
Section 2.3

Properties of Determinants

In the last section, we saw how determinants “interact” with the elementary row operations. There
are other operations on matrices, though, such as scalar multiplication, matrix addition, and matrix
multiplication. We would like to know how determinants interact with these operations as well.

In other words, if we know detA and detB, can we use this information to find quantities such
as

det(kA), det(A+B), and detAB?

It turns out that the answers to the first and third questions are quite easy to find, whereas
(perhaps surprisingly), the answer to the second question is actually quite difficult, and is the topic
of much current research in linear algebra (including some of my own).

Determinants and Scalar Multiplication

Let’s investigate the first question raised above: If we know the determinant of matrix A, can we
use this information to calculate the determinant of the matrix kA, where k is a constant?

We’ll think about the question using an example from the previous section: in 2.2, we calculated
that

detA = det

 3 0 1
1 1 0
1 0 1

 = 2.

Let’s try to use this information to calculate det(4A):

det 4A = det

 12 0 4
4 4 0
4 0 4



= 4 · det

 3 0 1
4 4 0
4 0 4



= 4 · 4 · det

 3 0 1
1 1 0
4 0 4



= 4 · 4 · 4 · det

 3 0 1
1 1 0
1 0 1


= 43 · 2
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Notice that multiplying A by 4 is the same as multiplying each row of A by 3. Since each of
the three rows of A had an extra factor of 4, det 4A needed three extra factors of 4, i.e.

det 4A = 43 detA.

With this in mind, it is quite easy to understand the reasoning behind the following theorem:

Theorem. If A is an n× n matrix, and k is any constant, then

det kA = kn detA.

When using the theorem, it is important to keep in mind that the constant k in the determinant
formula gets multiplied by itself n times, since each of the n rows of A was multiplied by k.

Determinants and Matrix Addition

Our next question, about the relationship between det(A+ B), detA, and detB, does not have a
satisfactory answer, as indicated by the following example:

Example

Let

A =

(
5 −6
0 −12

)
and B =

(
−3 0
1 9

)
.

Compare detA, detB, and det(A+B).

The determinants of A and B are quite simple to calculate, given that they are triangular
matrices: clearly detA = −60, and detB = −27. Now

A+B =

(
2 −6
1 −3

)
;

since A+B is not a triangular matrix, we’ll need to revert to the formula for determinants of 2× 2
matrices to calculate det(A+B):

det(A+B) = det

(
2 −6
1 −3

)
= 2 · (−3)− (−6) · 1
= −6 + 6

= 0.

Gathering our data, we see that

detA = −60, detB = −27, and det(A+B) = 0.

Unfortunately, it appears that there is very little connection between detA, detB, and det(A+
B).
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Key Point. In general,
detA+ detB ̸= det(A+B),

and you should be extremely careful not to assume anything about the determinant of a sum.

Nerdy Sidenote

One large vein of current research in linear algebra deals with this question of how detA and detB
relate to det(A+B). One way to handle the question is this: instead of trying to find the value for
det(A+B), find a region on the real line that we can be certain contains det(A+B). It turns out
that this is a rich question with many interesting and surprising answers. Some of my own research
relates to this question.

Determinants and Matrix Multiplication

Perhaps surprisingly, considering the results of the previous section, determinants of products are
quite easy to compute:

Theorem 2.3.4. If A and B are n× n matrices, then

det(AB) = (detA)(detB).

In other words, the determinant of a product of two matrices is just the product of the deter-
minants.

Example

Compute detAB, given

A =

(
5 −6
0 −12

)
and B =

(
−3 0
1 9

)
from the previous example.

According to the theorem above, there are two ways to handle this problem:

1. Multiply A by B, then calculate the determinant of the product.

2. Find determinants of A and B separately, then multiply them together to get the determinant
of AB.

Of course, we already know that

detA = −60 and detB = −27,
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so the second option is definitely easier here. By the theorem, we know that

det(AB) = (detA)(detB) = (−60)(−27) = 1620.

You should verify that this is the same answer that you would get if you were to first calculate
the product AB, then find its determinant.

Determinants and Invertibility

Several sections ago, we introduced the concept of invertibility. Recall that a matrix A is invertible
if there is another matrix, which we denote by A−1, so that

AA−1 = I.

For example, it is easy to see that the matrix

A =

−1 0 0
0 1

3
0

0 0 2


has inverse

A−1 =

−1 0 0
0 3 0
0 0 1

2

 .

In a sense, matrix inverses are the matrix analogue of real number multiplicative inverses. Of
course, it is quite easy to determine whether or not a real number has an inverse:

a has inverse
1

a
if and only if a ̸= 0.

In other words, every real number other than 0 has an inverse.
Unfortunately, the question of whether or not a given square matrix has an inverse is not quite

so simple. Certainly the 0 matrix

0n =


0 0 . . . 0
0 0 . . . 0
...

