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Abstract

Several polynomials are defined on directed graphs and rooted directed
graphs which are all analogous to the Tutte polynomial of an undirected graph.
Various interrelations between these polynomials are explored. Many of them
have the number of maximal directed trees (arborescences) as an evaluation,
and are related to the one-variable greedoid polynomial Ag(y). Applications to
reliability are also examined.

1. Introduction.

The central theme of this study is the attempt to generalize the Tutte polynomial
of an undirected graph to a polynomial invariant of a directed graph, especially one
having a distinguished vertex (a rooted digraph). It does not seem that there is any
one “right” such generalization; rather, different definitions of the Tutte polynomial
suggest different directed polynomials. One definition of the Tutte polynomial of an
undirected graph G depends on a rank function on subsets of E(G), the edge-set
of G. For A C E(G) the (circuit) rank of A, r(A4), is the cardinality of the largest
acyclic subset of A. The corank-nullity polynomial f(G;t,z) (also called the Whitney
polynomial) is defined by

(T1) f(Git,z)= Y EG)-r(A)lal-r(a),
ACE(G)

In Section 2, we use three different rank functions to define polynomials on rooted
digraphs via (T1). (By a “rank function” we simply mean any function mapping
sets of edges of directed graphs to non-negative integers.) One of these three is the
rank function of the directed branching greedoid (1] associated to a rooted digraph
D, while the second is the basis rank function of the same greedoid. Thus, these first
two rank functions yield two-variable polynomial invariants for arbitrary greedoids.
The third rank function considered is not associated with any greedoid, though it
is still associated with the notion of reachability of vertices of D from its root. All
of these polynomials generalize the one-variable greedoid polynomial of [1] when the
greedoid is the directed branching greedoid of a rooted digraph.
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The definition of the corank-nullity polynomial of an undirected graph can be
rephrased without using a rank function. For this formulation, define a subgraph A
of G to be verter-spanning if it contains the entire vertex-set V(G) of G, and let S
denote the collection of all such subgraphs; we will often use the same letter A to
refer to both a vertex-spanning subgraph and its edge-set. Then if ¢(A) denotes the
number of connected components of A,

(T2) f(Git,z)

T oA Al A= V()
ACE(G)

Since 7(A) = |V(G)| — ¢(A), (T2) is a direct translation of (T1). We mention
it here because it is natural to investigate the notions of “number of components”
associated to various rank functions. For instance, the notion associated to the rank
function of the directed branching greedoid is that the number of components of a
rooted digraph is one more than the number of vertices not reachable from the root,
while the notion associated to the third rank function considered in Section 2 is that
the number of components of a rooted digraph is the minimum number of edges that
can be inserted into the digraph so that all its vertices will be reachable from its root.
Also, it often happens that a certain notion of “number of components” can be more
natural than the associated rank function. For instance, in Section 3 we mention two
polynomials that are associated with strong connectedness rather than reachability,
and for these polynomials there are no “natural” descriptions of the associated rank
functions.

The recursive definition of the Tutte polynomial is very useful, since it allows for
natural inductive proofs. If e is an edge of G then the deletion G — e is simply the
graph G with e erased (deleted). The contraction G/e is the graph obtained from
(G — e by identifying the endpoints of e. The Tutte polynomial can be defined by

(T3) (a) f(G) =1 if G has no edges,
(6) f(G) = f(G —e)+ f(G/e) if e is neither an isthmus nor a loop,
(c) f(G) =zf(G/e) ife is an isthmus, and
(d) f(G)=yf(G —e) ifeis a loop.

Note that (T3) (b), (c), and (d) can be replaced by the following single condition.
(¢) For anye, f(G) = (y ~ )VE/IM-WVENf(Gle) + (z — 1)1 (D=9 f(G ~ ).

(T3) is equivalent to (T1) and (T2) under the substitution z =t+1,y = z+1. It
seems difficult to define a “directed isthmus” that can be used in (T3) to recursively
define a polynomial that is independent of the order in which edges are deleted and
contracted. In Section 4 we give two examples of recursively defined polynomials
which depend on a given ordering of the edges or vertices.

One can also define the ordinary Tutte polynomial in terms of activities (see [2]
and [9]) or generalized activities (see [7]). Although several of the polynomials we
define for rooted digraphs can be described in terms of analogous activities, these
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descriptions are complicated and do not seem to contribute much to understanding
the polynomials.

