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Technologically relevant magnetic nanoparticles for biomedicine are rarely non-interacting

single-domain nanoparticles; instead they are often interacting, with complex physical and

magnetic structures. In this paper, we present both experimental and simulated magnetic

hysteresis loops of a system of magnetic nanoparticles with significant interparticle inter-

actions and a well-defined intraparticle structure which are used for magnetic nanoparticle

hyperthermia cancer treatment. Experimental measurements were made at 11 K on sus-

pensions of magnetic nanoparticles dispersed in H2O which have been frozen in a range of

applied magnetic fields to tune the interparticle interactions. Micromagnetic simulations

of hysteresis loops investigated the roles of particle orientation with respect to the field

and of particle chaining on the shape of the hysteresis loops. In addition, we present an

analysis of the magnetic anisotropy arising from the combination of magnetocrystalline

and shape anisotropy, given the well-defined internal structure of the nanoparticles. We

find that the shape of the experimental hysteresis loops can be explained by the internal

magnetic structure, modified by the effects of interparticle interactions from chaining.
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I. INTRODUCTION

Magnetic nanoparticles (MNPs) have been the focus of significant research due to the large

number of potential applications in biomedicine and industrial fields. These include biomedical

applications such as hyperthermia1,2, drug delivery3, and imaging4,5. They are also used as fer-

rofluids for shock absorption6,7 and other industrial purposes. While there has been significant

progress developing MNPs for specific applications and understanding simple models of MNPs,

the impact of intraparticle structure of MNPs and interparticle interactions in ensembles of MNPs

on the measured magnetic behavior needs further study.

It is well-established that the magnetic hysteresis loop, or M(H) curve, for MNPs is gener-

ally significantly different from that of the bulk material. Bulk magnets typically form magnetic

domains and, when the applied field is cycled, the magnetization reverses via domain wall mo-

tion or domain nucleation and growth. Particles smaller than about 100 nm (depending upon the

magnetic properties, generally approximated by the bulk material properties), are assumed to be

single-domain,8,9 and to reverse via coherent rotation10.

The well-known Stoner-Wohlfarth model10 is used when the MNP is single-domain and the

atomic magnetic moments can be treated as one large moment (the “macrospin” approximation).

Typically, the MNP is also assumed to have uniaxial magnetic anisotropy. Then, the total energy

(Zeeman and anisotropy energy) of the MNP is considered and the direction for the magnetic

moment m⃗ is found which satisfies a local energy minimum. The characteristic hysteresis behavior

occurs due to the persistence of the magnetization in a (metastable) local energy minimum until

the energy barrier for switching becomes small. The Stoner-Wohlfarth model is often a reasonable

approximation for small, single-domain MNPs, though it typically overestimates the coercivity11.

Many researchers have used Stoner-Wohlfarth models to represent MNPs around 10 nm in size.

The simplest case is the non-interacting, single-domain model, but this model can be extended

to include dynamics and the effects of temperature12; interparticle interactions between single-

domain MNPs have been considered in other models13–15.

However, properties of MNPs such as structure and shape can disrupt the balance of energies

resulting in noncollinear spins. It has previously been experimentally established that the assump-

tion of “single domain” for MNPs does not generally hold16. The exact spin structure is highly

dependent upon the synthesis conditions, structure of the MNP, and any crystals within it.

To model M(H) in the case where atomic magnetic moments within the MNP are not collinear
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and the Stoner-Wohlfarth model is invalid, micromagnetic models are required. In a micromag-

netic model, the MNP is discretized into cells with sizes typically on the order of nanometers. The

atomic magnetic moments are then assumed to be collinear within each cell. The next step is to

either minimize the total energy (Zeeman, anisotropy, demagnetization, and exchange energy) or

solve the Landau-Lifshitz or Landau-Lifshitz-Gilbert equation17,18 to find the direction of m⃗ for

each cell. One of the downsides to micromagnetic simulations is that they do not naturally include

temperature. There has been recent work to expand micromagnetic simulations to include thermal

effects19, but issues remain. Computational finite-difference implementations of micromagnetic

models include OOMMF (Object Oriented Micromagnetic Framework)20 and MuMax19, among

others.

Finally, for phenomena occuring at the atomic level, atomistic models may be used16,21,22.

Atomistic models have typically been used on systems of indivudual, noninteracting MNPs no

larger than ∼ 10 nm due to issues of computational power. Real MNPs, including the MNPs

discussed here, are often larger than this, and can form complex systems with both inter- and intra-

particle magnetic interactions and structure playing an important role in the magnetic behavior.

In this paper, we present experimental work and accompanying simulations on a complex MNP

system. This system is highly relevant for applications, showing success in animal models of

magnetic nanoparticle hyperthermia cancer treatment23,24. The MNPs, with a ∼ 50 nm diameter

core, are significantly larger than the ∼ 10 nm size that has been the basis of most theoretical

studies. The MNPs described here have both significant intraparticle structure in the form of

parallelepiped-shaped crystallites and magnetic domains, and significant interparticle interactions,

which are thought to enhance their heating ability for hyperthermia applications.

