, as
is the standard for many of the map-based localization and tracking
approaches, only a very compact version of the map is saved, repre-
senting just the right lane marker edge’s position, extracted using a
thresholding algorithm from LIDAR intensity data. Vehicle parameters
for “Big Red,” the General Motors Corporation (GMC) pickup used in
this paper, are given in Table I.

B. Test Description

To test the potential accuracy of the preview filter framework in
an environment with 3-D road geometry and realistic turns, a test

Fig. 9. State estimates versus ground truth for test track data.

was performed at The Larson Transportation Institute test track in
Bellefonte, PA. While a test track cannot represent all public road
situations, this test track is a challenging venue for lane-tracking
algorithms since its one mile loop includes increasing, decreasing,
and constant radii, along with a combination of asphalt and concrete
pavement and significantly superelevated turns (6%–8%). The vehicle
speed during this test was roughly 20 m/s throughout the traversal.
The test included sinusoidal steering on several of the straight sections
of the road to excite the vehicle dynamics for the purposes of testing
the preview filter. Fig. 8 shows the ground-truth position trace and
map for the counterclockwise validation run around the test track,
along with the forward speed of the vehicle during the test. The
estimator’s performance using production-grade GPS and yaw-rate
sensors was compared with a defense-grade factory-integrated INS
system with differential corrections for the validation of the filter. As
Fig. 8 indicates, the speed during the test was not entirely constant,
but the driver attempted to maintain a fairly constant speed throughout
the entire loop. Because additional lane tracking algorithms were not
available for real-time implementation during the test, these results
cannot address how the preview estimator performs relative to other
systems. However, the test does provide a look at the accuracy of the
system relative to an industry-standard ground-truth system.

C. Results

Fig. 9 shows the lateral velocity, yaw rate, and lateral position
match between the ground-truth INS system and the preview filter
for one mile-long lap of the test track. The course consists of two
straightaways and two turns, each to the left and heavily banked. In
the straightaways, the vehicle was intentionally steered with a sine
wave-type pattern to test whether the estimator would work in both
steady-state and transient maneuvers. While the overall agreement is
good, scale-factor errors are present in the vehicle model, causing the
overprediction of V̂ as seen in Fig. 9. This, in turn, causes input-
correlated noise in Fig. 10. These scale-factor errors in transient
maneuvers are common in vehicle dynamic model predictions and are
usually caused by unmodeled tire or suspension dynamics [30].
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Fig. 10. Error in planar vehicle states for test track data.

Between approximately 0 and 15 s, the vehicle is in a steady-state
turn with a yaw rate of 0.2 rad/s. According to Table I and the vehicle
model, this should result in a steady-state lateral velocity of nearly
0.7 m/s, whereas a value near 0 m/s is measured. This discrepancy is
because of the superelevation of the test track. Without inclusion of
this mapped effect, there would be much worse agreement between
the ground-truth value of V obtained from the INS system and the
filter estimate V̂ .

The lateral offset, too, matches very well with the INS ground-truth
data for the run, although the estimator performance bounds suggested
in Section III are not quite achieved. This is to be expected, given the
vehicle model errors and planar road approximations mentioned previ-
ously. The relative accuracy of the filter given its simplicity is notable.

To examine the performance of the filter, the error characteristics
of the vehicle state estimates are shown in Fig. 10. The errors are
agreeably small in maximum and in standard deviation, but there
appear to be systematic components in V̂ and ŷ0, which may stem from
measurement model error (e.g., approaching nonflat portions of the
track, roll motion of the vehicle, etc.) or errors in timing. In regard to
ŷ0, recall that the forward-looking camera cannot see the road directly
underneath the vehicle; close lane position estimates are obtained by
propagation without corrections for the 2 m closest to the vehicle.
Thus, small errors in U , longitudinal acceleration or deceleration,
synchronization errors, and other unmodeled error sources in the
camera measurement step may contribute to lateral position error.

To address the way that the filter functions in the measurement
update step, the innovations were examined for the test run. Kalman
filters are assumed to have zero-mean innovations with white noise
characteristics when operating on a true linear system perturbed by
unbiased Gaussian noise. To examine the mean and standard deviation
of the innovations at each preview point for the whole run, consider
Fig. 11, which shows that innovations out to preview point 40 (0.8 s
or 16 m in front of the vehicle) are nearly zero mean but, beyond
this point, innovations are biased. This is an artifact of a mean bias
in the GPS-based longitudinal map registration. Because the weight
on measurements beyond 20 m is quite small due to the camera noise

Fig. 11. Measurement innovations for all preview points.

model, this bias does not introduce significant biases into the filtered
estimate of roadway geometry or vehicle states.

The robustness of this estimator in the presence of missing lane
measurements is notable. Due to the intentionally crude lane detector
used in this study, between 10 and 45 of the 50 preview samples were
missing for each update step in the test track runs. These missing
data caused little degradation in filter performance. Furthermore, the
number of missing samples appeared to correlate strongly with partic-
ular positions in the track, suggesting that such errors can be mapped
as well for later inclusion in the filter structure. Complete tests of
the filter’s inherent robustness to occlusion and position-specific error
correlation are areas of ongoing study.

V. CONCLUSION

This paper presented a novel flexible filter framework for improving
vehicle state estimates and estimates of windowed road geometry using
a camera and a map. Application of this filter structure to real driving
data shows that the effect of superelevation on estimator performance
is significant. Errors in the experimental performance appear to be
most strongly related to unmodeled vehicle dynamics. Experimental
and theoretical analysis both show that the benefits of state estimation
using previewed lane geometry improve with increasing lane preview,
but this improvement diminished due to increased lane tracking errors
at distances beyond 20 m ahead of the vehicle.
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