Power Laws in Natural (Critical) Phenomena

Mini-talk 4 Examples of Power Laws

Y.M. Wong Lafayette College 3/30/2012

Agenda

- Review of
 - Thermodynamic Functions and critical Indices
 - Scaling Hypothesis, Universality, Power laws
- Show and Tell
 - Physical
 - Other Science
- Next time:
 - Landau's Mean Field Theory

Notable Persons of the Week

Origin of Thermodynamics

$$Z = \sum_{state} e^{-\beta H} \equiv e^{\beta F} e.g. \ H(\{s_i\}; J, H) = -J \sum \sum s_i s_j - \sum s_i H$$

Derivatives of $F \Rightarrow$

- Equation of state: P = P(V, T, N)
- Thermodynamic functions: $C_H = -T \frac{\partial^2 G(T, H)}{\partial T^2}$
- Correlation: $g(r, r') = \langle n(r)n(r') \rangle$
- Simplicity to Complexity
- Critical Phenomena, Complex?

Parameters of Phase Transition

	Range of variables					
Physical quantity	$e = (T - T_t)/T_t$	$e = (T - T_s)/T_s$ k Behavior of quantit		describing quantity		
(p)	>0	0	(p)=0			
	< 0	0	(p)~± e ^p	β		
	0	≠0	$\sim_{\pm} _{h} ^{\mu\mu}$	õ		
$\chi = \partial \langle \phi \rangle / \partial h _{\bullet}$	>0	0	~*7	γ		
	<0	0	$\sim \epsilon ^{-r'}$	~		
$g(r,r')=\langle\phi_r\phi_{r'}\rangle-\langle\phi\rangle^2$	0	0	$\sim r-r' ^{-d+p-q}$	π		
ξ =range of $g(r, r')$	>0	0	~~~~	,		
	<0	0	~*'*'	*'		
C_A = specific heat at constant k	>0	0	$\sigma e^{-\alpha} + b$	α		
	< 0	0	a' e -*+b'	a'		
	or >0	0	$A \log^{-1} + B$	$\alpha = 0$		
	<0	0	$A' \log \epsilon ^{-1} + B'$	$\alpha'=0$		

TABLE II. Parameters describing phase transition,

Universality: an Illustration

TABLE XI. Correspondences between lattice gas model and Ising model.						
Ising model	Lattice gas model					
Number of up spins	Number of molecules					
Partition function	Grand partition function					
Number of spins	Volume					
Free energy minus magnetic field	Pressure					
Magnetization	Density minus critical den- sity					
Specific heat C_m	Specific heat C_F					

Critical Phenomena: Divergence of some thermodynamic Observables

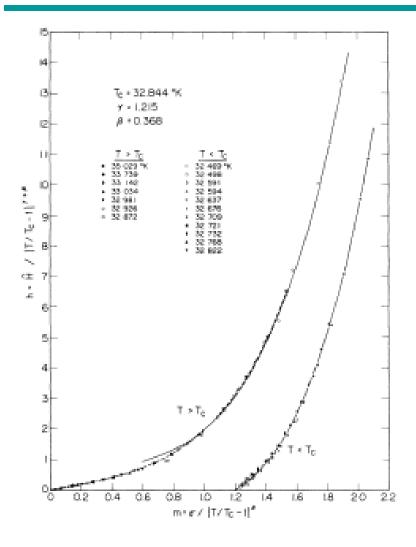


FIG. 1. A linear plot of scaled magnetic field h(m) as a function of scaled magnetization m. The dashed line represents Eq. (1), and fits experimental points from 0 < m < 1.8 when $T > T_C$. The solid lines are Eq. (2), and the dotted lines show Eq. (4) when it departs significantly from the experimental points. On this plot the origin is the critical isochore, the critical isotherm is at $h = m = \infty$, and the coexistence curve is represented by the point h = 0, $m \simeq 1.2$.

$$\frac{M}{\epsilon^{\beta}} = f\left(\frac{H}{\epsilon^{\beta\delta}}\right)???$$

J.T. Ho and J.D. Litster, PRL, <u>22</u>, 603 (1969)

Origin of Critical Indices

- Widom's Scaling Hypothesis
- All thermodynamic functions (Complexity)
- Homogeneous functions of 2 variables
- Simplicity $f(\lambda x, \lambda y) = \lambda^p f(x, y)$
- Relations among all indices

Figure 7: Michael Fisher, foreground, and Benjamin Widom, background, at a 65th birthday party for Michael.