In magnetic nanoparticle hyperthermia cancer treatment, the heat released by the MNPs un-

der an alternating magnetic field is proportional to the area enclosed by the magnetic hysteresis

loop. Thus, understanding the factors determining the magnetic hysteresis loop is paramount to

optimizing this cancer treatment. In both experimental and theoretical studies, reports of the heat

generated by MNPs under an alternating magnetic field vary by orders of magnitude depending

on the details of the MNPs used and the study conditions. The role of both interparticle and intra-

particle interactions in explaining these disparities has been debated and is still unclear2,13–15,25.

Most experimental measurements of heat output under hyperthermia conditions (measured by the

specific loss power or SLP, and also called the specific absorption rate or SAR) are measured on

MNPs colloidally suspended in fluid rather than MNPs in vivo. Understanding how interparticle
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interactions between MNPs which are free to move and form structures such as chains is important

to understanding the results of such measurements and how they relate to clinical conditions.

This paper presents DC hysteresis loop measurements on MNPs in frozen suspensions, dis-

persed in H2O, at cryogenic temperatures (11 K), as a function of applied magnetic field while

cooling. The choice of magnetic field applied during cooling influences the balance of energies

present in the suspension, most especially the interparticle interactions from chaining, allowing

us to study the influence of these interactions on the magnetic behavior. Freezing the suspen-

sion prevents motion of the MNPs, and the cryogenic temperature decreases the thermal fluctu-

ations of the magnetic moments. The M(H) loops obtained under these experimental conditions

have many similarities with those which would occur under magnetic nanoparticle hyperthermia

treatment conditions. In both cases (DC hysteresis loop at cryogenic temperatures vs. dynamic

hysteresis loop at ∼ 100 kHz frequencies and physiological temperatures), the average time for

thermal fluctuation-driven magnetization switching is quite long compared to the field cycle time

(ωτ ≫ 1). In addition, the average time for physical rotation of these MNPs in fluid suspension is

long (∼ 1 ms) compared to the field cycle time under hyperthermia conditions, so the comparison

to a frozen sample is relevant.

We compare these experimental results to a micromagnetic model of MNPs with an internal

magnetic structure and interparticle interactions similar to that exhibited by the experimental sys-

tem. An added benefit to working at cryogenic temperatures is that the micromagnetic modeling

is most accurate at T = 0 K. The combination of experiments and simulations helps us to better

understand the role/impact of both the internal magnetic structure and the interparticle interactions

on the magnetic hysteresis loops.

II. METHODS

A. Physical characterization of nanoparticles

The MNPs studied here are the bionized nanoferrite (BNF) nanoparticles synthesized via a high

temperature/high pressure homogenization process26. Extensive physical and magnetic character-

ization have been previously performed on the BNFs24,26–32, due to their technological relevance,

and is summarized here. The BNFs are composed of a solid iron oxide core, which is predomi-

nantly magnetite (though multiple compositions are present), and coated twice with a dextran shell
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which was then cross-linked with an amine (-NH2) functionalization. The core is approximately

50 nm in diameter with a polydispersity of 30 %. The dextran shell is approximately 40 nm thick

based on hydrodynamic size. The BNFs are dispersed in H2O with a concentration of 25.1 mg/mL

± 0.2 mg/mL (where the error represents 1σ ).

The solid core is composed of multiple crystallites, each of which is shaped like a paral-

lelepiped. Magnetically, the MNPs are multidomain. The magnetic domains are also parallelepiped-

shaped, though they are not necessarily coincident with the crystallites27. Average dimensions

(±1σ ) for the parallelepiped-shaped crystallites are (66±10 nm)× (26±2 nm)× (8±1 nm)28.

This internal structure is shown schematically in Figure 1. Experimental evidence does not in-

dicate any preferred crystallographic orientation for the core28. Therefore, there is no preferred

orientation for the magnetocrystalline easy axes of the crystallites. In addition, strong magnetic

dipolar interactions between MNPs are seen and linear chains of MNPs form in the direction of

an applied magnetic field29,30.

B. Field-cooled magnetic characterization of nanoparticles

Field-cooled magnetic characterization was performed on a Superconducting QUantum In-

terference Device Vibrating Sample Magnetometer (SQUID VSM) by Quantum Design33. A

LakeShore liquid capsule33 was filled with 28.3 mg of liquid sample and sealed with epoxy. Mea-

surements were performed on the frozen sample at 11 K after cooling from room temperature (300

K) in a fixed magnetic field Hcool between 0 mT and 7 T (specifically, 0 mT, 7 mT, 20 mT, 40 mT,

70 mT, 2 T, and 7 T). The magnetic field gradient in this system is negligible. The DC hysteresis

loop M(H) was measured from +7 T to −7 T and back to +7 T five times. Here, “DC” refers

to field cycle times of more than an hour. Multiple field cycles were utilized to remove small

asymmetry effects in H (less than 7 mT) which may arise from uncompensated surface spins on

the MNPs34,35 or artifacts from remanent magnetic fields in the superconducting magnet of the

SQUID VSM36–38.

