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Abstract Modern competitive shooting is a strenu-

ous test of the human perceptual and motor systems.

Like driving a race car or piloting a high performance

aircraft, speed shooting matches require precise, rapid

movements coordinated using a careful mixture of plan-

ning and reaction. In some disciplines of competitive

shooting, this mixture is further complicated by com-

plex moving targets. This paper develops a set of state

space equations for a moving, reactive steel target used

in professional 3-Gun competition. The equations for

target motion are nonlinear, time-varying, and chaotic

in certain regions of the state space. Once derived, the

equations for target motion are validated against mo-

tion extracted from video. Then, the calibrated equa-

tions are implemented in real-time on a portable, laser-

activated simulator. Applications of the simulation en-

vironment to marksmanship training and human motor

control studies are also discussed.

1 Introduction

While it has received relatively light attention in the lit-

erature, competitive shooting is a sport rich in analogies

to fundamental questions about human behavior and

performance. Often, treatments of competitive shooting

are approached from a cognitive science perspective [1–

6] or are rooted physiology/biomechanics [7–11]. Many

of these focus on bullseye-type shooting with either ri-

fles or pistols, and a few, such as the work of Causer

et al. in [1] or Share et al. in [8] focus on shotgun com-

petition with flying clay targets. With the exception of

studies concerning biathlon shooting, e.g. the work of
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Vickers and Williams in [5] or Baca & Kornfeind in [6],

studies of shooting sports where speed and accuracy are

both scored are scarce. In 3-Gun competition, competi-

tors use rifle, pistol, and shotgun to complete courses of

fire in the fastest time possible, and receive time penal-

ties for misses. This paper will focus on the modeling,

analysis, and simulation of a particular shotgun tar-

get introduced to professional 3-Gun shooting in 2015

by 3Gun Nation R©, a regulatory body that produces a

television show on the sport’s professional circuit. The

target’s motion is particularly interesting because its

motion is dynamic, and represents an opportunity to

study human aiming in ways the human motor control

community has not yet explored.

In general, hitting moving targets with a shotgun is

an interesting blend of manipulandum control, percep-

tion, and prediction tasks. To be successful, a shooter

must accurately point the shotgun, track a moving tar-

get, and predict its position at a future time in order

to properly “lead” the target to ensure a hit. In [1],

Causer et al. found links between “quiet eye” duration

and skill at hitting moving targets with a shotgun. More

generally speaking, the capture of moving targets has

received a fair amount of attention, and generated a

fair amount of disagreement in the human motor con-

trol field, with some researchers such as Hoffmann [12]

finding evidence of “chasing” behavior, and others, such

as Tresilian [13] advocating an ambush-type approach

to target capture. Anecdotally, it seems that a blend of

these approaches is employed when attempting to hit

flying clay targets.

In constrast to clay target sports, however, which

simulate hunting, professional 3-Gun shooting is scored

based on elapsed time, and requires that competitors

master a swinging, double-hinged target sporting five

steel plates that the competitor knocks off of a star-
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shaped carrier. Figure 1 shows the “Death Star,” as it

has become colloquially known, in an action sequence.

The target captures some of the peculiar behavior of the

double pendulum, offering an element of unpredictabil-

ity that makes shooting the target quickly extremely

difficult. This unpredictability or “chaos” in the target

dynamics arises not from random processes or uncer-

tainty, but from the nonlinear equations’ sensitivity to

initial conditions [14]. Double pendulum systems are

well-known to exhibit chaotic behavior [15], limit cycles

(in the absence of damping), and bifurcations [16]. They

have been studied by mathematicians, engineers, and

physicists for decades, and are often used in the class-

room as demonstrations of a practical nonlinear sys-

tem [17]. They have a variety of practical applications

in the controls literature, for example as frameworks

representing crane payloads [18]. They also sometimes

surface as models of limbs in biomechanics, as in the

work of Youn [19]. Even now, their behavior under var-

ious types of excitation is the subject of lively academic

discourse. For example, the work of Marszal et al. in

[20] characterizes bifurcations in the double pendulum

when subjected to parameterized vertical excitations of

varying amplitude and frequency.

