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Abstract 

Several polynomials are defined on directed graphs and rooted directed 
graphs which are all an alogous to the Tutte polynomial of an undirected graph. 
Various interrelations between these polynomials are explored . Many of them 
have the number of maximal di rected trees (arborescences) as an evaluation, 
and are related to the one- variable greedoid polynomial ~G(Y). Applications to 
reliability a re also examined. 

1. Introduction. 

The central theme of this study is the attempt to generalize the Tutte polynomial 
of an undirected graph to a polynomial invariant of a directed graph, especially one 
having a distinguished vertex (a rooted digraph ). It does not seem that there is any 
one right" such generalization; rather, different definitions of the Tutte polynomial 
suggest different directed polynomials. One definition of the Tutte polynomial of an 
undirected graph G depends on a rank function on subsets of E ( G), the edge-set 
of G. For A ~ E (G) the (circuit ) rank of A, r (A), is the cardinality of the largest 
acyclic subset of A_ The corank-nullity polynomial f( Gj t, z) (also called the Whitney 
polynomiaf) is defin ed by 

(T1) f( Gjt,z ) == L tr(E(G» - r(A) z IAI-r(A). 

A~E(G) 

In Section 2, we !lese three differen t rank functions to define polynomials on rooted 
digraphs via (T1). (By a rank function" we simply mean any function mapping 
sets of edges of directed graphs to non-negative integers. ) One of these three is the 
rank fun ction of the directed branchi ng greedoid (1] associated to a rooled digraph 
D, while the second is t he basis rank function of the same greedoid. Thus , these first 
two rank functions yield two-variable polynomial invariants for arbitrary greedoids. 
The third rank fu nction considered is not associated with any greedoid, though it 
is still associated with the notion of reachability of vert ices of D from its root . All 
of these polynomials generalize the one-variable greedoid polynomial of [1] when the 
greedoid is the di rected branching greedoid of a rooted digraph. 
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The definition of the corank-nullity polynomial of an undirected graph can be 
rephrased without using a rank function. For this formulation, define a subgraph A 
of G to be vertex-spanning if it contains the entire vertex-set V(C) of C, and let 5 
denote the collection of all such subgraphs; we will often use the same letter A to 
refer to both a vertex-spanning subgraph and its edge-set. Then if c(A ) denotes the 
number of connected components of A, 

(T2) f( c; t, z) == E tc(A)-c(G) zIAI+c(A)-IV(G)I. 

AC:;; E (G) 

Since r(A) W(C)I - etA), (T2) is a direct translation of (Tl). We mention 
it here because it is natural to investigate the notions of "number of components" 
associated to various rank funct ions. For instance, the notion associated to the rank 
funct ion of the directed branching greedoid is that the number of components of a 
rooted digraph is one more than the number of vertices not reachable from the root, 
while the notion associated to the third rank function considered in Sect ion 2 is that 
the number of components of a rooted digraph is the minimum number of edges that 
can be inserted into the digraph so that all its vertices will be reac hable from its root. 
Also, it often h ppens that a cert ain notion of "number of components" can be more 
natural than the associated rank function. For instance, in Section 3 we menti n two 
polynomials t hat are associated wi th strong connectedness rather than reachability, 
and for these polynomials there are no "natural" descriptions of the associa ted rank 
func t ions. 

The recurs ive definit ion of t he Tutte polynomial is very useful, since it allows for 
nat ural inductive proofs. If e is an edge of C then the deletion C - e is simply the 
graph C wit h e erased (deleted). T he cont ract ion G / e is the graph obtained from 
C - e by identifyin g the endpoints of e. T he Tutte polynomial can be defined by 

(T3) (a) ftC) = 1 ifC has no edges, 
(b ) I ( G) = f ( C - e) + f( G / e) if e is neither an isthmus nor a loop, 
(c) ft C ) = xf(C /e) if e is an isthmu,s, and 
(d) f tC ) = yf(C - e) ife is a loop. 

Note that (T3) (b), (c), and (d) can be replaced by the following single condition . 

(e) For any e, ftC ) = (y - l )IV(G/e)I+1-IV (G)lf(C/e) + (x - ly(G)-r(G-e) f (C - e). 

(T 3) is equivalent to (Tl ) and (T2 ) under the substitut ion x = t +1, II = z + 1. It 
seems di fficult to defi ne a "d irected isthmus" that can be u.sed in (T 3) to recursively 
define a polynomial that is independent of the order in which edges are deleted and 
contracted. In Section 4 we give two exa.mples of recursively defined polynomials 
which depend on a. given ordering of t he edges or vertices. 

One can also define the ordinary Tut te polynomial in terms of acti vi ties (see [2] 
and [9]) or generalized act ivities (see [7]) . Although several of the polynomials we 
defi ne for rooted digraphs can be described in term.s of analogous activities , these 
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descript ions are complicated and do not seem to contribute much to understanding 
the polynomials. 

In Section 5 we extend the polynomials to weighted digraphs ; several can then 
be evaluated to yield t he determinant of the Kirchhoff matri x. We also discuss the 
app lication of these polynomials to some reliability problems . T he polynomials yield 
not only information about the likelihood t hat a directed network with imperfect 
edges will remain fully operat ional, but also illformation about the expected number 
of edges that will fai l, the expected number of repairs that will have to be made 
to restore a network to operational stat us, and the expected cost of making those 
repaIrs. 

