
I
n 1991 sociologist Scott Feld wrote a scientific
paper entitled “Why your friends have more
friends than you do.”1 Strange title for a
paper, particularly because most of us do not
perceive ourselves as any less popular than
our friends. But according to Feld, if we could
count the number of friends our friends have,

most of us would find we come up short. Indeed, in
any social group it can be proven that the average
number of friends of friends is larger than or equal
to the average number of friends; the equality holds
only for the special case in which every person has
exactly the same number of friends. 

Far from a mere curiosity, this apparent friend-
ship paradox is intimately related to the percolation
properties of networks. For example, if a contagious
disease propagates through a social network, one
way to curb the spread would be to immunize a ran-
domly selected fraction of the population. A far
more effective strategy, however, would be to im-
munize not the selected people but an acquaintance
of each of them.2 A recent study appears to bear out
that strategy: Researchers followed the spread of the
H1N1 flu three years ago in two groups of college
students—one group randomly selected, the other
composed of friends named by the first group—and
found that the number of flu cases peaked about
two weeks earlier in the group of friends (see
PHYSICS TODAY, November 2010, page 15). That case
illustrates how the apparent paradox might form
the basis for early detection of an epidemic.

The issue originally studied by Feld is, in fact, just
one of many broadly significant ones—including self-
organization, information flow, and systemic robust-
ness—that can now be properly formalized within the
emerging theory of complex networks. Such issues

are not unique to social networks and
become more intriguing when they involve
a reciprocal influence between the network’s
structure and dynamical processes that take place
on the network. For example, the island fox is a
species unique to California’s Channel Islands. About
150 years ago, feral pigs were introduced onto the is-
lands and, in the absence of natural predators, their
population grew quickly. Although the pigs did not
interact directly with foxes, the increase in pig popu-
lation was accompanied by a crash in the fox popula-
tion. Golden eagles were the reason: Attracted by the
abundance of pigs to prey on, they had colonized the
islands and begun preying on foxes as well, bringing
them to near extinction.3

Solving the problem—even in a network made
up of just three species—turned out to be more com-
plex than just redressing its primary cause. Remov-
ing the pigs, researchers realized, would prompt the
eagles—a legally protected species—to prey more
aggressively on the already endangered fox. In the
end, conservationists mounted a coordinated re-
moval of two species.

What then can we say about large networks,
whose structure and dynamics are more complex
still and can exhibit other unforeseen phenomena?
Networks appear in widely disparate fields, as fig-
ure 1 illustrates. But a fundamental feature they
share is that interactions between component parts
can be just as important as the parts themselves in
defining the properties of the system. 

The notion that the interaction network matters
has long been appreciated in physics. Indeed, dif-
ferent allotropic materials, such as graphite and di-
amond, are essentially different networks com-
posed of the same atoms. But many more

possibilities arise in networks of interacting
organisms, computers, power stations,
genes, and financial institutions, whose
structures differ considerably from the pic-
ture suggested by regular (or even disor-
dered) local arrangements. Such networks
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are not constrained to merely local interactions be-
tween nodes. They are also heterogeneous, particu-
larly with respect to the nature and strength of the
interactions—and to the number of interactions per
node, also known as the degree k. 

Take the case of sparsely connected, random net-
works. If the distribution of degrees for uniformly se-
lected nodes is P(k), the distribution of degrees for
their network neighbors will be proportional to kP(k).
That proportionality to degrees, incidentally, is the
basis of the sampling bias identified in networks of
friends. But most real networks, however complex,
are not random. In fact, a substantial part of the re-
cent interest in network research concerns the mod-
eling of salient characteristics that make them differ-
ent from random. And the extent to which a complex
network deviates from random provides insights
into its organization, evolution, and function.4

Physicists get real
Nearly 15 years ago, theorists discovered that empir-
ical networks share seemingly ubiquitous structural
properties. In particular, they found that numerous
networks, including the internet, human-contact
networks, air-transportation networks, and meta-
bolic networks, are scale free—that is, they exhibit
an approximately power-law distribution of degrees
with a divergent variance. They also exhibit small-
world features, in which most of the nodes are not
neighbors of each other and yet can be reached from
every other node through a short sequence of steps
(see the article by Mark Newman in PHYSICS TODAY,
November 2008, page 33).

