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Part 1: (Pattern avoidance) We will:
1. Define the idea of shape-Wilf-equivalence
2. Discuss a new bijection 1 related to shape-Wilf-equivalence

3. Look at the enumerative consequences of 1

Part 2: (Homomesy)

1. In Spring 2013, T. Roby spoke at here about the idea of
homomesy (formally called combinatorial ergodicity)

2. He stated a conjecture of Roby-Propp about homomesy,
rectangular Young tableaux, and promotion

3. Then we prove it!
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Classical Pattern Avoidance

Definition
Let 7 € S,,. We say 7w contains the pattern 7 € Sy if m has a
subsequence with the same relative ordering as 7.

» If ™ does not contain 7 we say it avoids 7.

An example
T=2573614¢c5;.

» 7 contains the pattern 231 because of the subsequence 271.

Notation

» Denote by S,(7) the set of all m € S,, that avoids T.
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Classical Pattern Avoidance

Definition

We say two patterns 7 and o are Wilf-equivalent if

|5n(7)] = [5n(0)]

for all n. In this case we write 7 ~ o.

Well Known Facts:

> All patterns 7 of length 3 are Wilf-equivalent
» Moreover, |S,(7)| is the nth Catalan number!
> All patterns 7 of length 4 are NOT Wilf-equivalent

> There are three equivalence classes

» No general method for determining Wilf-equivalence
» Finding one is the Holy Grail!



Determining Wilf-equivalence



Determining Wilf-equivalence

A partial method for determining Wilf-equivlance is due to Backlin,
West, and Xin



Determining Wilf-equivalence

A partial method for determining Wilf-equivlance is due to Backlin,
West, and Xin

Theorem (Backlin-West-Xin '01)

Let 7,0 € Sk be patterns with a “special property” and p be any
permutation on the letters {(k+1),...,(n+ k)}.



Determining Wilf-equivalence

A partial method for determining Wilf-equivlance is due to Backlin,
West, and Xin

Theorem (Backlin-West-Xin '01)

Let 7,0 € Sk be patterns with a “special property” and p be any
permutation on the letters {(k +1),...,(n+ k)}. Then

T-pNO’-p

where - is juxtaposition.



Determining Wilf-equivalence

A partial method for determining Wilf-equivlance is due to Backlin,
West, and Xin

Theorem (Backlin-West-Xin '01)

Let 7,0 € Sk be patterns with a “special property” and p be any
permutation on the letters {(k +1),...,(n+ k)}. Then

T-pNO’-p

where - is juxtaposition.

This “special property” is called shape-Wilf-equivlance



Determining Wilf-equivalence

A partial method for determining Wilf-equivlance is due to Backlin,
West, and Xin

Theorem (Backlin-West-Xin '01)

Let 7,0 € Sk be patterns with a “special property” and p be any
permutation on the letters {(k +1),...,(n+ k)}. Then

T-p~0-p
where - is juxtaposition.

This “special property” is called shape-Wilf-equivlance
» What is that?
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Defining shape-Wilf-equivalence

A Ferrers Board F is a square array of boxes with a “bite” taken
out of the northeast corner.

A full rook placement (f.r.p.) on F is a placement markers (or
rooks) so that EXACTLY one is in each row and column.

Notation

1. RF = set of all f.r.p. on fixed board F
2. Rp = set of all f.r.p. with n rooks (different boards)
» Analogous to S,
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Defining shape-Wilf-equivalence

Definition

A f.r.p. on F contains a pattern 7 € 5 if there is some rectangle
R that sits inside F so that rooks in R contain 7 in the classical
sense.

> If not, we say it avoids the pattern 7

X

e Contains 312
X e Avoids 231

X

Read using cartesian coordinates!

Notation

» Re(7) = subset of Rg that avoid T
» R,(7) = subset of R, that avoid T
» Analogous to S,(1)
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Analog of Wilf-equivalence

Definition
We say two patterns o, 7 € Sy are shape-Wilf-equivalent if

Re(o)] = [Re(T)],

for any Ferrers boards F. In this case we write o ~ 7.

