Undergraduate Research Opportunities
Department of Chemical & Biomolecular Engineering
Lafayette’s EXCEL Scholars Program enables high-performing students to **assist faculty members with their scholarship**. The purpose of the EXCEL Program is to **encourage collaboration in learning between faculty and students**. The work of the student must, therefore, be research-oriented and not administrative in its primary emphasis. EXCEL Scholars may work part-time during the academic year or full-time during the Summer and the Interim Session.

Participation in the EXCEL Program is an honor reserved for those students who have achieved distinction in their academic program at Lafayette. To be eligible as an EXCEL Scholar, students should have completed their first year at Lafayette and should maintain a cumulative GPA of 3.25.
“Since it’s inception in 1989, the Clare Boothe Luce Program has been one of the most significant sources of support for women seeking to study or teach science, engineering, and mathematics.”

Participation in the CBL Program is an honor reserved for those female students who have achieved distinction in engineering at Lafayette. To be eligible as a CBL Scholar, students should have completed their first year at Lafayette, be a US Citizen, and should maintain a cumulative GPA of 3.25.

Students submit a written application to engineering@lafayette.edu
 – Personal Statement (what, how, who, why)
 – Recommendation from any Faculty Member
Independent Research in Chemical Engineering serves to provide students with a high quality hands-on student-faculty research experience for a range of technical topics. Before registering, a research proposal must be submitted to a faculty member who serves as the adviser and to the Scholarship Committee for approval. Each student is required to submit a course Portfolio for course credit.

Course Hours:
- One hour per week meeting with Instructor (minimum)
- Ten hours per week course work (minimum)

CHE 392/393 satisfies a free elective in chemical engineering.
Research for Credit and Honors: CHE 495/496 Honors Thesis

• An Honors Thesis in Chemical Engineering serves to provide outstanding students with a **high quality student-faculty research experience during the senior year**. Candidates for honors must have and must maintain a cumulative GPA of 3.00 and ChBE Departmental GPA of 3.20. The specific research topic of the Honors Thesis should be discussed well in advance of the senior year with the Instructor.

• Course Hours:
 – One hour per week meeting with Instructor (minimum)
 – Ten hours per week course work (minimum)

• CHE 496 satisfies a chemical engineering elective.
Engineering the cell-surface interaction

- **Overarching principle:** Manipulate biomaterial properties, (bulk: modulus; surface: chemistry, topography), to selectively control the cell-material interaction.

- For the relevant cell type, evaluate the following parameters on the biomaterial:
 - Cell morphology: microscopy, image analysis (spreading, circularity)
 - Cell adhesion: microscopy, immunofluorescence, adhesion assays
 - Cell differentiation: gene and protein expression, soluble signaling
 - Cell proliferation: DNA quantification
 - Cell-vitality: live/dead quantification using ViCell

L. Anderson
Thermoresponsive Polymer Brush Fabrication and Cell Culture

Gene Expression by Real-time RT-PCR
Mechanistic Cell Adhesion Analysis using mRNA Microarrays
Cell Morphology by Confocal Microscopy

Gene Expression by Real-time RT-PCR
Mechanistic Cell Adhesion Analysis using mRNA Microarrays
Cell Morphology by Confocal Microscopy

Thermoresponsive Brushes

P(MEO₂MA-OEGMA)

T > LCST

T < LCST

Cycle 1

Cycle 5

Cell Adhesion

Fold Change (ΔΔCt)

0.0 1.0 2.0 3.0 4.0 5.0 6.0

RhoA FN1 Dusp2

Magnitude of log₂(Fold Change)

-3.61 0 3.61

01 02 03 04 05 06 07 08 09 10 11 12

A B C D E F G

20 μm
What skills will I learn?

- Sterile cell culture
- Real-time RT-PCR
- Microscopy (phase contrast, confocal)
- Polymer fabrication (nanofibers, microspheres, 2D films)
- UV-vis spectrophotometry

What positions are open?