Critical Indices

TABLE XII. Definitions of critical indices for liquid-gas transition. If this transition is described correctly by the lattice gas model, α , α' , β , γ , γ' , and δ all have the same values as in the Ising model.

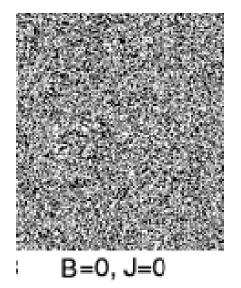
e	$\epsilon = (T - T_{\epsilon})/T_{\epsilon}$	
α'	$C_v \sim (-\epsilon)^{-\omega}$	$\rho = \rho_{e}, \epsilon < 0$
α	C _v ~e ^{-a}	$\rho = \rho_{e_1} \epsilon > 0$
β	$(\rho_L - \rho_G) \sim (-\epsilon)^{\beta}$	$\epsilon < 0$, coexistence curve.
γ'	$K_T \sim (-\epsilon) \neg '$	$\epsilon < 0$, coexistence curve.
γ	$K_T \sim e^{-\gamma}$	$\rho = \rho_{e_1} \epsilon > 0$
8	$\mid P\!-\!P_e\mid\sim\mid\rho\!-\!\rho_e\mid^s$	$T = T_{\sigma}$
μ	Surface tension $\sim\!(-\varepsilon)^{\mu}$	$\rho = \rho_{ij} \epsilon < 0$

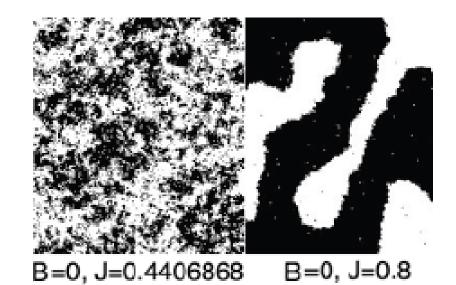
Kadanoff et al, RMP 39, 395 (1967)

Show and Tell

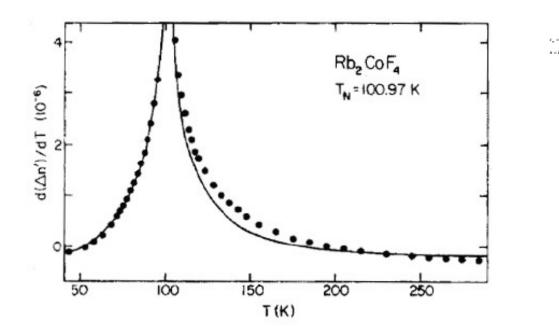
- More Pictures
- Less Equations (away from G....)

2D Ising model





Magnetic Specific Heat of Rb₂CoF₄



- Rb₂CoF₄ is a layered (2D Ising) antiferromagnet
- Nonmagnetic background (0.16E-6) subtracted
- Amplitude adjusted for the unknown A.

Nordblad, et al., Phys. Rev. B 28. 278 (1983).

Superfluid λ -Transition

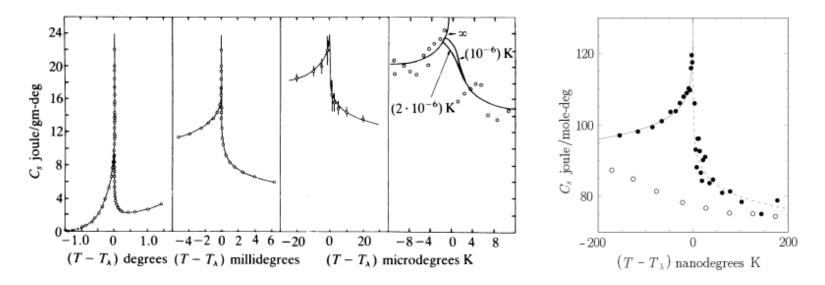


FIGURE 1.1 Specific heat near superfluid transition at $T_{\lambda} \approx 2.18$ K measured with increasing temperature resolutions. The curve has the typical λ -shape which is the reason for calling it λ -transition. Note that at higher resolutions, the left shoulder of the peak lies above the right shoulder. The data are from Ref. [3]. The forth plot is broadened by the pressure difference between top and bottom of the sample. This is removed by the microgravity experiment in the space shuttle yielding the last plot (open circles are irrelevant here) [4]. They show no pressure broadening even in the nK regime around the critical temperature.