Observe:

» shape-Wilf-equivalence — classical Wilf-equivalence.
» If Fis n x nsquare board, then Re(7) = S,(7).
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Patterns of Length 3

There are 3 shape-Wilf-equivalence classes:
231 ~¢ 312 < 123 ~4 321 ~4 213 < 132

Past Work:
e 123 ~, 321 ~4 213
- Backelin-West-Xin '01, Krattenthaler '06, Jelinek '07
- Enumerated by noncrossing Dyck paths

e 231 ~ 312

- Original proofs: Stankova-West '02, Jelinek '07
- Previously NOT enumerated
e Relative ordering
- Stankova '06
Our Work:
e New proof that 231 ~; 312

- Previous proofs: nonbijective and complicated
- Our proof: bijective and (we think) simple
- Yields many enumerative results
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» First, we define a bijection
M:Ry231) — L£,(231)

where £,(231) is a certain type of labeled Dyck paths

» Then, we define another bijection
© : Rn(312) — L,(312)

where £,(312) is a another type of labeled Dyck paths
» Finally, we show that £,(231) <+ £,(312)
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The Bijection Tl

X

Rr(231) Lr(231)

Defining Properties of ££(231)
e Monotonicity:
- +1/0 Horizontal Step & -1/0 Vertical Step
e Zero Condition:
- All zeros are along the main diagonal (red line)
e Diagonal Property:
- Upper < Lower
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The Bijection Tl

Theorem (Bloom-Saracino '11)

The mapping
M:Re(231) — L£(231)

is a bijection. Further, an analogous mapping
© : Re(312) — L£(312),

is bijective. Here L(312) = the set of labelings with the reverse
diagonal property:
Upper > Lower



Proof of 231 ~, 312

Corollary (Bloom-Saracino '11)
There exists a (simple) bijection Rg(231) «+— Rr(312).



Proof of 231 ~, 312

Corollary (Bloom-Saracino '11)
There exists a (simple) bijection Rg(231) «+— Rr(312).

Proof by Example:

RF(231) «—— £r(231) LF(312) 2 Rp(312)



Proof of 231 ~, 312

Corollary (Bloom-Saracino '11)
There exists a (simple) bijection Rg(231) «+— Rr(312).
Proof by Example:

RE(231) < Lr(231) 2 Lr(312) «2— Rp(312)



Proof of 231 ~, 312

Corollary (Bloom-Saracino '11)
There exists a (simple) bijection Rg(231) «+— Rr(312).

Proof by Example:

RE(231) < Lr(231) 2 Lr(312) «2— Rp(312)

01 11 2



Proof of 231 ~, 312

Corollary (Bloom-Saracino '11)
There exists a (simple) bijection Rg(231) «+— Rr(312).

Proof by Example:

RE(231) < Lr(231) 2 Lr(312) «2— Rp(312)

0 2 3 45 01 11 2

3
2 1
0

(Canonical Labeling) LF(231)



Proof of 231 ~, 312

Corollary (Bloom-Saracino '11)
There exists a (simple) bijection Rg(231) «+— Rr(312).

Proof by Example:

RE(231) < Lr(231) 2 Lr(312) «2— Rp(312)
0 2 3 4 5 01 1 1 2 01 2 3 3

4 2 2

3 2 P 1

3 _— 1 _— 2
3 2 1
2 1 1
0 0 0

(Canonical Labeling) LF(231) LF(312)
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54z
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- —(1_ 32
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Further, we obtain

33
"Rn(231)| ~ 12",
25V 7mn®
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In 1997 M. Bdna proved the following celebrated result:

32z
Sn(2314)|2" = .
2 15:(2314)]2 1+ 20z — 822 — (1 82)3/2

n>0

» His proof is not easy!
» A simpler proof was long sought

» We provide one using Il
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Enumerative Results: 2314—Avoiding Permutations
First, we view any 7 € 5,(2314) as a f.r.p. on a minimal Ferrers
board. For example,

7165324¢ 5,(2314)

becomes
0 1
7 01 2
X
X 2 3
X
X 1
X

0

Observe

» This f.r.p. is in Rp(231)
> Apply M!

» The resulting labels are characterized by the peak property
» Around a peak we have: a,a+ 1, a.
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Enumerative Results: 2314—Avoiding Permutations
Lemma (Bloom-Elizalde '13)
Our bijection T : R,(231) — L,(231) induces a bijection
M : S,(2314) — £X(231),

where L£(231) C L£,(231) with the peak property.

— Counting £(231) is simply a matter of “tweaking” the
method used to count £,(231).

Doing so we obtain Béna's result:

32z

n 2314 "= A 12 "= '
D 1Sn(2314)[2" =) " |L£7(312)|2 1+ 20z — 822 — (1 — 82)3/2

n>0 n>0
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Enumerative Results

In June 2013, D. Callan proved that

1

D " [Sn(2314,1234)|2" = T2

n>0
where C(z) is the generating function for the Catalan numbers.
He concludes his (124 page) paper by saying:
“[My argument] works but is hardly intuitive...”
and then asking:
“Is there a better proof?”

The answer is YES!
» Using [T the proof is < 1 page.
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What is Homomesy?