Because the Death Star has the potential to behave

like a double pendulum, any misstep on the part of

a competitor has the potential to cause the target to

move unpredictably. However, the target is not quite as

simple as the double pendulum common in controls and

dynamics research. Since the plates on the target fall

off when hit, the inertial properties of the star change

during a typical time trajectory of the target’s motion.

The analysis of time-varying double pendulum systems

is relatively rare in the literature. Some recent work

by Gupta [21] sought to characterize double pendulum

behavior as a function of mass and length properties,

and others such as Bellino et al. [22] have looked at

single pendulum systems with time-varying properties,

but a system mimicking the star’s unique behavior has

not been explored. Success in 3-Gun means knocking

all of the plates off of the target in the shortest time

possible, so the shooter must operate the shotgun in

a tight, accurate control loop, minimizing star motion

and avoiding critical points in the system’s state space.

Competitor strategy is not the focus of this pa-

per, but it is the subject of ongoing inquiry, and the

motivation for the present study. The ability to mea-

sure the way novice and experienced marksmen and

markswomen deal with the unique constraints of this

target has the potential to inform a larger body of work

on how humans use internal models and develop opti-

mal strategies for path planning and control while bal-

ancing risk and reward in unpredictable environments.

The development of an accurate indoor real-time simu-

lation of the target for use in such human motor control

experiments is the primary goal of the work in the fol-

lowing pages. Optoelectronic shooting simulators, in-

cluding devices that simulate “shots” by infrared or

light pulses, are not new [23] and are sometimes seen in

studies of shooting performance [24,25]. Some of these

studies, such as the work of Swanton in [24], use 3D

tracking systems and accelerometers along with opto-

electronic target simulators to study shooters’ perfor-

mance. However, no optoelectronic simulator available

has the capability to simulate the Death Star, which

necessitates the development of a specialized simulator

for this target. The simulator hardware and software

developed in this study are planned for an open-source

release, and are comprised of low-cost, commercially

available components, allowing competitors or hobby-

ists to build their own copy for practice at home, and

providing researchers with a platform for future exper-

iments.

To that end, the following sections outline the de-

sign of a portable simulator for the Death Star tar-

get that accurately represents its dynamic behavior,

with virtual plates that fall off when hit with a laser

training firearm. First, Section 2 derives the nonlinear,

time-varying equations of motion for the target. Then,

Section 3 discusses the post-processing of video pro-

vided by the 3Gun Nation R© television show to calibrate

and validate these equations. Finally, Section 4 presents

an overview of the implementation of these equations,

along with a machine vision algorithm that tracks laser

hits on a projected target. Section 5 explores the merits

of using the simulator as a training tool for competitive

shooters and as a human motor control and percep-

tion research platform, including a brief discussion of

the range of behaviors that can be expected from the

target.

2 Equations of motion

This section will develop a nonlinear state space model

for the target to be implemented in section 3. As dis-

cussed in Section 1, the star’s construction causes it to

exhibit behavior similar to a double pendulum when-

ever less than five and more than zero of the steel plates

on the star’s arms are attached. However, if the target

is allowed to swing in a balanced state with either five

or zero plates, only the damping in the star hinge causes

angular motion of the star, and the system acts like a

standard pendulum. The goal of engaging the target in

competitive shooting, of course, is to knock all of the

plates off of the star. As a result, the target will swing
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Fig. 1 The Death Star target in motion (video source: 3Gun Nation)
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Fig. 2 Coordinates and nomenclature for target

with a varying number of attached plates in varying re-

gions of the state space. For the derivation that follows,

the coordinates and nomenclature used can be found in

Figure 2.

In Figure 2, θ1 represents the angle of the star from

vertical. θ2 represents the angle of the swinging arm

from a left-pointing horizontal reference. The hinge arm’s

mass and rotational inertia are small compared to those

of the star and plates, and are ignored. The star’s rota-

tional inertia and mass are significant, and each plate

(numbered 1 through 4) is treated as a point mass in

the derivation.

It is worth noting that in competition, the target’s

swinging motion is initially activated by hitting a sec-

ondary steel target which is not shown in Figure 2, but

can be seen in the upper leftmost screenshot in Figure

1. This target must be hit before any of the star plates.

Additionally, it is stipulated in the 3Gun Nation R© com-

petition rules that the bottom rightmost plate of the

star must be engaged first. This plate is shown as a

colored circle in Figure 2. For the professional shooters

using this target in competition, the colored plate is al-

most always hit before the star begins to move. In fact,

this was the case in all validation experiments in Sec-

tion 3, so each of those simulations simply begins with

the removal of this plate at time t = 0. However, the

real-time simulator discussed in Section 4 does include

the activator target for realism.