- Summer 2016
 - EXCEL Scholars
 - Clare Booth Luce (female engineers)
- AY16/17 by discussion
Investigation of protein expression and cell function in biomolecular engineering applications

Central question: How does the regulation of cell protein expression affect cell function and inform the engineering of better materials?
Cellular and Proteomic Responses to Engineered Materials

- Protein Adsorption
- AgNP Surface Chem.
- Cell/AgNP Interactions
- Cellular Response

Cell/Biomaterial Interactions

- Pressure
- Polymer solution
- nanofibers
- fiber mat
- Collector
- High Voltage

[Diagram showing the process of nanofiber production and its application]
Experimental skills:

• Sterile cell culture
• Immunohistochemistry
• Confocal microscopy
• Protein electrophoresis and western blot
• Fluorescence spectroscopy
• In vitro cell function assays

Availability:

• Honors Thesis: AY 2016-2017 (Juniors)
• EXCEL/CBL: AY 2016-2017 (Soph/Juniors)
Protein-Protein Interactions

- Cell Adhesion
- Metabolic Regulation
- Antibody Therapeutics
- Neurodegenerative Disease

Neurodegenerative Diseases

Alzheimer’s, Parkinson’s, Huntington’s, CJD

Disease conformation acts as template for converting native form to disease form

PrPC

PrPSc

PrPSc

Proposed Model

James et al. PNAS (1997)

Wille et al. PNAS (2002)
Doolan

High-throughput design and characterization

CELL SURFACE DISPLAY

FLOW CYTOMETRY/FLUORESCENT MICROSCOPY

NEXT-GENERATION SEQUENCING

Identify solution, amino acid and conformation specific determinants of protein fitness landscape and isolation of “improved” function proteins
Doolan

Experimental Skills and Availability

• Cell culture
 • bacterial, yeast, and mammalian cells
• Recombinant DNA Technology
 • PCR
• Yeast Surface Display
 • Immunolabeling and Confocal Microscopy
• Bioinformatics
 • Deep Sequencing and Data Analysis

Opportunities available:
EXCEL and Clare Booth Luce scholars (2 for SU 16)
Sustainability and Engineering

Nutraceuticals, Antibiotics, Steroids

Lipid
Other
Starch
Protein

Biodiesel, Glycerol, Polymers, Surfactants

Animal Feed, Nutrient Recycling

Bioethanol, Bioplastics, Food additives

Energy and the Environment
Biodiesel Production Process

Cultivation → Harvesting → Extraction → Conversion

Biodiesel conversions in CO₂

CH₂-O-COR + 3CH₃OH → CH₂-OH + 3R-COOCH₃
C -O-COR
CH₂-O-COR
Triglyceride Methanol Glycerol Methyl esters (biodiesel)

Biodiesel cold flow properties
Skills and Availability

Skills
1. Experimental Design
2. Reactions at ambient and supercritical conditions
3. Gas chromatography
4. Differential Scanning Calorimetry

Availability
Excel Scholars (SU16, AY(16)-17)
Honor’s Thesis (AY16-17)
Independent Study (Spring 17)
Green Faculty Collaboration

• A major disadvantage of using biofuels is **cold flow properties**.
 • Impacts ability for engines to run
• Interested in how particular components of oils and additives influence cold flow properties.
Keeping Things Flowing Under the Sea…

- Issue faced in petroleum transportation
 - Cold water temperatures → crystallization (cloud point) → deposition and gelation (pour/gel point)
 - Chief component of deposits: n-alkanes (waxes)
 - Impacted by presence of other materials
Equipment/Skills

• Conducting measurements of flow properties important in the energy industry.
• Rheometry
• Differential Scanning Calorimetry

Opportunities available:
EXCEL/CBL scholars (SU 16 and AY 16-17)
Honors Thesis and Independent Study (AY 16-17)
Current Research Interests

- Development of experiential activities in food engineering
- Kinetics of dye – textile adsorption
- Developing engineering students’ critical thinking skills

Independent Study Projects available for Fall 2016
Research Interests
Polly R. Piergiovanni

• Adsorption thermodynamics and kinetics
ATMOSPHERIC AEROSOL CHEMISTRY

Impetus:
Accurate prediction of organic aerosol chemistry is crucial to understand its effect on atmospheric chemistry and overall contribution to climate change.