In Section & we extend the polynomials to weighted digraphs; several can then
be evaluated to yield the determinant of the Kirchhoff matrix. We also discuss the
application of these polynomials to some reliability problems. The polynomials yield
not only information about the likelihood that a directed network with imperfect
edges will remain fully operational, but also information about the expected number
of edges that will fail, the expected number of repairs that will have to be made
to restore a network to operational status, and the expected cost of making those
repairs.

Before considering this Introduction cnmplete we should take the opportunity to
thank Lafayette College for its support: during part of the time this research was
being done Gary Gordon was supported by a research fellowship, and Lorenzo Traldi
was on a sabbatical leave.

2. Polynomials for rooted digraphs.

In this section, we define three polynomials for rooted digraphs via (T1). We first
define the branching greedoid independence rank ry(A4) and basis rank ry(A), and also
the rooted forest rank r3(A), of a subset A of the edge-set of a rooted digraph (D, ).
(Here « represents the root vertex.) A subgraph of D is a * rooted arborescence if for
every vertex v of T, there is a unique directed path in T from * to v. Thus 7' is a
directed tree, rooted at *. (See Figure la.)

A spanning * rooted arborescence is a * rooted arborescence which is incident
with every vertex of D. In general, a digraph need not have any spanning * rooted
arborescence; even if it doesn’t, it is still true that all maximal * rooted arborescences
have the same number of edges. A * rooted forest of arborescences is a vertex-disjoint
union of arborescences rooted at *, vy, vy, ... for some vertices vy, vy, ... . (In Figure
1b, the heavy lines give a * rooted forest of arborescences.) We will often fail to
distinguish between a * rooted forest of arborescences and its edge-set.

We now define rank functions ry, r5, and r3 by

(21) r1(A) = max{|T| | T C A is a = rooted arborescence},
(2.2)  r(A)=max{|TNA||T C E(D) is a = rooted arborescence}, and
(2.3) r3(A) = max{|F| | F C A is a  rooted forest of arborescences}.

Proposition 2.1. For every ACE(D), n(A) < n(A) < r3(A); also, n (D) =
Tz(D).

Proof. Since any * rooted arborescence can be extended to a maximal  rooted
arborescence, r1(A) < ry(A). Furthermore, since any subset of a maximal = rooted
arborescence is a * rooted forest of arborescences, r3(A4) < ra(A).
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The above inequalities are not generally reversible. For instance, in Figure 2a if
A = {a,c,e} then r(A) = 1, ry(A) = 2, and r3(A) = 3. It is a routine verification
to demonstrate that r; is a greedoid rank function. In general, it is not a matroid
rank function. For example, let A = {b,c,d} and z = a in the digraph of Figure 2a.
Then ri(A) = 0, but r(AU {z}) = 4. It is also easy to verify that each of r, and
r3 satisfies the definition of a matroid rank function ezcept for semimodularity. For
example, in Figure 2b for : = 2 or 3 we have r;({c}) = ri({¢,d}) = r.({a.c}) = 1, but
ri({a,c,d}) = 2.

Imitating definitions of matroid theory (see [10] for an account), for 1 <7 < 3 we
define A C E(D) to be w-spanning if r;(A) = r,(E(D)), i-independent if r;(A) = |A],
and an i-basis if it is both i-spanning and i-independent. The following proposition
is an immediate consequence of Definitions (2.1), (2.2), and (2.3).

Proposition 2.2. Suppose A C E(D).

(a) A is l-independent iff it is a = rooted arborescence, and is l-spanning iff it
contains a mazimal * rooted arborescence.

(b) A is2-independent iff it is a subsel of a « rooted arborescence, and is 2-spanning
iff it is 1-spanning.

(c) A is 3-independent iff it is a » rooted forest of arborescences, and is 3-spanning
iff it contains a * rooted forest of arborescences of mazrimum size.

The i-independent and i-spanning sets have several other interesting properties,
all of which are easy to establish. If r3(D) = r{(D) then the 3-spanning sets will
coincide with the 1- and 2-spanning sets. Also, r;(A) is the maximum cardinality of
an i-independent subset of A. In particular, since the 2-independent sets are simply
the subsets of 1-independent sets this implies that the 1-bases and 2-bases coincide.
(If r3(D) = r1(D) then the 3-bases will also coincide with the 1- and 2-bases.) Every
1- or 2-independent set can be extended to a 1-basis, but the same is not true of 3-
independent sets. (Consider {e} in Figure 2a.) We also note that the l-independent
sets are precisely the feasible sets in the directed branching greedoid. The 2- and 3-
independent sets constitute hereditary families of subsets of E(D) (i.e., subsets of 2-
and 3-independent sets are 2- and 3-independent), but in general are not the feasible
sets of any greedoid, or (consequently) the independent sets of any matroid.