The equations of motion will be derived using La-

grange’s method [26]. The generalized coordinates used

are the two angles θ1, θ2. Cartesian coordinates x, y are

defined as shown in Figure 2, but are only used for de-

veloping potential and kinetic energy expressions, and

do not appear in the final form of the equations.

An expression for the total kinetic and potential en-

ergy of the target system is central to the derivation of

the system’s equations of motion using Lagrangian dy-

namics. The Lagrangian of a dynamic system is defined

as the difference between the systems kinetic and po-

tential energies, as

L = T − V. (1)

In Equation 1, T is the system’s total kinetic energy,

and V is the system’s potential energy. As a system

moves, the total energy in the system will decrease pre-

dictably in the presence of non-conservative generalized

“forces” that do work W on the system. The equa-
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tions of motion for a system can be found by taking

the derivative of the Lagrangian according to

d

dt

(
∂L

∂θ̇k

)
− ∂L

∂θk
= τk, (2)

where τk represents non-conservative torque as men-

tioned above. For the Death Star target, which is a ro-

tational system with generalized coordinates θ1 and θ2,

the τk in each generalized coordinate comes from fric-

tion at the target’s two hinges. The non-conservative

damping forces from the hinge joints are assumed here-

after to act only as viscous dampers resisting motion,

described by

τ1 = −b1θ̇1
τ2 = −b2θ̇2 − b1θ̇2.

(3)

To compute the Lagrangian L, both kinetic and po-

tential energy functions for the moving target must be

computed. To make this computation more tractable,

consider the following expressions for the position of

each portion of the target system in the xy plane,

xst = −L2 cos (θ2)

yst = −L2 sin (θ2)

xi = xst − L1 sin (θ1 + (i− 1)α)

yi = yst + L1 cos (θ1 + (i− 1)α),

(4)

where [xst, yst] is the position of the star center, [xi, yi]

represents the position the plate centers for plate index

i = {1, 2, 3, 4, 5}, and α represents the angular separa-

tion of arms, which is always 2π
5 radians for the 5-sided

Death Star. Lengths of the star’s arms and the swinging

arm are L1 and L2, respectively. Given expressions for

the positions of the plate masses, the potential energy

for the system can be computed as

V = Vst +

5∑
i=1

Vi

Vst = −mstgL2 sin (θ2)

Vi = mig (−L2 sin (θ2) + L1 cos (θ1 + (i− 1)α)) .

(5)

This expression for potential energy assumes that

the zero reference is for the hinge in the vertical posi-

tion, with θ2 = π
2 . Calculating the system’s Lagrangian

L as given in Equation 1 also requires an expression for

kinetic energy, which is given in mixed rotational and

Cartesian coordinates as

T =
1

2
Jstθ̇1

2
+

1

2
mstv

2
st +

5∑
i=1

1

2
miv

2
i

=
1

2
Jstθ̇1

2
+

1

2
mst

(
ẋ2st + ẏ2st

)
+

5∑
i=1

1

2
mi

(
ẋ2i + ẏ2i

)
.

(6)

Differentiating the positions of the plate masses in Equa-

tion 4 and expressing them in terms of the generalized

coordinates θ1 and θ2 yields

ẋst = L2θ̇2 sin (θ2)

ẏst = −L2θ̇2 cos (θ2)

ẋi = L2θ̇2 sin (θ2)− L1θ̇1 cos (θ1 + (i− 1)α)

ẏi = −L2θ̇2 cos (θ2)− L1θ̇1 sin (θ1 + (i− 1)α) .

(7)

With the expressions for the plate velocities now writ-

ten in terms of the generalized coordinates and their

derivatives, the kinetic energy expression of Equation 6

can be rewritten as

T =
1

2

[
θ̇1

2

(
Jst + L2

1

5∑
i=1

mi

)

+ L2
2θ̇

2
2

(
mst +

5∑
i=1

mi

)

+ 2L1L2θ̇1θ̇2

5∑
i=1

(mi sin (θ1 + (i− 1)α− θ2))

]
.