Before considering this Introduction cnmplete we should take the opportunity to 
thank Lafayet te College for its support : during part of the t ime this research was 
being done Gary Gordon was supported by a research fellowship, and Lorenzo Traldi 
was on a sabbatical leave. 

2 . Polynomials for rooted digraphs. 

In this section, we define three polynomials for rooted digraphs via (Tl) . We fi rst 
define the branching greedoid independence rank rl (A ) and bas is rank r~ ( A) , and also 
t he rooted forest rank r3( A ), of a subset A of the edge-set of a rooted digraph (D, *). 
(Here .. represen ts t he root vertex. ) A subgrapb of D is a '" rooted arborescence if for 
every vertex v of T, there is a uni que directed path in T from * to v. T hus T is a 
di rected tree, rooted at • . (See Figure la.) 

A spanning. rooted arborescfnCf is a • rooted arborescence which is incident 
with every vertex of D. In general, a digraph need not have any spanning . rooted 
arborescence; even if it doesn' t , it is still true t bat all maximal * rooted arborescences 
have the same number of edges. A • rooted forest of arborescences is a vertex-disjoint 
union of arborescences rooted at ., VI, V2t ••• for some vertices VI, V2, .... (In Figure 
1b, t he heavy lines give a * rooted fores t of arborescenc s. ) We will often fail to 
distinguish be ween a • rooted forest of arborescences and its edge-set. 

We now define rank fun ctions r l, r2, and r3 by 

(2.1) rl(A) == max{IT II T ~ A is a * rooted arborescence}, 

(2.2) r2(A) == 'Dax {IT nAil T ~ E(D) is a * roo ted arborescence}, and 

(2.3) r3 (A) == max {IFI I F ~ A is a. root ed forest of arborescences }. 

Proposition 2.1. For every A~ E(D), rt{A) ~ r2 (A) ~ r3 (A); also, rdD) 
rd D). 

Proof. Since any • rooted arboresc nce can be extended to a maximal . rooted 
arborescence, rl (A ) ~ r2( A). Furthermore, since any subset of a maximal * rooted 
arborescence is a • rooted forest of arborescences, r2 (A ) :5 r3 (A). 
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The above inequali t ies are not generally reversible. For instance, in Figure 2a if 
A = {a, c, e} t hen rl( A) = 1, r2( A ) = 2, and r3( A) = 3. It is a routine veri fication 
to demonstrate that rl is a greedoid rank function. In general , it is not a matroid 
rank fun ction. For examp le, let A = { b, c d} and x = a in t he digraph of Figure 2a. 
Then rdA) = 0, but rl (A U {x}) = 4. It is also easy to verify that each of r2 and 
rJ sat is fies the defini tion of a matroid rank function except for semimodulari ty. For 
example, in Figure 2b for i = 2 or 3 we have r;( {c}) = r;( {c,d}) = r.( {a, c}) = 1, but 
r;({a,c,d}) = 2. 

Imitating defi nitions of matroid theory (see [10J for an account) , for 1 Si S 3 we 
define A ~ E( D ) to he i-spanning if ri tA) = r.(E (D)), i-independent if r;(A ) = IAI. 
and an i-basis if it is both i-spanning and i-independent. The following proposition 
is an immediate consequence of Definitions (2.1), (2.2), and (2 .3). 

Proposition 2.2. Suppose A ~ E (D). 
(a) A is I-in dependent iff it i.s a .. rooted arborescence, and is I-spanning iff it 

contains a maximal .. rooted arborescence. 
(b) A is 2-independent iff it is a subset of a .. rooted arborescence, and is 2-spanning 

iff it is I-spanning. 
(c) A is 3-independent iff it i8 a .. rooted forest of arborescence5, and is 3-spanning 

iff it contains a .. rooted forest of arborescences of maximum size. 

The i-independent and i-spanning sets have several other interes ting propert ies, 
all of which are easy to establish. If r3 (D ) = r.(D ) then the 3-spanning sets wiil 
coincide with the 1- and 2-spanning sels. Also, rit A ) is the maximum cardinality of 
an i-independent subset of A. In particular, since the 2-independent sets are simply 
the subsets of l -independent sets this implies tha.t the l· bases and 2- bases coincide. 
(If r3( D ) = rl( D ) t hen the 3-bases will also coincide wi th t he 1- and 2·bases.) Every 
1- or 2- independent set can be extended to a I-basis, hut the same is not true of 3­
independent sets. (Consider {e} in Figure 2a. ) We also nole that t he I- independent 
sets are precisely the feasible sets in the directed branching greedoid. The 2- and 3­
independent sets const itute hereditary families of subsets of E(D ) (i .e.• subsets of 2­
and 3-independent sets are 2- and 3· independent), but in general are not t he feasible 
sets of any greedoid , or (consequently) the independent sets of any matroid. 