To further investigate the origins of the hysteresis loop shape dependence on cooling field, we

performed additional experiments using a two-step field cooling procedure. In these experiments,

the sample was initially cooled from 300 K to 180 K (through the freezing point of H2O including

any additional suppression from the dextran) in a fixed magnetic field (either 7 T or 0 mT) and

then cooled from 180 K to 11 K in a different field (20 mT). Again, the field was cycled five times
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FIG. 1. Schematic of the magnetic model of a BNF MNP, composed of parallelepiped-shaped crystallites

of magnetite separated by nonmagnetic regions. The dimensions of the parallelepipeds are from experi-

mentally determined parameters28. Each parallelepiped is given a randomly oriented magnetocrystalline

anisotropy easy axis, shown in orange on the diagram. The diagram also shows the overall magnetic easy

axis of the model MNP as a whole, in green, somewhat offset from the long axis of the parallelepipeds due

to the random magnetocrystalline anisotropy of each parallelepiped. In the model, we use the angles θ ,

defined as the polar angle from the z axis (the long axis of the parallelepipeds), and ϕ , the azimuthal angle

in the x− y plane.

and the data from the fifth field cycle was used to remove slight asymmetry in H.
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C. Micromagnetic simulations

1. Simulation details

We used micromagnetics (OOMMF20) to simulate the magnetization of BNF MNPs, mod-

eling the experimentally observed intraparticle and interparticle magnetic structure. The exact

structure of the real system is complex (see Section II A and associated references24,26–29), so we

constructed a reasonable but simplified, computationally feasible model of the internal magnetic

structure.

In short, in the real system each MNP is formed from parallelepiped-shaped crystallites; the

magnetic domains are also parallelepiped-shaped but with somewhat different dimensions. Thus,

in the real system, the domain boundaries and crystalline grain boundaries are not necessarily co-

incident. Our simplified model includes parallelepiped-shaped crystallites of magnetite separated

by small regions of nonmagnetic material to represent domain boundaries, a reasonable descrip-

tion based on experimental work28. The magnetite crystallites within the model are 66 nm × 26

nm × 8 nm. Each MNP is composed of 12 such parallelepipeds separated by a 2 nm nonmagnetic

region, such that each MNP is 66 nm × 54 nm × 58 nm (Figure 1). A few additional simula-

tions were performed using crystallites with dimensions ±1σ from these average dimensions (e.g.

76 nm × 24 nm × 7 nm and 56 nm × 28 nm × 9 nm) in order to estimate uncertainties due to

polydispersity in the simulation results.

The saturation magnetization was that of bulk magnetite at low temperature39–42, Ms = 5×105

A/m. (Bulk values were used for consistency, and also due to the uncertainty in the experimental

value for saturation magnetization in this MNP system due to the difficulty of properly normalizing

the experimental data to magnetite content while substracting off diamagnetic background contri-

butions for the water and dextran.) Six-neighbor (nearest-neighbor) exchange was used, with an

exchange stiffness43 of A = 1.2×10−11 J/m in the magnetic regions and A = 0 in the nonmagnetic

regions. A 2 nm discretization size was used. Uniaxial magnetocrystalline anixotropy was used,

with a value of43 Ku = 6× 104 J/m3, an estimated value for low-temperature magnetite which is

expected to differ from the room-temperature value. (The magnetocrystalline anisotropy for mag-

netite is difficult to determine, and there has been extensive disagreement in the literature showing

anomalously large and small values30. The value used here is an approximation.)

Within each parallelepiped in the model, the magnetocrystalline anisotropy was defined to be
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uniform and oriented along a direction randomly chosen on the unit sphere, so that the spin struc-

ture within each parallelepiped is often approximately collinear except near edges (e.g. Figure

9). Thus, in the micromagnetic model each parallelepiped tends to have collinear magnetization

within it, similar to a domain, though the region of collinear magnetization is defined by the non-

magnetic boundary rather than spontaneously occurring due to energetics like domains in a perfect

bulk crystal. That is, in the model the crystalline grain boundaries and “domain” boundaries are

generally coincident, a simplification from the real system.

Because of the random choice of magnetocrystalline anisotropy direction for each of the 12

parallelepipeds comprising the MNP, there are an infinite number of unique MNPs which may

be modeled. Thus, each simulation was repeated multiple times with different random number

generator seed values and the results averaged in order to make more general conclusions.