(8)

With the kinetic and potential energy totals for the

system defined, applying Lagrange’s method as defined

in Equations 1 and 2 requires taking derivatives of the

kinetic and potential energy expressions. To keep the

equations compact and readable, consider the introduc-

tion of several parameters that show up repeatedly in

the equations of motion:

P0 =

5∑
i=1

mi

P1 =

5∑
i=1

mi cos (θ1 + (i− 1)α− θ2)

P2 =

5∑
i=1

mi sin (θ1 + (i− 1)α− θ2)

P3 = P0 +mst

P4 =

5∑
i=1

mi sin (θ1 + (i− 1)α).

(9)
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Using these parameters for convenience, performing the

derivatives in Equation 2 for θ1 and substituting the

non-conservative forces in Equation 3 leads to

−b1θ1 = θ̈1
(
Jst + L2

1P0

)
+ L1L2θ̈2P1

− L1L2θ̇2

(
θ̇1 − θ̇2

)
P2 −

∂L

∂θ1
.

(10)

For readability, ∂L
∂θ1

will not be expanded in the final

equations, but is given by

∂L

∂θ1
= L1L2θ̇1θ̇2P1 + L1gP4. (11)

The same procedure can be repeated for θ2, and reduces

to

−b2θ̇2 − b1θ̇2 = L2
2θ̈1P3 + L1L2θ̈1P2

+ L1L2θ̇1

(
θ̇1 − θ̇2

)
P1 −

∂L

∂θ2
.

(12)

As in Equation 10, ∂L
∂θ2

is not expanded explicitly in

Equation 12 but is given by

∂L

∂θ2
= L1L2θ̇1θ̇2P2 + L2g cos θ2P3. (13)

When rearranged, these equations become recogniz-

able as the equations of motion for the target system:

θ̈1 =
1

(Jst + P0L2
1)
(

1− P 2
1

P0P3

)×
[
∂L

∂θ1
− (b1 + b2) θ̇1 + L1L2

(
P2θ̇2

(
θ̇1 − θ̇2

)
− P1

L2
2P3

(
P2L1L2θ̇1

(
θ̇1 − θ̇2

)
+
∂L

∂θ2
− b2θ̇2

))]
θ̈2 =

1

P3L2
2

(
1− P 2

1

P0P3

)×
[
∂L

∂θ2
− b2θ̇2 + L1L2

(
P2θ̇1

(
θ̇1 − θ̇2

)
− P1

L2
1P0

(
P2L1L2θ̇2

(
θ̇1 − θ̇2

)
+
∂L

∂θ1

− (b1 + b2) θ̇1

))]
.

(14)

With these equations for the acceleration of the star

in the generalized coordinates θ1 and θ2, a nonlinear

state space model of the system is easily constructed

so that the equations may be solved using a numerical

integration technique. The state space model is con-

structed using the state vector

x =
[
θ1 θ̇1 θ2 θ̇2

]T
. (15)

This state vector is used to rearrange the expressions

for θ̈1 and θ̈2 in Equation 14 into the state space form,

dx

dt
= f(x, t). (16)

The implementations of Equation 16 in this study

were solved using a second order Runge Kutte (Heun’s)

method. In Heun’s method, sometimes called the ex-

plicit trapezoidal rule [27], an intermediate guess for

the value of the state vector is calculated using an Eu-

ler approximation, and then corrected in a secondary

step. This method can be summarized as

x̃(k + 1) = xi(k) + Tf(x(k), t(k))

x(k + 1) = x(k) +
T

2
[f(x(k), t(k))

+f(x̃(k + 1), t(k + 1))] ,

(17)

where T is the simulation timestep, f(x(k), t(k)) are

the time-varying equations for the state derivatives in

Equation 16, and x̃(k + 1) is the “intermediate” value

of the state vector. This method was chosen because it

is easy to implement in real-time, and allows for easy

updates of the system properties as plates on the star

are hit and fall off.

In simulation of the equations of motion derived in

this section, “hitting a plate” at a particular time step

k results in the simulation setting that plate’s mass to

0 for the next simulation update. The practice of sim-

ply setting a plate’s mass to 0 implicitly updates the

system’s kinetic and potential energy by changing the

target’s moment of inertia and mass center location.