We now denote by f;(D;t, z) the polynomial associated to ri, 1 <1 < 3, via (T1):

fiD;t,z) = Z s B(D))=ri(4) JIAl-r.(A)
ACE(D)

Proposition 2.3. For1 <1 <3,
(a) fi(D;0,0) = the number of i-bases of D,

(b) fi(D;0, 1 = the number of i-spanning sets,
(¢) fi(D;1,0) = the number of i-independent sets,
(d) fi(D;z- ,z) =z~ ED)(z 4 1)IED)

(e) fi(D;—1,-1) =0 (when E(D) # @), and

(f) fi(D;1,1) = 21EDN,
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A striking difference among these polynomials is given in the next proposition.
Part (a) gives a nice application of f; which was proven in [6]. Part (b) follows
from noting that every subset of a * rooted arborescence is 2-independent (and 3-
independent).

Proposition 2.4, (a) Let (Dy, *1) and (Ds,*;) be *; rooted arborescences. Then
filDy) = fi(Dy) if and only if Dy and D, are isomorphic.

(b) If (D, *) is a * rooted arborescence then fori =2 or3, fi(D) = (t+1)", where
n=|E(D)|.

Proposition 2.4 should not give the reader the impression that f, is invariably
more discriminating than f; or f3. For instance, the two rooted digraphs of Figure 3
have fl(Dl) = f](Dz) = (Z + l)(tzz + t? +t+4 1), fQ(Dl) = fg(Dg) = (Z + 1)(! + 1)2,
f(Dy) = (z+ 1)(t+ 1)?%, and f3(D2) = (t + 2+ 2)(t + 1). Thus, f3 can distinguish
digraphs which cannot be distinguished by f; or f;. (N.b. D, and D, have isomorphic
directed branching greedoids.) A more extensive study of the polynomial f; for rooted
graphs and digraphs is undertaken in [8], while the application of this polynomial to
rooted trees is explored in more detail in [3].

As noted in the Introduction, we can rephrase the definition of f;(D) in terms of
“connected component functions™: ¢;(A) = v — r;(A). Direct descriptions of these
functions can be given. For example, if we let di(A) be the number of vertices which
cannot be reached from * by a directed path in A4, then ¢;(A) = di1(A) +1. The reader
can formulate a similar interpretation for ¢;(A). Perhaps a more useful measure of
connectivity is given by c3(A). Let d(A) be the minimum cardinality of a set A of
directed edges such that R U A contains a spanning arborescence rooted at *. (The
elements of R may or may not be edges of D.)

Proposition 2.5. If A C E(D) then c3(A) = d(A) + 1.

Proof. Let R = {e),€3,...,€4} be a set of directed edges (not necessarily in D)
of minimum size so that R U A contains 2 spanning * rooted arborescence, where
d = d(A). Let T be a spanning * rooted arborescence, T C RU A. Then R C T,
since d is minimum. Since |[T|=v —1, we have TN A| = |T| - |R|=v—d—1. But
TN Aisa» rooted forest of arborescences, so r3(A) 2 [TNA|=v—-d—1.

Oo the other hand, let ' C A be any = rooted forest of arborescences having
k roots in addition to *. Let S = {by, by, ..., b;} be the collection of directed edges
emanating from * whose terminal vertices are these k roots. Clearly F U S is a
spanning * rooted arborescence, so |FFUS| = v— 1. But by the definition of d, d < &,
so [F'|+d <v—1. Since F is arbitrary, r3(A) <v—d — 1.

Hence r3(A) =v —d — 1, so ca(A) = d(A) + 1. This completes the proof.