2. Calculation of magnetic anisotropy energy

To find the magnetic anisotropy energy, we calculated the energy in OOMMF under an applied

field of 10 T (at which the magnetization is well saturated within the simulation), as a function

of magnetization direction using 3.75◦ angular increments, for a total of 4560 field directions in

one hemisphere. The other hemisphere is then found by symmetry. The simulation includes four

types of energy: Zeeman energy (due to the applied field), demagnetization energy (related to

shape anisotropy), magnetocrystalline anisotropy energy, and exchange energy. At 10 T, the spins

are closely aligned with the applied field for all field directions. Thus, the magnitude of both the

Zeeman energy and exchange energy vary negligibly with any change in direction of the applied

magnetic field, because the angle between the spins and the field is zero. The variation in Zeeman

and exchange energy is 2 and 4 orders of magnitude lower, respectively, than the variation in

demagnetization energy and magnetocrystalline anisotropy energy, which are of roughly similar

magnitude. Thus, we define the total anisotropy energy as the sum of the demagnetization energy

and magnetocrystalline anisotropy; this can be thought of as an effective anisotropy incorporating

both shape and magnetocrystalline factors. The total anisotropy energy as a function of field

direction was calculated for 109 unique MNPs. The lowest energy directions (“easy axes”) and

highest energy directions (“hard axes”) were tabulated.
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3. Calculation of M(H): particle orientation

In order to study the effect of MNP easy axis orientation (texture) on the magnetic hysteresis

loop of BNF MNPs, we looked more closely at 20 unique MNPs. For each MNP, we found the

simulated easy axis as described above, and then defined a new primed coordinate system (θ ′, ϕ ′)

in which the z′ axis (θ ′ = 0) is parallel to the simulated easy axis. As shown in Figure 7(a), θ ′

is the polar angle (from z′) and ϕ ′ as the azimuthal angle (in the x′− y′ plane) as usual. Then,

we simulated a DC M(H) loop by equilibrating the magnetization at each field step from 1 T to

−1 T to 1 T in 20 mT steps. Like the previous simulations, the M(H) simulations also included

Zeeman, demagnetization, magnetocrystalline anisotropy, and exchange energy terms. M(H) was

simulated for field directions spanning θ ′ = 0◦ to 90◦ and ϕ ′ =−180◦ to 180◦, in 15◦ increments.

M(H) was calculated along these directions for each unique MNP individually, and then summed

for the 20 MNPs to find an average M(H) of those 20 MNPs to account for the variability in M(H)

between unique MNPs. Interactions between MNPs are considered in the next section.

To simulate partial orientation of easy axes (texture), we summed the M(H) loops for field

directions within a given polar angle θ ′
max, weighted by solid angle as shown in Figure 7(a). The

contribution from hysteresis loops at the boundary of a given θ ′
max region is given half the usual

solid angle because only half of the solid angle is contained within θ ′
max.

4. Calculation of M(H): chaining

We modeled M(H) of chains of MNPs using the same method. To simulate chaining, we

modeled a linear chain of 5 MNPs, each with the same parallelepiped-based geometry as used in

the previous section and varied the spacing to change the strength of the interparticle interaction.

The long axes of the parallelepipeds and the chain axis were both parallel to the direction of the

field, as shown in Figure 8(a). For this simulation, each MNP within each simulation is unique,

so that each chain is unique. We calculated M(H) for 12 unique chains of 5 particles each and

averaged them.
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FIG. 2. (a) Hysteresis loops of sample at 11 K for different single-step cooling fields Hcool . The hysteresis

loops shown are the fifth cycle for each cooling field. The arrow indicates increasing Hcool . (b) Remanence

M(0)/Msat of hysteresis loops as a function of cooling field. Error bars represent 1σ and are shown;

however, they may be smaller than the symbol.

III. RESULTS

A. Experimental results

The experimental M(H) loops for the nanoparticle samples are shown in Figure 2(a). A trend

is observed in which the hysteresis loops measured after cooling in a large field are more square

shaped, while the hysteresis loops measured after cooling in a small or zero field are more stretched

along the diagonal. To illustrate this, the remanence M(0)/Msat is shown as a function of cooling

field in Figure 2(b). The remanence clearly increases with increased cooling field, due to the

increased squareness of the hysteresis loops measured at high fields. This indicates a change

in the magnetic anisotropy along the field direction when the sample is frozen in an applied field

compared to when it is frozen in zero field. We speculate that this could be explained by orientation

of the individual MNP’s easy axis along the direction of the field, or by the chains formed in the
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FIG. 3. Hysteresis loops at 11 K for the cases where the sample was cooled by a two-step process: (a)

Cooled from 300 K → 180 K in 7 T and from 180 K → 11 K in 20 mT. (b) Cooled from 300 K → 180

K in 0 mT and from 180 K → 11 K in 20 mT. This data is compared to selected data from the single-step

cooling from Figure 2. All the hysteresis loop data shown here are from the fifth field cycle for each cooling

condition.

direction of the field, or both.