Fairbank et al, Proc. 1965 Washington Conference on Critical Phenomena

 C_v of ⁴He near T_c

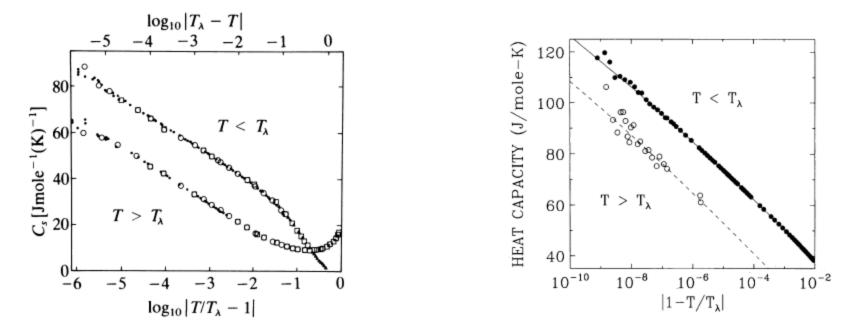


FIGURE 1.2 Specific heat of ⁴He near superfluid transition plotted against $\log_{10} |T/T_{\lambda} - 1|$. The early data on the left-hand side by G. Ahlers [5] yield $\alpha \approx -0.026 \pm 0.004$ (for these an upper scale shows $\log_{10} |T_{\lambda} - T|$ with T measured in units of K). The right-hand side shows the space shuttle data of J.A. Lipa et al. in Refs. [4, 6], which yield $\alpha = -0.01056 \pm 0.0004$.

Ahlers, PRA 3, 696 (1971); Lipa et al, PRL 76, 944 (1996)

Superfluid Density near T_c

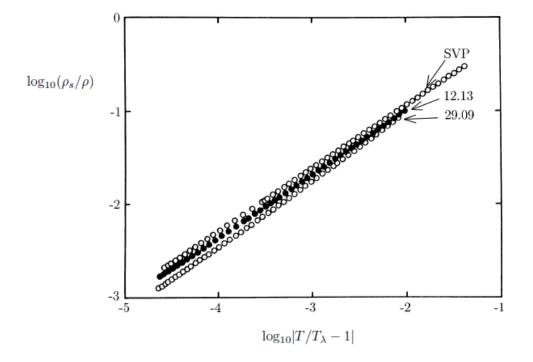
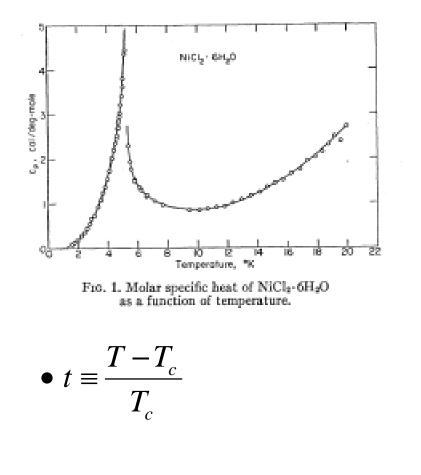


FIGURE 1.3 Doubly logarithmic plots of superfluid density ρ_s divided by the total density as a function of temperature. The slope is 2/3 [7]. The labels on the curves indicate the pressures in bar. The label SVP refers to the saturated vapor pressure.

Greywall and Ahlers, PRA 7, 2145 (1973)

Fluid: Specific Heat of NiCl₂·6H₂O



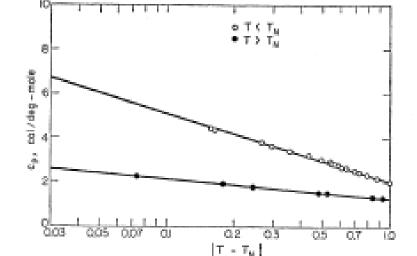


FIG. 5. Plot of C_{Mag} as $\log |T - T_N|$ for NiCl₂-6H₂O.

• $C_p \sim t^{-\alpha}$ t > 0 $\sim (-t)^{-\alpha'}$ t < 0

• $\alpha < \alpha'$?