. . .

0 0 . . . 0


has no inverse; however, many nonzero matrices also fail to have inverses, such as(

1 0
0 0

)
.

So how can we determine whether or not a given square matrix does actually have an inverse?
We saw a list of conditions in section 1.5 that can help us out:

Theorem. Let A be an n× n matrix. Then the following are equivalent:
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• A is invertible.

• Ax = 0 has only the trivial solution.

• The reduced row echelon form of A is In.

• A is a product of elementary matrices.

However, it turns out that there is a much cleaner way to make the determination, as indicated
by the following theorem:

Theorem 2.3.3. A square matrix A is invertible if and only if detA ̸= 0.

In a sense, the theorem says that matrices with determinant 0 act like the number 0–they don’t
have inverses. On the other hand, matrices with nonzero determinants act like all of the other real
numbers–they do have inverses.

With this theorem in mind, we now expand the list of equivalent conditions for a matrix A to
be invertible:

Theorem 2.3.8. Let A be an n× n matrix. Then the following are equivalent:

• A is invertible.

• Ax = 0 has only the trivial solution.

• The reduced row echelon form of A is In.

• A is a product of elementary matrices.

• Ax = b is consistent for every n× 1 matrix b.

• Ax = b has exactly one solution for every n× 1 matrix b.

• detA ̸= 0.

Example

Determine if the following matrices are invertible:

1.

A =

3 0 1
1 1 0
1 0 1

 ,

2.

C =

(
2 −6
1 −3

)
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1. In the previous section, we saw that

detA = det

3 0 1
1 1 0
1 0 1

 = 2.

By the theorem, we know that A is invertible.

2. We calculated the determinant of

C =

(
2 −6
1 −3

)
earlier in this section:

detC = det

(
2 −6
1 −3

)
= 0.

Again using the theorem, we know that C is not invertible.

Key Point. Note that, even though the theorem can tell us that the matrix A above has an
inverse, we have no information as to what matrix A−1 actually is. The theorem only tells us that
A−1 exists.

Determinants of Inverses

Now that we have an easy way to determine whether or not A−1 exists by using determinants, we
should demand an easy way to calculate det(A−1), when A−1 exists. Fortunately, there is an easy
way to make the calculation:

Theorem 2.3.5. If A−1 exists, then

det(A−1) =
1

detA
.

Cramer’s Rule

We spent a lot of time in chapter 1 on a discussion of solving systems of linear equations using the
form

Ax = b,

where

x =


x1
x2
...
xn


is the vector of unknowns.

It turns out that one among the many uses of the determinant is in a formulaic solution to
many such systems, as indicated by the following theorem:
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Theorem 2.3.7. Cramer’s Rule If Ax = b is a system of n linear equations in n unknowns so
that the determinant of the coefficient matrix A is nonzero, i.e. detA ̸= 0, then the system Ax = b
has a unique solution given by

x1 =
detA1

detA
, x2 =

detA2

detA
, . . . , and xn =

detAn

detA
.

Each of the matrices Ai is obtained from A by replacing the ith column of A by

b =


b1
b2
...
bn

 .

Example

Use Cramer’s rule to find the solution x to the system of equations whose matrix equation is given
by 3 0 1

1 1 0
1 0 1

x1
x2
x3

 =

2
0
1

 .

Since the coefficient matrix

A =

3 0 1
1 1 0
1 0 1


is square and invertible (we’ve already calculated that detA = 2), we can apply Cramer’s rule to
the problem. The rule says that the solution to this system is given by

x1 =
detA1

detA
, x2 =

detA2

detA
, and x3 =

detA3

detA
.

As mentioned above, we already know that detA = 2, so we can solve the system by simply
calculating the determinants of three more matrices, A1, A2, and A3. The rule says that we get
the matrix A1 by replacing the first column of A with

b =

2
0
1

 ,

so we have

A1 =

2 0 1
0 1 0
1 0 1

 .

Similarly,

A2 =

3 2 1
1 0 0
1 1 1

 ,
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and

A3 =

3 0 2
1 1 0
1 0 1

 .

Fortunately, the determinants of each of these matrices are quite easy to calculate: by cofactor
expansion along the 2nd row of A1, we see that

detA1 = det

2 0 1
0 1 0
1 0 1

 = 1.

By cofactor expansion along the 2nd row of A2, we have

detA2 = det

3 2 1
1 0 0
1 1 1

 = −1.

Finally, cofactor expansion along the 2nd column of A3 gives us

detA3 = det

3 0 2
1 1 0
1 0 1

 = 1.

Thus Cramer’s rule tells us that the solution to the system3 0 1
1 1 0
1 0 1

x1
x2
x3

 =

2
0
1


is given by

x1 =
1

2
, x2 = −1

2
, and x3 =

1

2
.
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