The data from the two-step field cooling procedure yield additional insight. These data are

shown in Figure 3. It was found that the hysteresis loops from the two-step cooling experiments

most closely resemble the hysteresis loops from the one-step cooling experiments which have the

same field during the physical freezing of the sample (i.e. during cooling from 300 K → 180

K), regardless of the field below the phase transition, as shown in Figure 3. This supports the

idea that the shape change of the hysteresis loop upon field cooling is primarily due to physical

rearrangement of MNPs in a field, i.e. chaining or orientation of overall magnetic anisotropy axes,

which is frozen in place at the physical freezing point of H2O. In contrast, if the opposite result had

been found, it would imply that magnetic freezing was the most important contributor to the shape
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of the hysteresis loop, which may occur in systems with a spin or superspin glass component34,35.

B. Simulation results

As described in the previous section, we use simulations to consider two effects to explain the

changes in hysteresis loop shape with different field cooling: orientation of MNPs’ easy axes, and

MNP chaining. In the process of studying the effect of MNP orientation, we also analyzed the

magnetic anisotropy behavior of the individual MNPs.

1. Magnetic easy axis orientation

When a magnetic field is applied to MNPs which are free to rotate physically (such as is the case

for the BNFs in H2O at 300 K), we expect that the individual MNP’s easy axis may align along

the direction of the field (texturing)44. When the suspension is then cooled, this field-induced

magnetic texture can be locked-in. For a single-domain MNP with uniaxial anisotropy, texturing

may be described by the Stoner-Wohlfarth model, with the well-known result of a square hysteresis

loop for completely oriented MNPs and diagonal loops for completely misoriented MNPs. The

M(H) loops for different orientations can be summed, weighted by solid angle, to find M(H) loops

for ensembles of MNPs. Figure 4 shows M(H) for ensembles of non-interacting Stoner-Wohlfarth

MNPs with easy axes randomly oriented within a given maximum angle from the field direction.

A uniform distribution of easy axes within the maximum angle was used for the calculation. A

maximum angle of 90◦ yields the familiar curve for the isotropic (completely randomly oriented)

case10. The Stoner-Wohlfarth model does not describe well the experimental M(H) loops of the

BNF MNPs. The Stoner-Wohlfarth M(H) loops are very upright with a steep slope of M(H) near

M = 0, and they saturate at relatively low fields. On the other hand, the experimental M(H) loops

are more skewed/diagonal with a shallow slope of M(H) near M = 0. In addition, the experimental

M(H) loops have a long tail as they approach saturation.

As a result, we have studied here the effects of orientation and texturing using the micromag-

netic model. First, we determine the effective anisotropy energy of the particle as a whole, as

described in Section II C 2. For our model MNPs, based on the geometry shown in Figure 1,

we expect that shape anisotropy due to demagnetization energy is triaxial, with the lowest over-

all energy orientation (the “easy” axis) when the magnetization is parallel to the long axis of the
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FIG. 4. Calculated M(H) for ensembles of identical, noninteracting Stoner-Wohlfarth MNPs having easy

axes randomly distributed within a given maximum angle from the field axis. Here, the H axis is scaled

assuming material parameters of magnetite. The arrow indicates increasing maximum angle.

parallelepipeds (θ = 0◦ or 180◦). Likewise, the highest overall energy orientation (the “hard”

axis) would be when the magnetization is parallel to the short axis (θ = 90◦ and ϕ = ±90◦).

However, this energy landscape is modified by the magnetocrystalline anisotropy energy of each

parallelepiped, which is unique to each MNP based on the random orientation of the magnetocrys-

talline anisotropy axes. This is shown, for a typical MNP, in Figure 5. The resulting energy

landscape looks similar to that expected based on shape anisotropy, but energy maxima and min-

ima are shifted. Specifically, for one typical MNP shown here (Figure 5), the easy axis occurs at

θ = 15◦ rather than θ = 0◦ as would be expected based solely on shape anisotropy.