It wasn’t long before researchers began identi-
fying dynamical implications. An early landmark
was the demonstration that, for the simplest epi-
demic models, uncorrelated scale-free networks can
exhibit a vanishing epidemic threshold in the limit
of large population size,5 meaning that viruses or
other agents with arbitrarily low spreading rates
can persist in the population. That demonstration
exposed a previously unknown relation between
network scaling and the vulnerability of human, an-
imal, and computer networks. 

The study of networks is not new, of course. Food
webs, social networks, and intracellular pathways

have long been topics of research. The novelty lies in
scale and complexity: The current science of networks
is fueled by the availability of vast amounts of infor-
mation about them. In particular, the wealth of data
allows researchers to apply statistical-physics and
nonlinear-dynamics methods to make predictions or
forestall problems. It also inspires theoretical studies,
as illustrated in the box on page 48. 

Self-sustained dynamics
Collective behavior manifests itself in many forms
in networks—bursting neurons, phase-locked
power generators, and schooling fish, among oth-
ers. A number of these processes can be idealized as
manifestations of spontaneous synchronization, a
phenomenon in which different elements of the net-
work stay in sync with each other in a decentralized
way. To address the question of what network prop-
erties lead to such emergent behavior, researchers
have turned to simplified models amenable to
mathematical analysis. The best known of them is
the Kuramoto model—a minimal representation of
a large population of coupled oscillators, a model
subsequently shown to be equivalent to certain ar-
rays of Josephson junctions.6

If each oscillator is coupled to all the others,
there exists a critical coupling strength Kc > 0 above
which a finite fraction of the network synchronizes.
That phase transition is similar to a percolation tran-
sition, outlined in the box. In particular, as the cou-
pling strength K is further increased, so is the num-
ber of oscillators recruited by the synchronous
cluster. The problem becomes much more involved
as soon as the network is allowed to be more general
than the case of all-to-all coupling. For example, the
question of whether Kc is finite or zero in scale-free
networks remains unsettled. Mean-field calcula-
tions suggest it should vanish, numerical simula-
tions are more consistent with its being strictly pos-
itive,7 and an exact solution seems hard to come by
with existing mathematical techniques. 

In part because of those and other difficulties,
researchers have focused on networks of identical
or nearly identical nodes, particularly using the
Pecora–Carroll model, which assumes the nodes
are coupled by diffusive interactions.7 Based on that
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Figure 1. A gallery of networks. (a) The wiring of an adult human brain. Each colored line, resolved using diffusion spectrum
imaging, represents a bundle of nerve fibers. (Courtesy of Van Wedeen, Harvard University.) (b) A social network used to estab-
lish the social influence of body weight. Yellow nodes correspond to obese people, with a body-mass index greater than 30.
(Adapted from N. A. Christakis, J. H. Fowler, N. Engl. J. Med. 357, 370, 2007.) (c) Part of the network of major internet service
providers, colored by IP. (Courtesy of Bill Cheswick and Hal Burch, Lucent Technologies.)



model it can be shown, for instance, that hetero-
geneity in either the nodes or their connections gen-
erally inhibits their synchronization. Similar inhibi-
tion is caused by the presence of negative coupling
strengths, which effectively repel the states of the
connected nodes, and by a number of other network
properties. Recently, however, one of us (Motter)
and Takashi Nishikawa have demonstrated that the
different synchronization-inhibiting properties,
when they coexist in the same network, can com-
pensate for each other and combine their effects in
a way that actually facilitates synchronization.8

Such behavior comes entirely from collective inter-
actions and cannot be anticipated from pairwise in-
teractions between two nodes in the network. 

A related analysis also provides insight on the
number of nodes that can engage in a given activity.
Surprisingly, even when the network loses syn-
chrony as the number of nodes is increased, it may
regain synchrony when that number is further in-
creased. Another fundamental result is that when
the network structure is optimized for a given dy-
namical function, it often exhibits a cuspy landscape
in the space of all possible networks, as pictured in
figure 2. The implication is that a small change in
the network structure—for instance, a modification
in the strength of an edge—can lead to a very dif-
ferent dynamical behavior of the system as a whole.8

That sensitive dependence of the network’s collec-
tive dynamics on its structural parameters can thus
be interpreted as a network analog of chaos. 