We now denote by J; (D;t,z ) the polynomial associated to r. , 1 S i S 3, via (Tl ): 

f i( D j t, z) == I: r ·(E (D))-r.( A) z IAI-r,(A). 

A~ E(D) 

Proposition 2.3. For 1 S i S 3, 
(a) J;( D;O, O) = the number of i-bases of D, 
(b) f;( D;O, 1) = the nu mber of i-spanning sets, 
(c) f .( D; 1,0) = the number of i-independent sets, 
(d) J;(D ;Z- I,Z ) = z - r,(E(D)) ( z + 1)IE(D)I , 

(e) f;( D; -1, -1) = 0 (whe n E (D) -1 0), and 
(f) fi (D j 1 1) = 2IE(D)I . 
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A striking di fference among these polynomials is given in the next proposition. 
Part (a) gi ves a nice appli cation of fl which was proven in [6J. Part (b) follows 
from noting that every subset of a * rooted arborescence is 2-independent (and 3­
independent) . 

Proposition 2.4. (a) Let (DI, *tl and ( D~ , *2) be * i rooled arborescences. Then 
fl( D1) = fl( D2 ) if and only if DI and D2 are isomorphic. 

(b) If(D, *) is a* rooted arborescence thenfori = 2 or3, fi(D) = (t+l)fl, where 
n = IE(D)I. 

Proposition 2.4 should not gi ve the reader the impression that fl is in variably 
more discriminating than h or h . For instance, the t wo rooted digraphs of Figure 3 
have fl(Dd = ft( D2 ) = (z + 1)(t2 z + t2 + t + 1) , f l (D 1 ) = h(Dl ) = (z + 1)(t + 1)2, 
f3( Dd = (z + 1)(t + 1)2, and h(D2 ) = (t + z + 2)(t + 1) . Thus, h can distinguish 
digraphs which cannot be dis t inguished by h or h. (N. b. D\ and D2 have isomorphic 
directed branching greedoids.) A more extensi ve st udy of the polynomial fl for rooted 
gra.phs and digraphs is undertaken in [8], while the app lication of this polynomial to 
rooted trees is explored in more detail in [3] . 

As noted in the Introduction, we can rephrase the definition of fi(D) in terms of 
"connected component functions": ci(A) = v - Ti (A). Direct descriptions of these 
fun ct ions can be gi ven. For example, if we let dt{ A) be the number of vertices which 
cannot be reached from * by a d irected pat h in A, t hen CI (A) = dl (A) +1. The reader 
can formulate a si mi lar interpretat ion for c2( A). Perhaps a more useful measure of 
connectivi ty is given by c3( A). Let d(A) be the minimum cardinality of a set R of 
directed edges such that R U A contains a spanning arborescence rooted at *. (The 
elements of R mayor may not be edges of D.) 

Proposition 2.5. If A <;; E( D ) the n c3(A) = d(A) + 1. 

Proof. L t R = {e\, el , ... , Ed} be a set of directed edges (not necessarily in D) 
of minimum size so that R U A contains a spanning * rooted arborescence, where 
d = d(A). Let T be a spanning .. rooted arborescence, T <;; R U A. Then R <;; T , 
since d is minimum. Since ITI = v- I , we have IT n AI = ITI-IRI = v - d - 1. But 
Tn A is a ,.. rooted forest of ar borescences, so r3(A) ~ IT n AI = v - d - 1. 

On the other hand, let F <;; A be any ,.. rooted forest of arborescences having 
k roots in ad dit ion to *. Let S = {bl! bl , .. . , blo: } be the collection of directed edges 
emanating from ,.. whose terminal vertices are these k roots . Clearly F U S is a 
spanning .. rooted arborescence, so IF USI = v - 1. But by the definition of d, d :s k, 
so IFI+d :s v -I. Since F is arbitrary, r3( A) :s v - d - 1. 

Hence r3 (A) = v - d - 1, so C3 (A) = d( A) + 1. This completes the proof. 

T he polynomials J;(D) have differen t recurs ive propert ies. We require directed 
versions of isthmuses and loops for the following propositions. A di rected edge E of 
(D, *) is an i-isthmus (1 :s i :s 3) if it has the property that I is i-independent iff 
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I U {e} is i-independent. T hat is, adding or deleting an i-isthmus to or from an 
i-independent set does not affect i-independence. An edge e is an i-loop if it is in no 
i-independent set. Equivalently, e is an i-isthmus if ritA U {ell = ritA - e) + 1 for 

very subset A of E(D), and e is an i-loop if ritA U {ell = r,tA) for every A. For 
example, in Figure 2a the edge a is an i-isthmus for i > 1 but not for i = l, and the 
edge b is a 2-isthmus but neither a l-isthmus nor a 3-isthmus. The next proposition 
summarizes the recursive properties of the fi( D) . The proof uses the usual idea of 
partitioning the subsets of E( D ) into two classes, those that contain e and those that 
do not. We leave the details to the reader. ( For i = l, the proof appears in [61 .) 