The easy and hard directions are given by (θ , ϕ ) as defined in Figure 1. The distribution of θ

and ϕ values for the 109 simulated MNPs is shown in Figure 6, showing that the easy directions

are clustered around θ = 0◦ and θ = 180◦. In the upper hemisphere, θ values for easy directions

range between 3.75◦ and 75.00◦, with a statistical mean of 20◦ and a statistical median and mode

of 15◦. The easy directions span the entire range of ϕ , but somewhat more frequently occur

around ϕ = 0 and ±180◦. The hard directions are strongly clustered around θ = 90◦ and ϕ =

±90◦. This is not surprising due to the energy penalty of the short axis of the parallelepiped

at θ = 90◦,ϕ = ±90◦. Competition between shape and magnetocrystalline anisotropy has been

discussed by other researchers. Because of the wide variation in magnetic structure and behavior

of MNP systems, the dominant anisotropy will depend on the details of a given system. However,
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FIG. 5. Total anisotropy energy (demagnetization plus magnetocrystalline anisotropy energy) of one MNP

as a function of applied field direction. The white e’s indicate the minimum energy (easy axes) while the

black h’s indicate the maximum energy (hard axes). Zeeman energy is not included; it is large, negative,

and does not vary significantly as a function of angle. Exchange energy is also not included; it is small and

does not vary significantly as a function of angle.

it has been shown that magnetic anisotropy is often more complicated than had been previously

considered30 and magnetocrystalline anisotropy is often dominated by other terms such as shape

or colloidal anisotropy30,45,46. This is similar to our results.

M(H) when the easy axis of the MNP is oriented along the field direction (θ ′
max = 0, the fully

oriented case) is shown in Figure 7(b), in black. This simulated M(H) curve displays many more

similarities to the experimental data than the Stoner-Wohlfarth model does. In particular, the

micromagnetic simulation captures the diagonal shape of the M(H) loop and the shallow slope of

M(H) near M = 0. The M(H) curves for partial easy axis orientation are shown in color, with
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FIG. 6. The easy (black) and hard (white) directions (θ ,ϕ ) of 109 unique MNPs. Frequency of occurrence

of easy (black) and hard (white) directions in θ and ϕ are shown on the bottom and left side, respectively.

θ and ϕ are defined in Figure 1.

θ ′
max = 90◦ corresponding to the isotropic (completely unoriented) case. The differences between

the orientations are much smaller than is seen in the Stoner-Wohlfarth case. However, M(H) for

the oriented MNPs has a slightly larger coercivity while the hysteresis loop for the isotropically

distributed MNPs has a slightly smaller coercivity, as well as a slight change in the approach to

saturation, with some similarities to the experimental data shown in Figure 2. Data in the literature

for aligned and unaligned noninteracting MNPs show a similar trend in M(H) in which coercivity

decreases as MNP alignment decreases47,48.

2. Chaining

It has been shown experimentally that, under an applied magnetic field, the BNF MNPs re-

arrange into long chains, loosely oriented along the field direction29,30. These chains, via their

increased dipolar interactions, add an additional effective term(s) in the anisotropy energy, which

can be called colloidal anisotropy49–51. In this section, we model chains of MNPs and show that
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FIG. 7. (a) Schematic of angles used for hysteresis loop simulations. θ ′ is the polar angle, defined as the

angle from the easy axis of the MNP (z′ axis). ϕ ′ is the azimuthal angle in the x′− y′ plane. The black lines

delineate 15◦ increments; M(H) was simulated along directions at the intersections of the black lines. This

schematic shows, in orange, the field directions that are included in the sum to obtain the hysteresis loop for

an ensemble with a maximum angle θ ′
max = 45◦. The hysteresis loops included in the sum are weighted by

solid angle. The schematic shows, highlighted in purple, the solid angle that is attributed to a single field

direction at θ ′ = 30◦, indicated by a blue arrow. (b) Simulated M(H), the average of M(H) calculated for

20 unique MNPs for a range of values of θ ′
max. The arrow indicates increasing θ ′

max.
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FIG. 8. (a) Geometry for simulations of chains of 5 MNPs. The field, linear chain direction, and long axes

of parallelepipeds are all parallel. The slice of spins shown in Figure 9 is indicated in green on this diagram.

(b) Average of simulated hysteresis loops for 12 unique chains of 5 interacting MNPs each, for a range of

MNP spacing. MNP spacing is given as the center-to-center distance between 66 nm MNPs. The arrow

indicates increasing spacing.

chaining reduces the skew effect in the M(H) loops. As described in Section II C 4 and shown

in Figure 8(a), we modeled chains of 5 parallelepiped-based MNPs in which the long axes of the

parallelepipeds and the chain axis were both parallel to the direction of the field. From the results

of the previous section, we know that the easy axis of the simulated MNP typically points around
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≈ 15◦ from the long axis of the parallelepipeds, so the simplifying approximation to align the

parallelepiped long axis along the field direction is reasonable. The resulting M(H) is shown in

Figure 8(b) for a range of interparticle spacings. Each MNP is 66 nm in length, so that the clos-

est MNPs, with 68 nm spacing (center-to-center), are nearly touching. The M(H) loops become

more diagonal and less square with an increase in spacing, again showing some similarities to the

experimental data in Figure 2.