Spreading out
A different class of processes concerns the dynamics
of spreading through a network. Innovations dif-
fuse; fads develop; diseases are transmitted; failures
propagate. Many such processes can be conceptual-
ized either as epidemic-type dynamics, where a
node in an infected state may infect a neighbor in-
dependently of the status of the other nodes, or as
cascading-type dynamics, where the change in the
state of a node may depend on the reinforcement
caused by changes in other nodes. In both cases, the
research focus is on the chain of events that takes
place as the spreading unfolds and its relation to the
properties of the system.

Researchers are gaining a deeper understand-
ing of malware spread through the internet, for in-
stance, thanks to the observation that the network’s
scale-free distribution of degrees largely determines
the nagging persistence of computer viruses.5 Con-
ducting analogous studies of spreading in human
populations remains difficult due to the significantly
more challenging task of tracking human mobility.
That challenge is gradually being overcome, how-
ever, through complementary approaches.9 Some of
those approaches focus on the global transportation
of passengers and have demonstrated the dominant
role of air transportation in the spread of infectious
diseases such as SARS (severe acute respiratory syn-
drome). Other approaches infer human-contact pat-
terns by exploiting cell-phone data and currency-
tracking games, such as Where’s George. The
research is likely to provide new insights into the
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Figure 2. A landscape of networks that optimize synchronizability. (a) The structure of a network can be represented as a coupling 
matrix. The standard deviation σ of its eigenvalues is a measure of the propensity of the network’s nodes to synchronize. The figure plots
the minimum value of σ from all the possible networks of n nodes and m edges. The smaller the σ at any point on the landscape, the
more stable the synchronous state of those networks. Synchronization is thus most stable along cusps, where the derivatives of σ with
respect to m and n both diverge. (b) The corresponding rate of convergence to a synchronous state, plotted as a function of the number
of edges for networks of 50 nodes, exhibits highly nonmonotonic behavior. (c) When plotted as a function of node number for networks
of 50 × 49 edges, the convergence rate behaves differently but again nonmonotonically. As nodes are added, the convergence rate falls,
only to rise again as yet more nodes are connected. (Adapted from ref. 8 and B. Ravoori et al., Phys. Rev. Lett. 107, 034102, 2011.)



role of social networks in the spread of diseases; it
may, in particular, yield a better understanding of
how awareness of the presence of a disease changes
people’s behavior and the possible outcome of an im-
minent outbreak. 

The study of cascading processes, on the other
hand, has provided insights into what determines
rare but large events. The threshold model intro-
duced by Duncan Watts a decade ago has been key.
It assumes that the change in the state of a node
from normal to modified—representing, for exam-
ple, a failure or a change of opinion—depends on
the fraction of neighbors that have already changed
state.10 In its simplest form, the network is assumed
to be random with a given degree distribution and
a given distribution of state transition thresholds,
where the threshold of a node is the fraction of
modified neighbors necessary for the node to
change state.

Starting out with only one or a few seed nodes in
the modified state, a macroscopic fraction of a large
network changes to the modified state if and only if

where P(k) is the probability that a node has degree k,
ρk is the probability that a degree-k node will change
state—and thus be an early follower—if just one of its
neighbors does, and z is the average degree in the net-
work. The vulnerability of the network to large cas-
cades increases with increased heterogeneity of the
thresholds and decreases with increased heterogene-
ity of the degrees (unless the seed nodes are purposely
taken among the hubs). In the hypothetical limit in

which all nodes are early followers (ρk = 1 for all k), the
equation above reduces to the condition required for
the network itself to have a macroscopic connected
cluster. Exactly what happens, though, may vary
when other factors come into play; for example, cas-
cades that develop in one network—the power grid,
say—can influence the evolution of cascades in an-
other, such as the internet or a telephone network.11

In any case, one point is clear: The properties of the
underlying network explain how a particular event
can trigger a large cascade while many seemingly
equivalent events have negligible consequences. It all
depends on whether the triggering event hits a per-
colating cluster of early followers.

Biological dynamics
Living cells provide outstanding examples of collec-
tive behavior underpinned by networks of interac-
tions. Molecular-level networks coordinate countless
biological functions and allow the cells to respond to
ever-changing environments. A newly encountered
signal, such as excess sodium, may propagate through
the network and alter cellular behavior. But even in the
absence of external signals, interactions among genes
and proteins can lead to multiple steady-state and dy-
namic equilibria. Also known as attractors, those equi-
librium states can be thought of as the set of stable or-
bits toward which the system’s behavior converges
over time, much as a gently nudged pendulum settles
into one of many possible orbits.