Because the projectiles from a competitor’s shotgun

impart momentum to the departing plate orthogonal

to the generalized coordinates θ1 and θ2, the impulse

on the target from the shot cloud can be ignored. The

assumption that the plates fall off instantaneously is

certainly a substantial simplification, and is discussed

further in Section 3.

3 Experimental Validation

In order to develop a simulation environment for study-

ing the interaction between competitor and target, Equa-

tion 14 must be calibrated and validated against the ac-

tual target’s motion. In lieu of constructing a modified,

instrumented version of the target for validation, video

from the 3Gun Nation R© television show featuring the

target was obtained from its producers. By analyzing

the video, the target motion was extracted for com-

parison to the system equations. This method allows

for validation of the equations in as realistic a setting

as possible. The target’s potential to act erratically is
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Fig. 3 Image processing pipeline for extracting target motion
from video

its hallmark, and confirming that the equations cap-

ture the interesting behavior of the real target would

be ideal. However, it is far more manageable to vali-

date the system equations in the portions of the state

space that are most common during competition. Thus,

using actual competition footage to validate the equa-

tions has significant advantages.

A post-processing pipeline was developed in Python

and OpenCV [28] to track the target’s motion. The

background at a firing range is relatively predictable

in color and texture, and the target is painted in high-

contrast colors. Therefore, after loading each frame and

cropping it to a suitable Region of Interest (ROI), color

segmentation, thresholding, and blob detection in

OpenCV provided locations for the star centroid, the

centroid of the colored “activator” arm of the star, and

the centroid of a fixed object on the range. Camera

motion was subtracted from target motion using the

fixed “anchor” object, and the centroids of the star and

the colored arm provided measurements of θ1 and θ2 re-

spectively. Figure 3 shows a block diagram of the image

processing pipeline.

Admittedly, this pipeline is only designed to work

with videos sourced from the 3Gun Nation R© television

show. While this may seem limiting, the show’s footage

covers most of the target’s use in competition as of

2015. In the shooting matches featured on the televi-

sion show, the target is always painted the same way,

and the lighting conditions are always similar. Figure

4 shows a sample of the output from the Python im-

age processing program. Occasional outlier points in the

tracking results occured due to occlusions from dust,

smoke, or airborne spent shotgun hulls in the frame.

These were corrected by manually clicking on the ref-

erence points in the image when necessary, rather than

relying on interpolation or median filtering. Generally,

however, the tracking methodology was reliable for the

video data processed below.

Fig. 4 Python/OpenCV star tracking program output image

In addition to the automated process of tracking

star motion, it is also necessary to detect when shots

are fired and when plates fall off of the target to give a

simulation the information it needs to update the tar-

get’s inertial properties. To simplify this process, a trial

in which five shots resulted in five hits was analyzed.

This way, the audio waveform from the video file was

processed using Python and a simple volume thresh-

olding algorithm to detect shots at particular points

in time during the video. Because of the delay between

the shot and when the shot cloud knocks the plate off of

the spinning star, a delay between detected shot times

and changes in the star’s mass properties was imple-

mented in simulation. This delay was experimentally

determined to be roughly 0.1s by manually scrolling

through video frames in collected video data, noting

the number of frames between when a shot was heard

and when the hit plate left the spinning star.

To use the equations developed in Section 2 in a val-

idation experiment, the target’s physical dimensions,

damping characteristics, and inertial properties must

be matched to those of the actual star. The parameters

used in simulation are summarized in Table 1. All of

the parameters shown in the table other than the two

damping values were estimated using dimensions from

drawings and pictures provided by 3Gun Nation R© per-

sonnel.