To understand the differences in M(H), we can look at the individual spins in the micromag-

netic simulation. A map of the spins in a slice (Figure 8(a)) through the middle simulated MNP

(out of the chain of 5 MNPs) is shown in Figure 9 for the H = 0 mT step of a hysteresis loop

simulation, after having applied an initial saturating field of 1 T in the positive direction (up). The

intraparticle structure of magnetic parallelepipeds with nonmagnetic spacers leads to an interrup-

tion of the exchange interaction between parallelepipeds. Thus, parallelepipeds only interact with

each other via dipolar interactions. The simulated spins tend to orient within the plane of the par-

allelepipeds (up/down and in/out of the page), with only small components of the magnetization

vector pointing along the short direction of the parallelepiped (left/right). This is in agreement

with previous experimental results28.

Dipolar interactions between side-by-side parallelepipeds should favor antiparallel alignment

because it reduces demagnetization energy; however, the randomly oriented magnetocrystalline

anisotropy axes and the magnetic field history prevent a fully antiparallel alignment. In Figure

9(a), which shows an isolated MNP (300 nm spacing), only two of the six parallelepipeds have

largely reversed their magnetization from the direction of the originally applied field.

Figure 9(b) shows the same simulated MNP with close spacing (68 nm), i.e. strong interparticle

interactions. The edges of the neighboring MNPs in the chain can be seen at the top and bottom

of the frame. In this case, the head-to-tail interactions between neighboring MNPs tend to favor

parallel alignment, and none of the parallelepipeds have completely reversed their magnetization

direction, though some have significant components of the magnetization pointing in/out of the

page.

These dipolar interactions are responsible for a lower remanence (at H = 0 mT) than would be

expected for a single-spin, coherent rotation model. They are also responsible for a more gradual

magnetization reversal than is seen in a Stoner-Wohlfarth model. This effect is similar to that seen

for certain spatial arrangements of monolithic MNPs in other studies 15,52,53.
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FIG. 9. Slice through the 3rd (middle) parallelepiped-based MNP in a chain of 5 from the OOMMF simu-

lation for H = 0 mT, shown in Figure 8. A field of 1 T was initially applied in the +z direction (up) and was

decreased to H = 0 mT, shown here. In this color scheme, blue indicates spins pointing up and red indicates

spins pointing down. Grey indicates spins pointing in or out of the page. This is shown for two interparticle

spacings: (a) 300 nm (isolated) and (b) 68 nm (strongly interacting). In (b), the edges of the neighboring

MNPs are also visible in the figure.

IV. DISCUSSION

To compare M(H) from our experimental data with M(H) from the theoretical models, we

use the remanence M(0)/Msat , the reduced susceptibility d(M/Msat)/d(µ0H) at M = 0, and the
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FIG. 10. Remanence of hysteresis loops for (a) experimental data, as a function of cooling field, (b) micro-

magnetic simulations of noninteracting MNPs as a function of angle, and (c) micromagnetic simulations for

chains of 5 MNPs, as a function of interparticle spacing. Error bars represent 1σ and are shown; however,

they may be smaller than the symbol. For (b) and (c), error bars represent uncertainty due to polydispersity

(see Section II C 1).

coercivity Hc as metrics.

The remanence is shown in Figure 10. In the experimental data, M(0)/Msat increases as the

cooling field increases. In the easy axis orientation model, M(0)/Msat increases slightly as the

MNPs become more oriented and in the chaining model, M(0)/Msat increases as the spacing

becomes smaller. Both increased alignment and increased chaining would be expected to occur in

a larger cooling field, so both models are consistent with the experimental data. This data shows

that chaining can have a larger, more significant effect than orientation on the remanence.

The reduced susceptibility is shown in Figure 11. Experimentally, the slope of the hysteresis

loop d(M/Msat)/d(µ0H) at M = 0 increases with cooling field, leveling off at the highest field.

d(M/Msat)/d(µ0H) barely changes as orientation changes, however it increases significantly with
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FIG. 11. Reduced susceptibility d(M/Msat)/d(µ0H) at M = 0 of hysteresis loops for (a) experimental data,

as a function of cooling field, (b) micromagnetic simulations of noninteracting MNPs as a function of angle,

and (c) micromagnetic simulations for chains of 5 MNPs, as a function of interparticle spacing. Error bars

represent 1σ and are shown; however, they may be smaller than the symbol. For (b) and (c), error bars

represent uncertainty due to polydispersity (see Section II C 1).

chaining. Thus, the trend in reduced susceptibility can be explained primarily by chaining, with

the presence of dextran preventing the smallest spacings from being realized and stabilizing the

system.

The coercivity is shown in Figure 12. In the experimental data, Hc is essentially unchanged

(within the uncertainty) as a function of cooling field. In the easy axis orientation model, Hc

increases with orientation while in the chaining model, Hc remains nearly constant as MNP spacing

becomes smaller. The latter could be correlated with a higher cooling field. Therefore, chaining

is likely to be the dominant factor controlling the behavior of Hc seen in the experimental data.

However, coercivity is notoriously difficult to model11,54.