Proposition 2.6. (a) If e is an i-loop ) then fi(D) = (z +1)fi( D - e), 1 S; i S; 3. 
(b) If e is an i-isthmus) then f i(D) = (t + l)fi(Dle) 1 S; i S; 3. 
(c) Let e be any edge directed out of * (a loop or not). Then for i = 1 or 3, 

f,t D) = zlV(D/e)I+1-I V (D)lfi( Die) + tr.(D )-r.(D-e) fi(D - e). Moreov er) if e is an i-

isthmus then f i(D - e) = fi( Dle). 

Parts (a) and (b) of thi proposi t ion show hat the given definitions of i-loop and 
i-isthmus are "correctn fo r the given polynomials. Ot her definitions may also be of 
some interes t , however. For instance an i -coloop is defined to be an edge which is in 
every maximal i- independent set; i-isthmuses and i-coloops coincide for i = 2 or 3, 
but a l -coloop (= 2-coloop) is not the same as a I -ist hm us. (Coloops and isthmuses 
a lso coincide for undi rected graphs and mat roids.) For example, a in F igure 2a is a 
l-coloo p but not a l -isthmus; note t ha t 2.6(b) fails for a. 

For a non-loop e directed out of *, t he proof of part (c) of 2.6 depends on the 
fact that if e if. A , rit A ) in D - e is t he same as rit A ) in D, and if e E A, rit A - e) 
in Die is One less t han ri tA) in D (for i = 1 or 3). The la tter fact is also t rue 
for r2 (A), but the former is not. Consider, for example, t he digraph of Figure 4. 
T hen if A = {c, d} we have r2(A) = 2 in D but r2 (A ) = 1 in D - a, even th ugh 
rz (D) = r2( D - a) = 3. T hus, the recursion of 2.6 ( c ) wi ll not work fo r h- In Sect ion 4 
we will give a polynomial losely related to h t hat does satisfy a complete recurs ion. 

We also note t ha t 2.6( ) gives a complete recurs ive descript ion of JI(D ), since by 
2.6(a). ft (D - e) = (z + i)k when .. is isolated in D - e and k is the number of edges 
in D - t. The recurs ion is incomplete for h (D ), howe er, since h(D - e) depends 
on the structure of D - t , even when * is isolated in D - t. T he difference is t ha t 
when * is isolated in D every edge of D is a l-loop, but not necessari ly a 3-loop. In 
Sect ion 4 we wi ll give a polynomial related to h t hat sat isfies a complete recurs ion. 

We can generalize 2.6(a) and 2.6 (b ) in t he followi ng way. If Dl and Dl are rooted 
digraph s wi th disjoint vertex-sets and respective roots *1 and *2, then we define t he 
direct sum D1 @ Dz to be t he rooted digraph obtained by ident ifyi ng *1 and *2 to 
fo rm a new root *. D I ffi D2 is also called the one-point union of DJ and D2 . It is 
clear from this defin ition that a set A of edges of DJ IX D2 is i-independent iff both 
A n DJ and An D2 are i-independent. 
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In [1], Bjorner and Ziegler discuss a one-variable polynomial A( Gj y ) associated 
to a greedoid G. In the ~ase of the directed branching greedoid corresponding to a 
rooted digraph (D ,*), A( Gj y) is characterized by the following . 

l. A(D ; y) = A( Die; y ) if e IS a 2-isthmus dIrected out of"' . 
II. ,\ (D ; y) = yk if D consists of k 2-loops. 
III. A( D; y) = A( D-e; y) +A( Die; y) ife is direct ed out of'" and is not a 2-isthmus . 

. ·ote that in case I, r](D - e) < rl(D) , an.d in case III , rl(D - e) = r] (D ). By 
2.6( c), fl (D ; 0, y - 1) satisfies I and III. Furthermore, by 2.6( a), fl (D; 0, y - 1) = yk if 
D consists of k 2-loops. Thus fI (D ; 0, y - 1) = A(D ; y ). (Since the definition of f l is 
valid for an arbitrary greedoid G, we also get fl (G; 0, y - 1) = A( G; y) [6J.) Also, note 
that h (D; 0, y -1) = fl (D; 0, y -1) , since the 1- and 2-spanning sets in E (D) coincide. 
Similarly, if D has a * rooted spanning arborescence then h(9; 0, y - 1) = A(D; y ), 
alt hough this equality does not hold in general. See Section 4 for other polynomials 
rela ted to A. 

3. U nrooted digraphs. 

In this se tion we briefly discuss several polynomials associated to unrooted digraphs. 
Let D be an unrooted digraph. We say F ~ E(D) is a forest of TOoted arbores­

eenees if it is a vertex-disj oint union of arborescences rooted at VI, V 2, •.. for some 
vertices VI, V 2 , ••• . ( hu , a '" rooted forest of arborescences in a rooted digraph is 
si mply a forest in which ", is one of t he roots selected. ) We can now define r4( A) 
to be the maximum size of a forest of rooted arborescences contained in A. Clearly 
r3(A) ~ r~ ( A ) for every A and every choice of a root vertex *. We can imi ta te t he 
defin it ions of Section 2 to obtain defi nitions of 4-independen t and 4-spanning sets, 
and use (Tl ) to define a polynomial f 4(D) . It is straightforward to for mulate propo­
sitions r garding f4 that are analogous to 2.3 and 2.5. We leave the detai ls to t he 
reader. 