The emergent dynamics of cellular networks
have been on physicists’ minds since the late 1960s,
when Stuart Kauffman introduced random Boolean
networks as simple, prototypical models of collec-
tive behavior.12 Although the initial models included

∑ ( − 1) ( ) > ,k k P k zρk
k
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Figure 3. The signaling network of a T cell responsible for its programmed death (apoptosis). T cells participate in immune 
responses and depend on this network, which is activated by environmental stimuli, to control their population. Nodes represent
proteins, and the directed edges (red or black) indicate the interactions between them. Boolean modeling reveals that targeting
certain proteins, such as IL15, PDGF, and NFkB, can inhibit the abnormal survival of T cells that causes a form of blood cancer.
(Adapted from ref. 13, R. Zhang et al.)



unrealistic assumptions and led to results that did
not stand the test of time, they paint a compelling
picture: The dynamics of biological networks are
poised near the boundary between the two extremes
of frozen (that is, steady-state) and chaotic dynam-
ics. That property of the dynamics is preserved as
more realistic assumptions about the structure of the
underlying network, or the logic of regulatory rela-
tionships, are made (see the Reference Frame by Leo
Kadanoff in PHYSICS TODAY, March 2009, page 8).

Genome-wide experimental methods now
identify interactions among thousands of compo-
nents. However, progress toward understanding
the collective behavior emerging from the networks
has been slow. The reason is that quantitative char-
acterization of every reaction that participates in
even a relatively simple function of a single cell
often requires a decades-long effort. In that context,
the Boolean models strike a balance between econ-
omy and realism for researchers striving to describe
real biological processes, from cell differentiation
and embryonic development to the programmed
cell death pictured in figure 3. Moreover, experi-
ments have already validated many of the models’
predictions, such as the effects of certain node dis-
ruptions on biological networks.13

Recent work on Boolean dynamic models has
focused on the potential effects of stochasticity and
uncertainty on the predicted attractors. For exam-
ple, adapting the models to capture the observed
variability in the duration of biological processes,
represented as edges in the interaction network, re-
duces the total number of attractors but does not af-
fect the steady-state attractors. The majority of cel-
lular behaviors are indeed steady states or
trajectories toward a steady state. This suggests that
robustness to variability in timing is a general char-
acteristic of biological systems that the models
should also exhibit.

Controlling the damage
Networks can evolve or be designed to operate sta-
bly, but that stability may be lost when they are per-
turbed. Most previous studies of postperturbation
control have focused on epidemiological problems.
Recent studies indicate, however, that network fail-
ures as diverse as those underlying financial crises,
power outages, and genetic diseases can also be ame-
liorated. Because most of the large-scale damage is
often determined by the cumulative effect of the
spread of failures rather than by any isolated event,
that damage may be largely controllable even after
the perturbation that causes it—a bankruptcy, mal-
function, or mutation—has already hit the system.

One promising approach consists in exploiting
the existence of multiple stable states inherent to a
large number of complex networks.14 For example,
perturbed food webs can suffer extinction cascades,
whereby the extinction of one species drives the ex-
tinctions of others. But the targeted suppression of
specific species can direct a network to a new stable
state in which most or all species survive. Analo-
gously, living cells that are unable to reproduce due
to the presence of faulty metabolic pathways can in
principle be rescued, if not completely cured, by re-
balancing the metabolic fluxes through the targeted
suppression of specific genes. Similar genetic inter-
ventions can even make certain cancers disappear, by
producing another stable but healthy state in the cells.

Beyond such examples of natural networks, re-
searchers expect that self-healing technological net-
works, such as “smart” power-grid networks, may be
within reach. And although a big gap exists between
the theoretical and the practical, the possibility of re-
covering from failures in real time may also have im-
plications for how best to control financial crises. 

A broader view
Much of contemporary physics is based on the para-
digm that macroscopic phenomena do not depend on
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a b
Figure 4. Resolving inter-
nal network organization
reveals hidden structural
patterns. (a) Given this 
arbitrary network, a visual-
analytics method identifies
three groups of nodes that
share common structural
properties, without specific
prior knowledge about the
number of groups or what
defines the groups. The
method starts from a high-
dimensional “node property
space” that summarizes all
relevant node properties
and then takes multiple
two-dimensional projections

from that space. The projections can be inspected by eye and the nodes recursively parsed into groups clustered around common
properties. (b) Posteriori inspection of the groups reveals that they are defined by lower-degree nodes with lower-degree neighbors
(red), lower-degree nodes with higher-degree neighbors (blue), and higher-degree nodes (green); hence they cannot be resolved by
a single node property. (Adapted from ref. 15, T. Nishikawa and A. E. Motter.)



the microscopic details of the process. They do de-
pend, however, on the underlying network of interac-
tions. With the prevalence of networked technologies,
people—including physicists—are now predisposed
to recognizing the importance of network concepts. 