What we need to know:
- Relative rates of formation
- Light absorbance properties
- Surface tension properties
Experimental Work:
• Measurement of light absorbing cross-products from water-soluble organics
• Dynamic surface tension studies of water-soluble volatile organics
• Research opportunities available!
ATMOSPHERIC AEROSOL CHEMISTRY

Computational Work:

- Developed and operated on MATLAB
- Refinement and improvement of mass uptake coefficients, reaction rate constants
- Aerosol absorbance and surface tension models from experiments
- Research opportunities available!

Input parameters
- $[E]$, $[d]$, $[y_0]$, RH, pH, T, wL, $[k_{photo}]$, $[t_{span}]$

GAMMA
- $[k_{gas}]$, $[k_{aq}]$

Output values
- $[y] = [y_0]$

Predicted gas concentrations, Aqueous phase SOA (aqSOA) mass

Uses MATLAB ODE solver [ode15s] to follow time dependence of tracked species.

JLW
MISSION:

The IDEAL Center for Innovation serves a platform for engaging external partnerships and facilitating experiential learning to showcase the connection between the liberal arts and engineering unique to Lafayette with impact beyond the academy.

Find out more: ideal.lafayette.edu
The Additive Manufacturing Institute (AMI) at Lafayette College is a resource for digital part materialization for the community, the region, and the nation. In cooperation with the Exone Company, the AMI promotes widespread adoption of additive manufacturing and provides hands-on demonstrations with student teams and faculty to foster familiarity and commercial application of innovative additive manufacturing technologies.

The AMI meets the needs of students, entrepreneurs, and potential industry adopters using state-of-the-art 3D printers through workshops, seminars, Maker Meet-ups, and design challenges hosted by AMI. These experiences prepare students for innovative work environments while growing the entrepreneurial ecosystem at the College.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Selectively dispense binder using inkjet printing technology</td>
<td>The build platform is lowered by a set increment.</td>
<td>Spreads a new layer of powdered metal.</td>
<td>Repeat Steps 1-3, until the part is built.</td>
<td>Unbound metal is removed. Metal parts are thermally processed.</td>
</tr>
</tbody>
</table>

ExOne Prometal Printing Process
Ca(OH)$_2$ + CO$_2$ → CaCO$_3$ + H$_2$O
FOREIGN LANGUAGES AND LITERATURES

CIVIL ENGINEERING

COMPUTER SCIENCE

INFORMATION TECHNOLOGY SERVICES

SKILLMAN LIBRARY
IPrize 2016
sustainability challenge

Grand Prize $5,000
First Prize $2,000
Second Prize $1,000

prizes are externally sponsored

The IPrize challenge of the IDEAL Center seeks to inspire the Lafayette Community to explore collaborative opportunities connecting liberal arts and engineering.

The 2016 IPrize focuses on sustainability; each entry must address Economic Growth and one other United Nations Sustainable Development Goal. IPrize entries can be based on an original idea or from a list of sponsored challenges.

ideallafayette.edu/IPrize

Leopard LIDAR: MBY
Drawn by: ADC
QA: DCA
MFG: CBC
Approved: JKF

The IDEAL Center for Innovation
email: ideal@lafayette.edu
twitter: @IDEAL_Lafayette

March 31 Registration closes
April 30 Submission deadline
I’m interested...What do I do next?

• Summer EXCEL and CBL Scholars (pay)
 • SU 16: Talk to faculty ASAP; deadline March 7.
 • AY 16/17: Decision by late summer

• Independent Research (credit only)
 • AY 16/17: Limited to faculty availability; discuss with faculty over the summer.

• Honors Thesis (seniors only, credit only)
 • Plan early
 • For non-seniors, get research experience