Reca U that a digraph D is strongly connected if, for every pair of vert ices u and V , 

there exis ts a directed path from u to v . We denote by cs(D ) the number of st rong 
components of D, and we defi ne f o( D). the strong- connected digraph polynomial, via 
(T2). We leave it to the reader to verify that f~ (D) is always a polynomial, i.e., that 
IE(A)I + cs( A ) - IV (D )I ~ 0 for every A E S. The reader can also verify the following 
two families of examples . If D is a rooted arborescence (or any digraph whose trong 
componen ts are all singletons) then h(D) = (z + 1)" , where n = IE(D )I . Also, if D 
is a. directed circuit then f s(D ) = z + tn-1((z + it - zrl ). 

It is am using to note that if rs is the rank function defined by rs(A) = IV(D)I ­
cs( A) then 0 is the only 5- independent set. 

Anot her polynomial rela ted to st rong connectedness can be defined via ( 2) using 
the followi ng: for each vertex-spann ing subdigraph A of D iet Cs( A) -1 be the smallest 
cardinali ty of a set R of directed edges such that R U A is strongly connected. (T he 
edges in R mayor may not be edges of D. ) Then Cs and Cs ar related to t he notion 
of strong connectedness much as Cl a.nd C3 arc related to the notion of reacha.bility 
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Proof. We argue by induction on IR(D , *)1. If IR( D, *)1 = 1, then H = • and 
G/ H = D, and the result is trivial. Assume IR(D,* )I > 1, and let e be t he first edge 
emanating from . in the ordering O. Now e is a 2-isthmus in D if and only if e is 
a 2-isthmus in H. Further, t he ind uced rooted subdigraph of R(D/e,. ) isjust H/e. 
T hus if e is a 2- isthmus, by induction h (D) = xh( D/e) = xh( H/ e)h(G/ H ) = 
h (H )h (G/ H ). If e is a loop, then by a similar argument and induction , we have 
h ( D) = yh(D - e) = yh (H - e)h(G/ H) = h (H )h(G/ H ). If e is neither a 2­
ist hmus nor a loop, then by induction and 4.1 (b) 3., h(D) = h(D - e) +h (D/e) = 
h (H - e)h (G/ H ) + h (H/e )h (G/ H ) = h( H )h(G/ H ). 

T he next re ult describes the general behavior of the variable z. T he proof, which 
we omit, can b established by induction , using the two previous results. 

Proposition 4.4 . h (D, OJ x , y,z ) = zkg(x , y), fOT some polynom ial g and k ?: O. 

In general , the exponent k depends n the chosen ordering, al though k = 0 for 
any ordering when D has a. rooted spanning arborescence (4.2). If we let s be the 
minimum exponent k which occurs, the minimum being taken over all possible edge 
orderings, t hen s is just the min imum number of edges in D whose reversal wiLl create 
a • rooted spanning arborescence. 

It is possib le to recover h (D, 0 ; x , y,z ) completely from t he evaluat ion h (D, O;x , 
y, (x - 1)y ). More precisely, assume h (D OJ x, y, z) = zkg(x , y ) and set z = (x - l )y 
in h (D,O;x , y,z) . Then the highest power of x -1 which divides this evaluat ion is 
the correct power of z for h(D,Ojx, y, z) . To see t his , simply note that contracting 
t he k edges which contributed z to t he origina.l polynomial leaves a digraph wh.i ch
has a '" rooted arborescence. Furthermore, g(x , y ) = h (D/ A,O/ A jx, y ,z ), where 
A is this set of k edges and O/ A is the inherited ordering of E( D ) - A. Hence by 
4.5 (a) below, x - 1 does not divide g(x ,y) , so we can un iquely determine k from 
h (D, 0; x , y, (x - l )y). In spite of this evaluation, we will conti nue to write h as a 
t hree-variable polynomial for simplicity. 

T he following propert ies of h( D, 0 ; x , y, z) are all independent of the chosen or­
dering and are straightforward to verify using induction and 4.1. 

Proposition 4.5. Let 0 be any ordering of the edges of D. 
(a) h( D, OJ I, 1,0) = the number of spanning arborescences roo/ed at "'. 
(b ) h (D, 0; 2,2, 2) = 2< , where e is the number of edges of D. 
(c) The highest power of :z: appearing in h(D,O;x, y, (x - l)y ) is v - 1, where v 

·is the nu.mber of vert ices of D. 
(d) If D has a spanning arborescence rooted at *, then the lowest po wer of :z: 

appearing in h ( D, 0 ; x, y) equals the number of 2-isthmu.ses in D. 
(e) The highest power of y appearing in h ( D, 0 ; x, y, (x - l)y) is e - v + l. 

Example 4.6 . To show how h(D) depends on the ordering 0, consider the 
roo led ordered digraphs Dl and D2 of igure 5. (The edge-ordering is given by the 
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numbering of the edges.) The reader can check the following computations. 

We remark that h( D, O;I,y,l) is independent of the chosen ord ring 0 . In 
fact , when D has a * rooted spann ing arborescence, h( D, 0; 1, y) = ,\(D; y), where 
>.( D; y) is the greedoid polynomial of [1]. This can be shown by demonstrati ng t hat 
h( D 0 ; 1, y) and >.( D; y) both follow the same recursion, as was done with fl in 
Section 2. 