The network enterprise largely concerns the
identification and analysis of network features rele-
vant to a particular phenomenon. But with so many
conceivable possibilities, what if we simply fail to
look for the right features? It so happens that re-
searchers have been thinking about that too. In the
case of purely structural features, they have devised
two exploratory methods that can identify patterns
not anticipated by preconceptions.15 One is based on
maximum-likelihood techniques and the other on an
integrative visual-analytics approach; both methods
attempt to resolve the internal structure of complex
networks by organizing the nodes into groups that
share something in common, even if that thing is un-
known a priori. Figure 4 gives an example. A broader

undertaking for future research concerns the devel-
opment of such exploratory approaches that can also
systematically account for dynamical behavior. 

Beyond their efforts to reduce complexity and
understand the workings of existing networks, sci-
entists should exploit that understanding to build
things. Still nascent fields, such as synthetic biology
and microfluidics, could be revolutionized by ra-
tional circuit design, for instance. Materials research
and other classical topics could also benefit from net-
work theory. Recent progress in metamaterials is a
case in point. Metamaterials often exhibit negative
refractive indices, acoustic shielding, and other
properties not found in conventional materials (see,
for example, the article by Martin Wegener and Stefan
Linden in PHYSICS TODAY, October 2010, page 32). Yet
they have so far been limited to rather conservative
network architectures—and only partly for ease of fab-
rication. One can only speculate what advantageous
properties might emerge from general networks of
polypeptides, nucleic acids, and carbon nanotubes.

The quest for how quantitative changes in net-
work structure, scale, and components lead to qual-
itative changes is an overarching theme of current
research. In retrospect, that theme epitomizes much
of Philip Anderson’s classic essay “More is differ-
ent” on the hierarchical structure of science,16 but
now from the vantage point of network theory.
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The physics of connectedness
The structure of a network is often regarded as a collection of dots
connected by lines, where the elements of a network are repre-
sented by the dots, or nodes, and the interactions between them
by the lines, or edges, as illustrated in figure 1. A fundamental
question concerns the loss of interconnectivity upon the sequen-
tial removal of nodes or edges. In the control of an epidemic, for
example, targeted immunization is more efficient than random
immunization because the removal of highly connected nodes is
generally more effective in fragmenting the network. 

Equally important is the reverse process: the emergence of
large-scale connectivity via, for example, the addition of edges. In
the simplest case, the Erdős–Rényi random-graph model, one
starts with a large number N of isolated nodes and adds one edge
at a time between pairs of randomly selected nodes. A percolation
transition appears when, in the limit of large N, a finite fraction of
the network becomes connected. The transition occurs when the
ratio r = m/N, defined by the number of edges m relative to the
number of nodes, reaches a critical value rc = 1⁄2. Just below that
point, the sizes of the connected clusters follow a power-law dis-
tribution, with the largest of order log N. Just above it, the size of
the largest component is of order N and grows linearly with ∣r − rc∣.

The percolation transition process thus shares properties with
many continuous phase transitions in physical systems. But as one
changes the rules by which edges are added to the network, the
transition point can appear earlier (that is, rc < 1⁄2 ), or later (rc > 1⁄2).
The latter, in particular, leads to interesting new transitions
dubbed “explosive percolation” because of their steep, seemingly
discontinuous nature.17 Such transitions have been studied in
detail for so-called Achlioptas processes, in which two edges are
generated at each step but only the edge that minimizes the
growth of the clusters is kept. The resulting delay causes the tran-
sitions to be sharper when they occur. Rigorous analyses have
shown17 that they are, nonetheless, smooth, but described by non-
analytic scaling functions; the initial growth of the largest compo-
nent scales with ∣r − rc∣β, where β ≪ 1. 

Explosive percolations illustrate the impact of nonlocal infor-
mation in the assignment of edges. And they have implications for
spreading processes in a network. One might purposefully reduce
the incidence of small events—power outages, say—but inadver-
tently at the price of the sudden emergence of larger ones.