Robinson et al, Phys. Rev. 117, 402–408 (1960)

1st: Relations among Indices?

Relations among Critical Exponents ~+2p+8'>2 $\alpha' + \beta(\delta + D \ge 2)$ (2- α')5+1 \ge (1- α')8 γ'≥β(5-1) (2-α)σ≥δ,+1 ! dv≥2-α Total of 17 (Griffiths_)9656) (stanley (1971)

Scaling laws: predictions and Falsification

TABLE IV. Check of scaling law equalities for Ising model. The scaling laws predict that, for a given transition, all the numbers listed in the table (except for Δ and y) should be the same.

	2-a	2-a'	d#	dø'	$d\gamma/(2-\eta)$	$\gamma + 2\beta$	$\gamma'+2\beta$	$\beta(\delta+1)$	y	$\Delta = 2x/y$
Two-dimensional Ising model	2	2	2	2	2	2	2	2	1	3.75
Three-dimensional Ising model	$^{1.87}_{\pm 0.12}$	$^{1.93+0.04,}_{-0.16}$	$\substack{1.93\\\pm0.01}$?	$^{1.933}_{\pm 0.008}$	1.87 ±0.01	$\substack{1.94\\\pm0.05}$	$\substack{1.93\\\pm0.05}$	$\substack{1.55\\\pm0.01}$	$\substack{3.22\\\pm0.02}$

TABLE X. Scaling law comparison.

	2-a	$2-\alpha'$	də-	dv'	$d\gamma/2-\eta$	$\gamma + 2\beta$	$\gamma'+2\beta$	$\beta(\delta+1)$	y-1/r	$\Delta^{\rm b}$
Ferromagnets	$^{1.92}_{\pm 0.08}$	$^{1.92}_{\pm 0.08}$	1.95 ±0.09	•••	$^{2.08}_{\pm 0.12}$	1.99 ±0.09		1.7 ±0.2	$^{1.54}_{\pm 0.07}$	3.2 ±0.2
Antiferromagnets	$\substack{1.92\\\pm0.08}$	$^{1.92}_{\pm 0.08}$	$^{1.95}_{\pm 0.09}$			$^{1.96}_{\pm 0.10^{\circ}}$			1.54 ± 0.07	$^{3.2}_{\pm 0.2}$

.....

Kadanoff et al, RMP 39, 395 (1967)

Fluid Compressibility

Fluid	Value of γ	Reference	Range of e	Comments
Xe	1.3±0.2	99	3×10 ⁻⁴ <€<3×10 ⁻²	e≤10 ⁻⁴ neglected
Ar	0.6±0.2	110	3×10-* <e<6×10-*< td=""><td>Is extrapolation procedure right?</td></e<6×10-*<>	Is extrapolation procedure right?
CO ₂	1.37 ± 0.2	105, 104, 111	$10^{-5} \le e \le 10^{-2}$	
COs	1.0 ± 0.1	106	10 ⁻⁶ <e<2×10<sup>-6</e<2×10<sup>	Perhaps pressure gradients are important
"Best value"	1.37 ± 0.2			
Lattice gas	1.250 ± 0.001	Table III		

TABLE	XVII.	Values.	of	γ' .

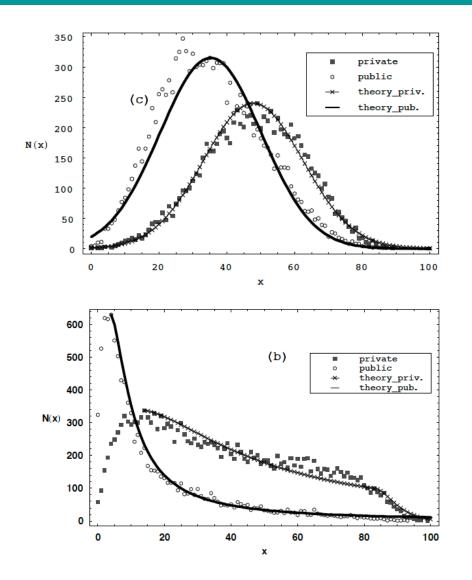
Fluid	Value of γ'	Reference	Range of e	Comments
Ar	$1.1{\pm}0.2$	110	6×10 ⁻⁴ <-e<6×10 ⁻²	Is extrapolation procedure right?
CO8	1.0 ± 0.3	105, 104, 111	$e \approx 3 \times 10^{-8}$ $e \approx 3 \times 10^{-6}$ $e \approx 3 \times 10^{-6}$	If pressure gradients are im- portant, this analysis gives no information.
"Best value"	1.0 ± 0.3			Very little information
Lattice gas	$1.31{\pm}0.05$	Table III		