The polynomial fa is related to h in the same way that h is related to h, i.e., D 
is assumed to be given with an ordering that is used to define a complete recursion for 
a polynomial resembling h . In this case , though, D is to be given with an ordering °on V( D), not E(D ); we presume that in this ordering V(D) = {vo , ... , vu-d with 
Va = •. Given such an ordering, we define c8 (D , 0) as follows. Define a sequence 
*1: . ." *c of vert ices of D by: *1 is * , and for i > I , *i is the least vertex not reachable 
in D from any of *J. ... , *i- I! if t here is any such; then cs(D 0) = c. This defini tion 
gi ves rise to a partition of V( D ) into cells we wi ll call the 8-com ponents of (D, 0 ): 
C1 = R(D, *) consists of those vertices reachable from *, and for i > 1 C; consists of 
those vertices reachable from *; t hat are not reachable from any of *1, . . . , *i-l' 

The associated rank function is given by ra( A,O ) = V - ca( A,O) for each A <; 
E( D); ra(A, O) is the maximum size of a ubset of A t hat is a * rooted fores t of 
arborescences in which each arborescence is rooted at its least vertex . Clearly r l (A) ~ 
rat A) ~ r3 (A ) for every A <; E(D ). It is worth mentioning that among the seven 
rank fu nctions we have defined rl , rs, and ra have the property of being associated 
wi th well· defined partitions of V(D); and r3 , r4 , rs , and r8 have the property that for 
each A, c, (A) - 1 is the minimum cardinality of a set R of edges with c.( A U R) = 1. 
Th only one that shares both these properties with the circuit rank (and the notion 
of connectedness ) in undirected graphs is rs . 

T he polynomial f8 resulting from t.he use of r s ill (Tl) is completely characterized 
by the following. 

Proposition 4.7. Let D be a rooted digraph with vertices * = Va, VI> ... , Vu-l­

(a) If D has no edges then fs(D , 0 ) = 1. 
(b) If the initial vertex of e is • then f8(D , 0) = tr,(D,O)-r.(D-e,O) fa( D - e, 0 ) + 

zlV (D(ell+1-IV (D) 1fa( Di e, °Ie) . 
(c) If the terminal vertex of e is *, or e is a loop , then f8 (D, 0 ) = (z + 1)J8(D ­

e,O). 
(d) If no edge of D IS incident on * and D' is the digraph obtained from D by 

identifyi ng l{) with VI, then fs(D, O) = J8(D' , 0'). 

Here Ole is the order on V (Dle) obtained from °by ignoring the termino.! vertex 
of e , o.nd 0' is the obvious order on V( D'). 

It is a simple matter to formu late analogues of Propositions 2.3 and 2.7 t hat apply 
to fa. 
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For most digraphs fs(D, 0) is very sensi tive to changes in O. An exception to this 
general rule involves the following notion. Suppose G is aD undirected graph , and let 
D = D(G) be the directed graph in which each edge of G is rep laced by a pair of 
oppositely directed edges. (Each loop of G is to be replaced by two loops in D .) Let 
o be aDY ordering of V(G), wi th any vertex playing the role of *. Then Proposition 
4.7 and the recursive descript ion (T3) of the Tutte polynomial imply 

Proposition 4.8. In this situation 

Let h3(Dj z ) and hs(D, 0 ; z) be the respective polynomials obtained by evaluating 
at t = O. T he next proposition is easily deduced from Propos itions 4.6 and 2.6. 

Proposition 4.9. Let D be a rooted digraph, and Je t 0 be any ordering of V(D) 
with * = Va. Then h3( D;z) = hs( D, O;z). 

If D has a * rooted spanning arborescencc then the cornmon evaluation discussed 
in the proposition is the one·variable greedoid polynomial '\D (Y) of [1 1, as was dis­
cussed in Section 2. Therefore f it h , h, h , and Is may all be regarded as strength­
ened versions of ,\, with differen t properties: 11 satisfies a. complete recursion and is 
large ly insensitive to the portion of a directed graph not reachable from the root (it 
only notices the number of edges in this portion) ; h satisfies no recursion at all in 
general and is also largely insensit ive to the unreachable portion of a digraph; h sat­
isfies only a partial recursion and is much more sensitive to the unreachable portion 
of a digraph; and h and fs satisfy complete recursions and are sensitive to the un­
reachable portion of a digraph, but require the imposition of edge- and vertex-orders 
to define their recursions. (In Section 5 we will mention a realistic context in which 
the imposition of such orders may oot seem ompletely unnatural.) 

5. Weighted and doubly weighted digraphs. 

A weighted digrc.ph is a directed graph D together with a function w : E(D ) -+ R , 
where R is some commutative ring with unity. Anyone of the polynomials I I, ... , /6,/8 
can be modified to reflect the edge-weights in D by defining 

J;( D ):o L (II w(e)) tr. (D)-r.( A)z IA I-r,(A). 