The polynommials f;(D) have different recursive properties. We require directed
versions of isthmuses and loops for the following propositions. A directed edge e of
(D,*) is an i-isthmus (1 < ¢ < 3) if it has the property that I is i-independent iff
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I U {e} is i-independent. That is, adding or deleting an i-isthmus to or from an
t-independent set does not affect :-independence. An edge ¢ is an i-loop if it is in no
i-independent set. Equivalently, e is an i-isthmus if r,(A U {e}) = ri(A —€) + 1 for
every subset A of E(D), and e is an ¢-loop if r;(A U {e}) = r;(A) for every A. For
example, in Figure 2a the edge a is an z-isthmus for ¢ > 1 but not for i = 1, and the
edge b is a 2-isthmus but neither a 1-isthmus nor a 3-isthmus. The next proposition
summarizes the recursive properties of the f;(D). The proof uses the usual idea of
partitioning the subsets of £(D) into two classes, those that contain e and those that
do not. We leave the details to the reader. (For ¢« = 1, the proof appears in [6].)

Proposition 2.6. (a) If e is an t-loop, then fi(D) = (z+1)fi(D—¢€), 1 <7< 3.

(b) If € is an i-isthmus, then f;(D) = (t + 1)f(D/e), 1 <1 <3.

(¢c) Let ¢ be any edge directed out of * (a loop or not). Then for i = 1 or 3,
fi(D) = VRI=IVD) £ D/e) 4 t(P)=nD=e) f(D — e). Moreover, if e is an i-
isthmus then fi( D —e) = fi(D/e).

Parts (a) and (b) of this proposition show that the given definitions of :-loop and
i-isthmus are “correct” for the given polynomials. Other definitions may also be of
some interest, however. For instance an 1-coloop is defined to be an edge which is in
every maximal i-independent set; i-isthmuses and i-coloops coincide for ¢ = 2 or 3,
but a 1-coloop (= 2-coloop) is not the same as a 1-isthmus. (Coloops and isthmuses
also coincide for undirected graphs and matroids.) For example, ¢ in Figure 2a is a
1-coloop but not a I-isthmus; note that 2.6(b) fails for a.

For a non-loop e directed out of *, the proof of part (c) of 2.6 depends on the
fact that if e & A, ri(A) in D — e is the same as r;(A) in D, and ife € A, r;(A —¢)
in D/e is one less than r;(A) in D (for ¢ = 1 or 3). The latter fact is also true
for 7,(A), but the former is not. Consider, for example, the digraph of Figure 4.
Then if A = {c,d} we have r;(A) = 2 in D but r3(A) =1 in D — a, even though
r2(D) = r3(D —a) = 3. Thus, the recursion of 2.6(c) will not work for f;. In Section 4
we will give a polynomial closely related to f; that does satisfy a complete recursion.

We also note that 2.6(c) gives a complete recursive description of fi(D), since by
2.6(a), f1i(D —e) = (z+1)* when = is isolated in D — e and k is the number of edges
in D —e. The recursion is incomplete for f3(D), however, since f3(D — e) depends
on the structure of D — ¢, even when « is isolated in D — e. The difference is that
when * is isolated in D every edge of D is a 1-loop, but not necessarily a 3-loop. In
Section 4 we will give a polynomial related to f; that satisfies a complete recursion.

We can generalize 2.6(a) and 2.6(b) in the following way. If D; and D; are rooted
digraphs with disjoint vertex-sets and respective roots x; and *;, then we define the
direct sum Dy @ D, to be the rooted digraph obtained by identifying *; and *; to
form a new root *. D; & D, is also called the one-point union of Dy and D,. It is
clear from this definition that a set A of edges of D) & D, is i-independent iff both
AN D, and AN D, are i-independent.

Proposition 2.7. For 1 <i <3, fi(Di & D;) = fi(D1) fi( Da).
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In [1], Bjérner and Ziegler discuss a one-variable polynomial A(G;y) associated
to a greedoid GG. In the case of the directed branching greedoid corresponding to a
rooted digraph (D, x*), A(G;y) is characterized by the following.

LADyy) = MD/e;y) if e is a 2-isthmus directed out of *.
Il A(D;y) = y* if D consists of k 2-loops.
HL XD y) = A(D—e;y)+A(D/e;y) ife is directed out of * and is not a 2-isthmus.

Note that in case I, r{(D —e) < ri(D), and in case I, r,(D —e) = (D). By
2.6(c), f1i(D;0,y—1) satisfies I and I1L. Furthermore, by 2.6(2), fi(D;0,y —1) = y* if
D consists of k 2-loops. Thus f;(D;0,y —1) = A(D;y). (Since the definition of f; is
valid for an arbitrary greedoid G, we also get f1(G:0,y —1) = MG;y) [6].) Also, note
that fo(D;0,y—1) = f1(D;0,y—1), since the 1- and 2-spanning sets in £{D) coincide.
Similarly, if D has a * rooted spanning arborescence then f3(0;0,y — 1) = A(D;y),
although this equality does not hold in general. See Section 4 for other polynomials
related to A.