The energies involved in both the overall easy-axis orientation of individual MNPs in a field
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FIG. 12. Coercivity of hysteresis loops for (a) experimental data, as a function of cooling field, (b) micro-

magnetic simulations of noninteracting MNPs as a function of angle, and (c) micromagnetic simulations for

chains of 5 MNPs, as a function of interparticle spacing. Error bars represent 1σ and are shown. For (b)

and (c), error bars represent uncertainty due to polydispersity (see Section II C 1).

and the dipole-dipole interaction between MNPs are both significantly larger than the thermal en-

ergy in this system. At freezing (≈ 270 K), thermal energy is kBT = 3.7×10−21 J. The anisotropy

energy difference ∆Eanis ≈ 5×10−18 J for a typical model MNP (see Figure 5). The Zeeman en-

ergy and dipole-dipole interaction energy both rely on the total magnetic moment m for the MNP,

which may be calculated to be m ≈ 8×10−17A ·m2 at saturation from the magnetization and vol-

ume of the model MNP given in Section II C 1. The Zeeman energy in an external field is then

EZ ≈ 6×10−19 to 6×10−16 J for fields between 7 mT and 7 T. The dipole-dipole interaction en-

ergy is Edip ≈ 3µ0m2/4πr3 which is approximately 7×10−20 J to 7×10−18 J for center-to-center

interparticle spacings from 300-66 nm, as considered by our chaining model. Note that all the

energies discussed here are larger than kBT , so that it is reasonable to expect the MNPs magnetic

moments to align along the overall MNP easy axis (at saturating fields), and for those easy axes
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to align along the direction of the field. Dipole-dipole interactions resulting in MNP chaining are

also reasonably expected for the interparticle spacings considered here, though the smallest spac-

ings considered theoretically are likely disallowed experimentally by the thick dextran coating.

In order for the dipole-dipole interaction energy to decrease to the level of the thermal energy,

the interparticle spacing would need to increase to 800 nm (larger than any considered here, and

corresponding to a dilute MNP concentration of about 1 mg/mL). In such a dilute case, chaining

would be unlikely to occur. An important caveat to these order-of-magnitude calculations is that,

should an individual MNP be demagnetized, with the internal regions of nonuniform magnetiza-

tion cancelling each other, the anisotropy energy as we have considered it is not well-defined. In

addition, Zeeman and dipole-dipole interaction energies, which depend on a total moment m for

the MNP, could be much smaller. However, the remanence of both individual and chained model

MNPs, as well as the experimental system, is significant (≈ 1
3Msat), such that MNPs will likely

be sensitive to easy-axis orientation and dipole-dipole interaction, once magnetized, even in very

small fields.

Our results highlight the importance of the geometry of intra- and inter-particle structures on the

shape of the hysteresis loop. Qualitatively, the trends observed here should apply generally to inter-

nally structured, interacting MNPs in the same size range (∼ 50 nm) with competing anisotropies

(shape and magnetocrystalline). In particular, intraparticle structure leads to a diagonal-shaped

hysteresis loop distinctly different from that obtained by the Stoner-Wohlfarth model, interpar-

ticle interactions in the form of chains decrease the skew of the hysteresis loop, and easy-axis

orientation increases the coercivity. These qualitative trends are generally expected to translate to

application conditions, in particular the conditions of hyperthermia treatment, based on the dis-

cussion in Section I. Differences may occur, however, depending on the specifics of the MNP

environment. Importantly, the degree of mobility of MNPs in a fluid vs. a tissue environment will

determine whether the MNPs form chains or other structures. Our results show the importance of

the geometry of such structures to the resulting M(H).

Although the qualitative trends in remanence, reduced susceptibility, and coercivity are sugges-

tive of a combination of MNP easy-axis orientation and chaining leading to the observed exper-

imental behavior, the quantitative values for these metrics differ between theory and experiment.

This suggests that further effects influence M(H) in the complex experimental system which are

not taken into account by this micromagnetic model of MNPs with parallelepiped-shaped magnetic

structures. These likely include MNP nonuniformity, inter-chain interactions, surface effects, and
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finite-temperature effects.

V. CONCLUSION

In summary, the MNP system studied here, composed of BNF MNPs, do not behave as Stoner-

Wohlfarth model particles. The shape of the hysteresis loop can be modeled micromagnetically,

taking into account the internal magnetic structure of the MNPs. Parallelepiped-shaped magnetic

structures prevent magnetization reversal by coherent rotation. Our model found that variation in

the orientation of the overall MNP magnetic easy axes (texture) primarily changes the coercivity of

the MNPs hysteresis loops, while MNP chaining primarily impacts the approach to saturation. The

trends in experimentally measured hysteresis loops are most likely explained by a combination

of texturing and chaining, with chaining playing a dominant role. This has implications for all

applications of MNPs, including hyperthermia, imaging, and data storage.
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