The damping values shown in Table 1, b1 and b2,

were not readily available, so they were estimated. Hinge

damping b2 was estimated by tracking the star’s motion

during video of a special case of target motion. In this

clip, the star’s motion was tracked for several swings
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Table 1 “Death Star” measured and calculated parameters

Variable Description Value Units

L1 star arm length 0.73 m

L2 hinge arm length 0.80 m
b1 star bearing damping 1.03 Nm · s
b2 hinge bearing damping 1.03 Nm · s
mst star mass 24.45 kg

mi plate mass 2.50 kg

Jst star rotational inertia 1.26 kg ·m2

after all of the targets had been hit. In this type of

scenario, the target swings in a balanced state. If this

type of motion is modeled as a simple single pendu-

lum of length L2 and the star’s inertia is modeled as a

point mass, the system can be approximated by a sec-

ond order differential equation, and can be linearized

about the vertical resting condition at θ2 = 90◦. The

linearized equation of motion for such a pendulum is

θ̈2 = − b2
mstL2

2

θ̇2 −
g

L2
θ2, (18)

and has characteristic equation

s2 +
b2

mstL2
2

+
g

L2
= 0 = s2 + 2ζωn + ω2

n. (19)

The rightmost side of Equation 19 shows the stan-

dard form for second order underdamped systems with

natural frequency ωn and damping ratio ζ. Using the

logarithmic decrement formula

ζ =

1
n−1 ln( y1yn )√

4π2 + ( 1
n−1 ln( y1yn ))2

, (20)

as found in many system dynamics texts, including [29],

the approximate damping ratio ζ for this system can

be found by examining the amplitude of the hinge an-

gle at subsequent peaks. The damping ratio of the ap-

proximate second-order pendulum representation of the

hinge motion was found to be ζ = 0.0083, and the ap-

proximate natural frequency ωn was found to be 3.43 rads .

These values were used along with Equation 19 to yield

the rough estimate for b2 shown in Table 1.

The only remaining unknown parameter, b1, or the

damping of the star hinge, was assumed to be the same

as the damping in the swinging arm hinge, since similar

bearings were used for each in the construction of the

physical target.

To assess how the model and the data compare, a

high-speed 240fps video of a competitor’s run on the

target was obtained from 3Gun Nation R© staff. In this

clip, the target engagement order was 4,1,5,2,3, and the

star began to move just after target 4 was engaged. The

match between model and data for this run is shown in

Figure 5. The cosample deviation between the model’s

predictions and the video data for the trial shown in

Figure 5 is 0.109rad(6.25◦) for θ2 and 0.274rad(15.70◦)

for θ1. Given the coarse data collection method and the

fact that the model neglects coulomb friction and hinge

arm inertial properties, these numbers are fairly good.

Fig. 5 Model vs. measured target motion for one recorded
trial. Plates engaged in order 4,1,5,2,3

As Figure 5 shows, the predicted hinge angle θ2
matches the experimental data better than star angle

θ1. This agrees with intuition; the star is massive com-

pared to the plates, so this portion of the system can be

expected to act similarly to a standard pendulum. This

is especially true since this trial represents particularly

fast shooting, meaning that the unbalanced star has lit-

tle time to influence the system dynamics. Shot times

are indicated in Figure 5 by circles overlaid on the mea-

sured angles. The star angle is a far less precise match.

This has several possible causes. Plates are assumed in

simulation to fall off of the star instantaneously after

being hit by a cloud of shotgun pellets, and individual

plate masses in the simulation are set to zero at the

timestep of the identified hit. In reality, the plates’ de-

parture takes time, and may influence star dynamics.

The assumption of ideal, linear viscous damping is also

a potential source of error, considering that most bear-

ings are subject to varying degrees of nonlinear coulomb

friction. Finally, the video processing algorithm itself is

subject to errors due to slight lighting and color changes

during the video.

In Figure 5, the competitor was able to hit all of

the star’s targets quickly, and used a very strategic or-

der of target engagement, always hitting the plate with

the largest potential energy (highest from the ground).
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This is a strategy that was quickly adopted by top com-

petitors during the 2015 season of the 3Gun Nation
R© professional shooting series, but not all competitors

shot the target the same way. In the first pro series

event of the 2015 season, one competitor engaged the

targets in the order 4,5,3,2,1. Using footage from the

television show, obtained in the form of high definition

23fps video, the match between model and data for

this run was obtained. The match is shown in Figure 6.

Fig. 6 Model vs. measured target motion for one recorded
trial. Plates engaged in order 4,5,3,2,1

Figure 6 also shows good agreement between model

and data, with a cosample deviation of 0.240rad for

hinge angle and 0.238rad for star angle. The raw num-

bers show that there is more error in this trial than in

the trial represented by Figure 5, but the gross behav-

ior of the target is still captured well. In general, the

simulation replicates the magnitude and shape of the

target’s response for relatively short trials where com-

petitors are successful in hitting a plate with every shot.