3. Unrooted digraphs.

In this section we briefly discuss several polynomials associated to unrooted digraphs.

Let D be an unrooted digraph. We say F C E(D) is a forest of rooted arbores-
cences if it is a vertex-disjoint union of arborescences rooted at vy, v,,... for some
vertices vy, vs,... . (Thus, a = rooted forest of arborescences in a rooted digraph is
simply a forest in which * is one of the roots selected.) We can now define r4(A)
to be the maximum size of a forest of rooted arborescences contained in A. Clearly
r3(A) < ry(A) for every A and every choice of a root vertex x. We can imitate the
definitions of Section 2 to obtain definitions of 4-independent and 4-spanning sets,
and use (T1) to define a polynomial f4(D). It is straightforward to formulate propo-
sitions regarding fy that are analogous to 2.3 and 2.5. We leave the details to the
reader.

Recall that a digraph D is strongly connected if, for every pair of vertices v and v,
there exists a directed path from u to v. We denote by cs(D) the number of strong
components of D, and we define f5(D), the strong-connected digraph polynomial, via
(T2). We leave it to the reader to verify that fs(D) is always a polynomial, i.e., that
|E(A)|+es(A)—|V(D)| = 0 for every A € S. The reader can also verify the following
two families of examples. If D is a rooted arborescence (or any digraph whose strong
components are all singletons) then f5(D) = (z + 1)*, where n = [E(D)|. Also, if D
is a directed circuit then fs(D) =2 +t"((z + 1)* — 2").

It is amusing to note that if rs is the rank function defined by rs(A) = |V/(D)| —
cs(A) then @ is the only 5-independent set.

Another polynomial related to strong connectedness can be defined via (1T2) using
the following: for each vertex-spanning subdigraph A of D let cs(A)—1 be the smallest
cardinality of a set R of directed edges such that R U A is strongly connected. (The
edges in R may or may not be edges of D.) Then ¢s and ¢ are related to the notion
of strong connectedness much as ¢, and c3 are related to the notion of reachability
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Proof. We argue by induction on |R(D,*)|. If |R(D,*)| = 1, then H = « and
G/H = D, and the result is trivial. Assume [R(D,*)| > 1, and let e be the first edge
emanating from * in the ordering O. Now e is a 2-isthmus in D if and only if € is
a 2-isthmus in H. Further, the induced rooted subdigraph of R(D/e,*) is just H/e.
Thus if e is a 2-isthmus, by induction f7(D) = zf;(D/e) = zfi(H/e)f+(G/H) =
fr(H)f-(G/H). If e is a loop, then by a similar argument and induction, we have
f2(D) = yfo(D —€) = yfo(H —e)f;(G/H) = f2(H)f:(G/H). If e is neither a 2-
isthmus nor a loop, then by induction and 4.1 (b) 3., f>(D) = f7(D —e) + fz(D/e) =
J1(H — e)f(GI H) + f1(H[€) fo(G/ H) = fo(H) f+(G] H).

The next result describes the general behavior of the variable z. The proof, which
we omit, can be established by induction, using the two previous results.

Proposition 4.4. f7(D,0;z,y,z) = zFg(z,y), for some polynomial g and k > 0.

In general, the exponent &k depends on the chosen ordering, although & = 0 for
any ordering when D has a * rooted spanning arborescence (4.2). If we let s be the
minimum exponent k which occurs, the minimum being taken over all possible edge
orderings, then s is just the minimum number of edges in D whose reversal will create
a = rooted spanning arborescence.

It is possible to recover f7(D, O; z,y, z) completely from the evaluation f7(D, O; z,
y,(z — 1)y). More precisely, assume f7(D,0;z,y,z) = zFg(z,y) and set z = (z — 1)y
in f7(D,0;z,y,z). Then the highest power of z — 1 which divides this evaluation is
the correct power of z for f7(D,O; z,y,z). To see this, simply note that contracting
the k edges which contributed z to the original polynomial leaves a digraph which
has a » rooted arborescence. Furthermore, g(z,y) = fr(D/A,0/A;z,y,z), where
A is this set of k edges and O/A is the inherited ordering of E(D) — A. Hence by
4.5 (a) below, ¢ — 1 does not divide g(z,y), so we can uniquely determine k from
f2(D,0;z,y,(z — 1)y). In spite of this evaluation, we will continue to write f7 as a
three-variable polynomial for simplicity.