A~E(D) eEA 

For converuence' sake we wi ll often suppress the 0 when discussing fs in this 
section and the next. A common feature of several of these polynomials is their 
relationship with the Kirchhoff matrix K (D) associated to D. (See [9, Chap. Vn for 
a discussion of this ma.trix). 
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Proposition 5.1. Let D be a weighted, rooted digraph that has a '" rooted spanning 
arborescence, and let Kr(D) be obtained fro m K(D) by de/eting the row and column 
corresponding to *. Then fdD), h(D), h (D) , and fs (D) all yield the determinant of 
Kr (D) when evaluated at t = z = O. 

Proof. Observe that t he 1- , 2- , 3-, and 8-bases of D are precisely the * rooted 
spanning arborescences in D. T he proposi tion follows from this observation and the 
matrix-tree theorem [9, Theorem VI.27]. 

A doubly weighted digraph is a weighted digraph which has a complementary weight 
function c : E (D ) --+ R in addition to its weight function. Once again, it is a simple 
matter to extend the polynomials given by (Tl ) to this context; we defi ne 

fi( D ) == L (II w(e) ) (II c(e) ) tr,(D)-r,(A)zlAI-r;(A). 
A C;: E(D) eeA efA 

One can consider an ordinary digraph as a doubly weighted digraph in which both 
weights are identically 1, and a weighted digraph as a doubly weighted digraph with c 
identically 1. Many of the properties of the fj generalize to this context , with simple 
modifications. For instance, if i # 7 then the following holds. 

Proposition 5.2. (a) If e is an i-loop, f.(D ) == (zw(e) + c(e))J;( D - e). 
(b) If e is an i-isthmlUJ, /.(D ) = (w(e) + tc(e) )/i(D /e ). 
(c) If e has w(e) = 0 and c(e) = 1 then /,(D) == tr, (D)-r;(D-e) fi(D - e). 
(d) Let e be any edge with initial vertex *, a loop or not. Then for i = 1, 3, or 8 

fi( D ) = w(e) zW(D/e)I+HV (D)lf.(D/e ) + c(e)tr,(D)-r;(D-e)fi( D - e) . 

j'v/oreo ver, if e is an i-isthmlUJ then /;( D - e) = f i( D/ e). 

Proposition 5.2 is of special significance for the polynomial fs. If Do is a directed 
graph with no edge incident on *, consider the digraph D obtained from Do by 
inserting an edge e directed fro m Vo = • to Vlo with w( e) = 0 and c(e) = 1. Then 
Do == D - e and r8 (D) = 1+r8(Do). so by 5.2 (c) t!a(Do) == f8 (D) . Moreover, e is an 

_ 8-isthmus in D, so 5.2 (b) gives ja (D) == tf8(D/e); consequently f8 (Do ) = Js(D /e). 
Thus Proposition 5.2 implies 4.7 (d). 

An important example of a doubly weighted digraph is a probabilistic digraph, i.e. 
a digraph given with a function p == w : E (D ) --+ [0 , 1]. If we regard D as representing 
some directed network (e.g., a municipal water supply system). then for e E E(D) , 
p( ) can be taken to be the probability that the element of the network represented 
by e (e.g., a water main) will operate successfully for a certain period of time; the 
complementary weight c(e) == 1- p(e) measures the probabili ty that this element will 
fai l sometime during this period. 

The general notion of the reliability of a probabilistic digraph involves the assess­
ment of the likelihoods of various possible attributes of the portion of D that has not 
failed after the passage of a single ti me period. A commonly studied special case (see 
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[5], for instance) is t he assessment of the probabili ty that if all the ver tices of D are 
reachable from *, then the portion of D that survi ves after a single time period sti ll 
has this property. The polynomials / 1, ..., /6, /s contain a great deal of general reli a­
bility information , for the coefficient of taz b in / ;(D; I, z) is the probabili ty that after 
the passage of a single period of t ime, the remaining network will have e; = e;( D ) +a 

and wi ll have b- a - c; (D ) + W(D)! operative edges. 
For instance, suppose every vertex of D is reachable from * and it is desired that 

after t he passage of a single period of time this property be restored to what remains 
of D by adjoining edges. (We presume for the moment that it is just as easy to adjoin 
new edges as it is to restore edges of D that have fai led.) Then the coefficient of 
la in /1(D; t ,l) measures the likelihood that precisely a -I vertices of D need to 
have their reachability from . res tored, while the coefEcien t of t a in h ( D; t , 1) gi ves 
the probability that a-I is the minimum number of edges that must be adjoined 
to accomplish this restorat ion . Suppose a repair crew tours V( D) according to a 
vertex-order 0, and whenever it encoUllters a vertex not reachable from * the crew 
installs an edge to that vertex from some vertex that is reachable from *. T hen the 
coefficient of t" in /8( D , OJ 1,1 ) is the probability t hat this crew will install precisely 
a-I edges. 