Because of the target’s similarity to a double pendulum,

however, bifurcations in behavior are possible, and the

system is very sensitive to initial conditions and thus

shot times in certain regions of the state space.

To show the limitations of the simulation’s fidelity, a

third comparison of data and simulation was performed.

Like the other two trials shown in Figures 5 and 6, the

hinge began to swing just after plate 4 was hit. In this

trial, however, the competitor missed several plates, re-

sulting in a particularly slow time. This gave the tar-

get’s dynamics time to evolve in an unbalanced state,

increasing the influence of shot time on the target’s mo-

tion. Additionally, the hits on several of the plates were

not “clean,” meaning that an off-center hit caused the

plate to take a relatively long time to leave the star

arm. Recall that the initial condition sensitivity of the

target’s equations of motion means that small changes

in the timing of each individual shot (or rather, the

timing of the plates leaving the star) can have drastic

effects on the eventual evolution of the target’s states

θ1 and θ2, since individual mass positions and veloc-

ities have errors that compound with small errors in

each shot time. The results of the third validation ex-

periment are shown in Figure 7. To show the effects

of relatively small changes in shot time on the match

between model and data, a second simulation was com-

pared to the same data in which the third plate’s de-

parture from the star was artificially delayed from the

measured time by a mere 4 frames of 23fps television

show footage. Compounded by the modeling assump-

tions, particularly those of zero coulomb friction and

instant plate departure, initial condition and shot time

variability has a large effect on the match between data

and simulation.

Fig. 7 Model vs. measured target motion for one recorded
trial. Plates engaged in order 4,1,5,3,2

The poor agreement in Figure 7 using the measured

plate 3 departure time may lead readers to wonder

whether the parameters in Table 1 and the state space

equations in Equation 14 can be used to predict tar-

get motion reliably for any set of shot times in a trial

any target engagement order. This type of universal

agreement would be ideal, but is hardly realistic given

the sources of variability in the human-shotgun-target

closed-loop system and the modeling assumptions men-

tioned above. In fact, Figure 7 shows that the initial

condition sensitivity of the equations alone, which is

explored further in Section 5, can result in vastly dif-
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Fig. 8 Laser-activated simulator program loop structure

ferent target behavior for small changes in shot time.

Fortunately, the results in the above experiments still

provide support for the hypothesis that the state space

system in Equation 14 is effective for predicting the

gross behavior of the target for a range of target en-

gagements. Therefore, this model is employed in Sec-

tion 4 to develop a real-time optoelectronic simulator

for use in competitor training.

4 Simulator Design

After building the calibrated state space model pre-

sented in Section 3, the equations of motion for the

target were used in the construction of an indoor, real-

time simulation of the target that allows competitors to

shoot the star with an inert laser training firearm. The

simulator system is driven by a program written in the

Python programming language using both the OpenCV

[28] and PyGame libraries that simulates the target’s

motion and tracks laser hits on a projected image of the

simulation using a multi-threaded program structure.

Physically, the simulator consists of a Microsoft R© web-

cam modified with a near infrared-pass filter and per-

manently affixed to a Gigabyte R© “mini-box” style PC

with a built-in projector running Ubuntu R© Linux. The

thread in the Python program simulating target motion

at 60Hz calculates the target’s states at each timestep

using the state space model in Equation 14. The cam-

era provides images to the image processing thread at

roughly 30 frames per second. When available, each

camera image is scaled and cropped so that image coor-

dinates align with projector coordinates. Then, a bright-

ness thresholding algorithm is performed on the cap-

tured near infrared image to detect laser hits. A latch,

or rising edge detection algorithm, is employed so that

successive frames do not result in successive detected

hits. Hit locations are compared with time-delayed plate

locations according to the target motion simulation to

compensate for image acquisition delay (roughly 0.1

seconds), and plate masses are removed from the sys-

tem equations as they are hit. Figure 8 shows an outline

of the simulator software/hardware pipeline.