Definition
If we have
» X - a set of combinatorial objects
» G - a group acting on X
» f: X — R (a “statistic”),
then we say the triple (X, G, f) is homomesic if there is some
constant C such that

|Ol|z(:9f(x):C

where O is any orbit.
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Our set X: Rectangular Young Tableaux

Definition (By Example)
A rectangular Young tableau is a rectangular array of N boxes

2
415

» that contains the numbers 1... N

» with rows/columns strictly increasing
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Our Group Action: Promotion

Consider the mapping

T = : — n—>

1
3

» This mapping is called promotion

» Originally defined by Shiitezenberger
» Connected to jeu de taquin and RSK

= P(T)



Propp-Roby Conjecture

Consider the orbit of T under promotion:
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Propp-Roby Conjecture

Consider the orbit of T under promotion:

112]3|7]|1]2|5]|6|[1]|3]|4]5 2134
4|15(6(8 314|718 216|718 6|78
Pick a box B

» Let B* be the corresponding box (under 180°-rotation)
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Propp-Roby Conjecture

Consider the orbit of T under promotion:

123, . [1[2[508]. . [1[3[4B]..[1]2]3
568 4]7[8 6]7]8 67]8]

Pick a box B
» Let B* be the corresponding box (under 180°-rotation)

» The average value in these two boxes is:

(4+7)+B+6)+2+5)+(5+4) _36 _ o
4 4




Propp-Roby Conjecture

Conjecture (Propp-Roby)

Let T be a rectangular Young Tableau with N boxes. If B is any
box and B* is its corresponding box (under 180°-rotation) then
their average value over the orbit

T P(T)—=PHT)— -

is always N + 1.
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Again consider the orbit of T:
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Propp-Roby Conjecture: A Closer Look

Again consider the orbit of T:

12|30, [1]2|5)8], ,[1[3]4]8] ,[1]2
5/6[8] 417|8] 6]7]8 6

Observe the distributions in B and B*:

Dist(B) = {7, 6, 5, 4}
Dist(B*) = {4, 3, 2, 5}
8+1—Dist(B*)={9—4,9-3,9-2 9—5}
= {5, 6, 7, 4} = Dist(B)
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Theorem (Bloom-Pechenik-Saracino)

Let T be a rectangular Young Tableau with N boxes. If B is any
box and B* is the corresponding box then

Dist(B) = N + 1 — Dist(B*)

over the orbit
T—=P(T)—=PHT) .

Observe: If we define T* by

w
N
o1

T —[1[2[3]7] 18, [8[6]5[4] N+l [1
4[5[68 7[3]2]1 2[6]7[8

— T*

then a (short) argument shows that our theorem is equivalent to:

DiStT(B) = DiStT*(B)
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Growth Diagrams

We encode our tableau as a sequence of partitions:

+_[1]2]3]7

5/6]8
HH
HH
HH
HF
B
oo
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Growth Diagrams

Now our orbit

11237 s 2156 s 1134|565 . 1/2(3|4
4(5/6|8 41718 6|78 6|78
becomes

HH HH HH HH HE HE HH £

H & B H B B 3 B
H H° 5 B° B H5HF B 57
BH B ¢ FF B B B §F

HY oo Y H B oo

oo B O oo oo B oo

H H
mu
O
0 0



Growth Diagrams

Now our orbit

112|137 1(2]|5(6 1(3]4|5 11234
415|638 3/14|7|8 216|7]|8 5(6|7]|8

becomes

HH HH HH HH HH HH HH A
Hf £ B = HF B3 B 5P
H BH- =Y R 5B HE HE HE
H H £ 5 B B 2 §FE
H H P oo 2 H Y oo
oo B O oo oo O oo
m m H m m m H m
O O O O O O O O

o o 0o o 0 0 0 0

> This is Fomin's growth diagram.
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Growth Diagrams
Some KEY fact about growth diagram:

s HHH HHH HH HH HH HH HH HH
T Y B B B B HF B
6 HH H- H- HY H H- HE HE
5 B H B B B B HE HE
4 HY H HY om P BH HBY oo
3 oo B O oo oo BB oo

» The diagonals encode the orbit of T
» The anti-diagonals encode the orbit of T*
> The addition of a box B on level k means:

» Along a diagonal: k € Distr(B)
» Along an anti-diagonal: k € Dist+(B)



Our proof

HH HH HH HH HE HH HH HH
Hf H B B B HF B 3
H H- 5 HR B BHE HE 5
H H 5 2 5 B 2
HY H B oo B2 BH Y oo
oo B O oo oo B OB oo
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Our proof

m O m oo PO oo
m H m m m H m
o O m] o O m] o O
0

o0 o 0 0 0 0

» Shade all partitions containing B

» This carves out a Dyck path
» Up-steps <— down-steps

» Down-step on level k «— k € Distr(B)
» Every up-step on level k <— k € Dist+(B)



Thank Youl