Kadanoff et al, RMP 39, 395 (1967)

Even

- More Pictures
- Less equations

Scaling in Sociology

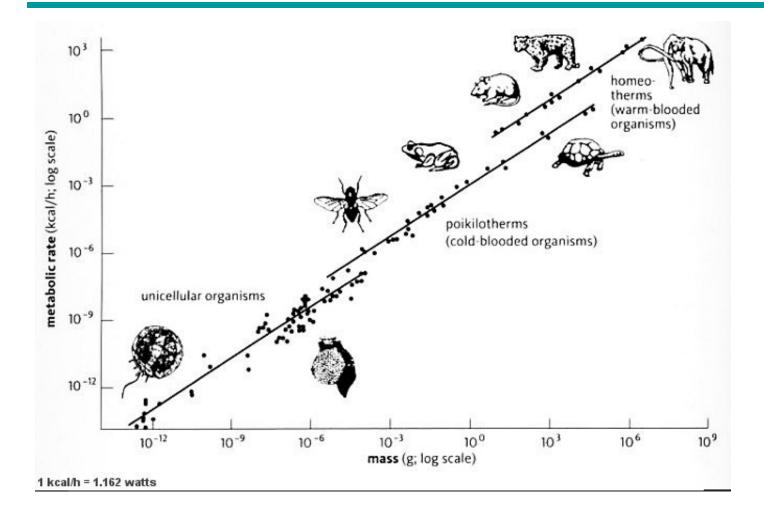


$$p(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$p(x;\beta,T) = \frac{(\beta-1)T^{\beta-1}}{(x+T)^{\beta}}$$

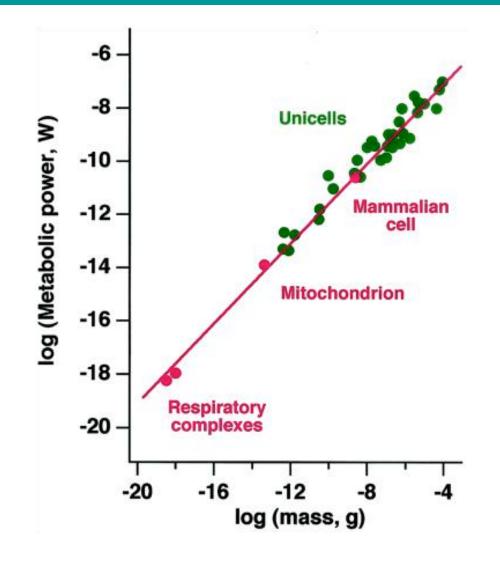
Gupta et al., arXiv.0301523

Scaling in Biology



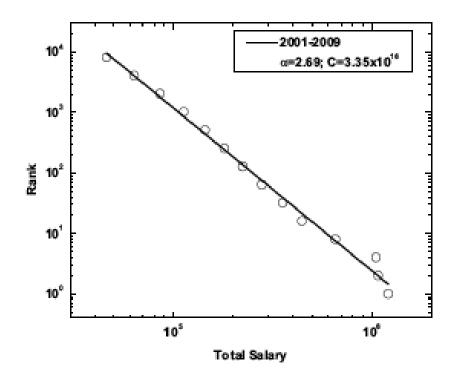
$$k \sim m^{\alpha} \quad (\alpha = 3/4)$$
 Wekipedia

Scaling in Microbiology



Wekipedia

Pareto: Income



$$cdf(x) = cx^{-\alpha}$$

 $p(x) \sim \frac{1}{x^{1+\alpha}}$

Italian <u>economist</u> <u>Vilfredo Pareto</u>, is a <u>power law probability distribution</u> that coincides with <u>social</u>, <u>scientific</u>, <u>geophysical</u>, <u>actuarial</u>, and many other types of observable phenomena.

End Show and Tell

- More Pictures
- Less equations