Each of the rectangular blocks in Figure 8 represents

a subroutine in the Python program’s image processing

thread. The faster, 60Hz simulation thread uses the

latest data from the image processing thread to update

the target’s dynamics and render them smoothly for the

simulator’s user. Image acquisition is performed using

OpenCV’s built-in camera capture functionality. The

target’s motion is activated when the user hits the col-

ored plate, which takes the place of the activator target

in the real system. Elapsed time for each shot is dis-

played in the upper left corner of the projected image

along with a target that resets the program, but other-

wise the rendering of the target is minimal to prevent

visual distraction for a user. Figure 9 shows the physical

system, which boots and starts a full-screen simulation

when turned on.

Fig. 9 Laser activated simulator and projected image
(brightness inverted)

This simulator has been tested for reliability in in-

door, even lighting. With the release of hardware and

software designs to the open source community, the au-

thor expects the system to continue to be refined, and

provide valuable practice to competitors as well as a

platform for future research efforts to study the dynam-

ics of the complex closed-loop target-shooter sytem. In

a research setting, its open source software can be easily

combined with other sensors such as eye tracking sys-

tems, motion tracking camera systems, and/or inertial

sensors to provide a fully instrumented experimental

environment similar to what was developed by Swan-

ton in [24].

5 Discussion and Conclusions

This paper described the modeling, simulation, and val-

idation of the 3-Gun Nation Death Star shotgun target,

and outlined the development of a real-time optoelec-

tronic simulation environment. The simulator will be

released as an open source project to facilitate competi-

tor practice, and will be used as a research platform in

experiments directed at analyzing competitor strategy,
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planning, and movement while interacting with the tar-

get in competition. The equations of motion developed

in Section 2 were validated against video data from an

actual 3-Gun competition, indicating their usefulness

in replicating target motion in the laser-activated sim-

ulator. It is the hope of the author that this simulation

framework will lead to experiments that investigate the

way human motor control systems deal with complex,

nonlinear targets in goal-directed aiming. To facilitate

this type of formal experiment, the simulator stores all

relevant data while trials are being completed to a text

file that is easy to load into common software packages

for post-processing. Data from a sample trial using the

optoelectronic simulator is shown in Figure 10.

Fig. 10 Sample data provided by the optoelectronic simula-
tor during a trial.

The data in Figure 10 include information about

the timing and location of each laser hit, along with

the time-trajectory of each plate during the trial. In

combination with a synchronized eye tracking system,

the data provided by the simulator could be just as

useful in theoretical studies of human motor control as

in a practice session for a 3-Gun competition. All of

the inertial, spatial, and damping characteristics of the

target, as well as the position and delay offered by the

activator target, are adjustable.

In Section 3, the third validation experiment showed

evidence of the target’s sensitivity to the timing of hits

on each plate. Because this is one of the key charac-

teristics of this target’s challenge for competitors, it is

worth pointing out just how sensitive the equations re-

ally are. To further examine the target’s potential for

unpredictable behavior within the scope of human er-

ror, consider Figure 11. In this hypothetical scenario,

simulated offline using Equation 14, a simulated com-

petitor chose to engage targets 4,3, and 2. Target 2’s de-

parture, marked by the third shot, was delayed by 0.01

seconds for five separate runs of the simulation. It is

clear that even this small difference in timing has large

effects on the subsequent motion of the target. Figure

11 shows the target in an initial condition-sensitive re-

Fig. 11 Simulation in which three targets were engaged in
the order 4,3,2, for various timing of the third shot.

gion of the state space, and also highlights a bifurca-

tion in the system dynamics. For the last two trials,

the star spun all the way around rather than swing-

ing downwards as it did for the first three trials. This

phenomenon makes learning to shoot the Death Star

effectively extremely hard, and also illustrates the diffi-

culty of ensuring a match between simulations and tar-

get motion measured using video of competitition, as

in Section 3. Obviously, in the case of Figure 11, a bet-

ter strategy in choosing target order could have helped

avoid this type of behavior, but learning the best way

to shoot the target takes practice. Presumably, a com-

petitor uncovering this apparent unpredictability would

learn to engage targets in an order that minimizes the

chance of exciting a bifurcation or otherwise difficult-

to-predict state trajectory. The implications of these

choices, variability in shooter performance, and opti-

mal strategies are subjects of ongoing study.
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