In real-world situations it is often not practical to simply ignore failed elements of a 
networkj broken water mains must be repaired or seaJed off, for instance. Informat ion 
about the number of edges likely to fail in a given period of time is con tained in any 
one of t he polynomials Ji with i =f. 7, as was mentioned above. It may be, however, 
that certain edges represent elements of a network that a.re more difficult or expensive 
to repair t han others, and the polynomia.ls can easi ly be modified to record this kind 
of information. Suppose there a.re functions r and s mapping E (D ) in to the field 
R of real numbers that give the repair cost and value of the individual edges of D, 
respectively. (The value could be used , for instance, in calculating the network's 
worth as collateral for a loan.) Let x and y be indeterminates, and define two weight 
functions w, c : E (D ) -+ R [x, yJ by w( e) = p(e)y·{e) and c(e) = (1 - p(e))xr(o) . The 
resul ting polynomials / i(Djt,z,x,y ) will have the property that the coefficieni of 
t" zbxcyd is the likelihood that after the passage of a single period of time the remna.nt 
of D will have c; = c, (D ) +a, this remna.nt will have b - a - c;( D ) + W(D)! operative 
edges, it will cost c to repair all the edges of D that will have failed, and the edges 
of the remnant will have a total value d. (We a.re assuming that t he total repair cost 
and total value a.re simply the sums of the repair costs of the failed edges and the 
values of the opera.tive edges, respectively.) 

Suppose D is a probabilistic digra.ph and K ~ V(D) is a set of k distinguished 
ertices. For i = 1, 5, or 8 the value of c; (D ) is the number of cells in a particular 

parti t ion of V (D ), and so we can defi ne the number of K-Ierminal i-components of D, 
c, (D , K ), to be the number of these cells that meet K . We could also define c3( A,K)­
1 to be the minimum cardinality of a set R of edges such that cl( A U R, K ) = 1, and 
~(A , K ) - 1 to be the minimum ca.rdinality of a set R with cs (A U R, K ) = 1. The 
associated K -terminal reliability problems involve the assessmen t of the probabiti ties 
of the various possible numbers of K ·terminal i-components D might have after the 
passage of a period of time, and the various possible minimum numbers of edges that 
will have to be installed to bring the number of K ·terminal i-components down to 
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1. Anyone of II, h, Is, 16 and Is can be easily modified so as to be of val ue in this 
K -terminal context ; we need only replace T, (A) by Ti(A, K ) = It: - C; (A, K ) and ri (D ) 
by k - c;( D, K ) in the defini tion of the polynomial of a doubly weighted digraph . 

Proposition 5.3. Let e be any edge with initial vertex. J a loop or not. Then Jor 
1=1 or 8, 

I;( D, K ) = (1 - p(e)W,(D,K)-r;{D-e,K ) Ji( D - e, K ) + p(e)zIK/eIH-kIi( D/e, K /e) 

where Kle is the obvious subset oj V(Dle). 
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from a root. (See Proposition 2.5.) 
Chung and Graham [4J have introduced an interes ting polynomial invariant of 

unrooted digraphs, the cover polynomial. Unlike the polynomials already mentioned 
in this section, the cover polynomial satisfies a deletion/contraction property some­
what si mi lar to (T3), though it does have the property t hat the appropriate notion 
of contraction is not symmetric: the initial and terminal vertices of the edge being 
contracted are treated differen tly. 

4. Two order-dependent polynomials. 

In the discussion subsequent to Proposition 2.6, it is noted that complete recursive 
descriptions of hand h are not possible. evertheless, the notions of 2-isthmus and 
2-loop are similar to the notions of isthmus and loop in a graph or matroid. Recall 
that an edge e in a rooted digraph D is a 2-isthmus iff e is in every maximal * rooted 
arborescence (i.e., e is in every 2-basis), and is a 2-loop iff it is in no maximal * rooted 
arborescence. We will define a polynomial on rooted digraphs recursively, using these 
notions of isthmus and loop. We will also distinguish between 2-100ps which are 
ordinary loops (i.e., those in which the initial and terminal vertices coincide), and 
2-100ps which are not, which we will call reversed loops. (The term "loop" means 
"ordinary loop".) 

We now define a polynomial h( D ) == h(D , OJ x , y, z) associated to a rooted di­
graph D whose underlying undirected graph is connected, with respect to an ordering 
o on E(D). This definition is based on the recursive definition (T3). 

Defin ition 4.1. 
(a) If D = {*}, then h(D) = l. 
(b ) Let e be the first edge (in the ordering 0) which emanates from *. 

1. h( D ) == xh( D /e) if e is a 2-isthmus. 
2. h(D) == yh(D - e) if e is a loop. 
3. h(D) == h(D - e) + h(D/e) otherwise. 

(c) If no edge emanates from *, then let e be the first edge directed into *, i.e., e 
is a reversed loop. Then h(D) == zh(D /e). 

The next proposition can be proven using the definition and induction. 

Proposition 4.2. Suppose D has a spanning arborescence rooted at *. Then for 
any ordering 0, fdD) is a polynomial in x and y (i.e., no z term appears). 

If D has no spanning * rooted arborescence, then it is still easy to describe the 
behavior of the variable z. Let R( D,*) denote the set of vertices in D which are 
reachable from *. Let H be the induced rooted subdigraph on R( D, *) and G /II the 
rooted subdigraph obtained from D by contracting all of H to the single vertex *. 

Lemma 4.3. h(D) == h(H)h(G/ H ). 
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