The following properties of f7(D,0;z,y,z) are all independent of the chosen or-
dering and are straightforward to verify using induction and 4.1.

Proposition 4.5. Let O be any ordering of the edges of D.

(a) f2(D,0;1,1,0) = the number of spanning arborescences rooted at *.

(b) f2(D,0;2,2,2) = 2¢, where e is the number of edges of D.

(c) The highest power of z appearing in f7(D,0;z,y,(z — 1)y) ts v — 1, where v
15 the number of vertices of D.

(d) If D has a spanning arborescence rooted at *, then the lowest power of z
appearing in f7(D,0;z,y) equals the number of 2-isthmuses in D.

(e) The highest power of y appearing in f7(D,0;z,y,(z — 1)y) se —v + 1.

Example 4.6. To show how f;(D) depends on the ordering O, consider the
rooted ordered digraphs D) and D; of Figure 5. (The edge-ordering is given by the
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numbering of the edges.) The reader can check the following computations.

f+(Dy) = 2%y + 2zy* +4° fr(Dy) = 2%  + zy + y2 +4°

We remark that f7(D,0;1,y,1) is independent of the chosen ordering O. In
fact, when D has a * rooted spanning arborescence, f7(D,0;1,y) = M D;y), where
A(D;y) is the greedoid polynomial of [L]. This can be shown by demonstrating that
f+(D,0;1,y) and A(D;y) both follow the same recursion, as was done with f; in
Section 2.

The polynomial fg is related to f; in the same way that f7 is related to f7, i.e.,, D
is assumed to be given with an ordering that is used to define a complete recursion for
a polynomial resembling f;. In this case, though, D is to be given with an ordering
O on V(D), not E(D); we presume that in this ordering V(D) = {vo,..., vy—1} with
vo = *. Given such an ordering, we define cs(D,0) as follows. Define a sequence
*1, ..., ¥, of vertices of D by: #; is », and for ¢ > 1, *; is the least vertex not reachable
in D from any of #;,..., #;_y, if there is any such; then cg(D,0) = ¢. This definition
gives rise to a partition of V(D) into cells we will call the &-components of (D, 0):
Cy = R(D, x) consists of those vertices reachable from *, and for ¢ > 1 C; consists of
those vertices reachable from *; that are not reachable from any of *y, ..., ®;_;.

The associated rank function is given by rg(A,0) = v — cz(A, O) for each A C
E(D); rg(A,0) is the maximum size of a subset of A that is a * rooted forest of
arborescences in which each arborescence is rooted at its least vertex. Clearly ry(A) <
rg(A) < r3(A) for every A C E(D). It is worth mentioning that among the seven
rank functions we have defined r;, rs, and rg have the property of being associated
with well-defined partitions of V(D); and 73, r4, 16, and rs have the property that for
each A, ¢;,(A) — 1 is the minimum cardinality of a set R of edges with c;(AUR) = 1.
The only one that shares both these properties with the circuit rank (and the notion
of connectedness) in undirected graphs is rg.

The polynomial fg resulting from the use of rg in (T1) is completely characterized
by the following.

Proposition 4.7. Let D be a rooted digraph with vertices ¥ = wvg, vy, ..., Vy_1.

(a) If D has no edges then fg(D,0) = 1.

(b) If the initial verter of e is * then fy(D,0) = tra(P:0)-rs(D-e0) f(D — ¢, 0) +
AVDIHI-VD) fy(D/e, O /e).

(c) If the terminal vertez of € is %, or e is a loop, then f3g(D,0) = (z+1)fs(D —
e,0).

(d) If no edge of D is incident on = and D' is the digraph obtained from D by
identifying w with v, then fs(D,0) = fo( D', 0’).

Here O/e is the order on V(D/e) obtained {rom O by ignoring the terminal vertex
of e, and O’ is the obvious order on V(D').

It is a simple matter to formulate analogues of Propositions 2.3 and 2.7 that apply
to fg.
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For most digraphs fs(D, O) is very sensitive to changes in O. An exception to this
general rule involves the following notion. Suppose G is an undirected graph, and let
D = D(G) be the directed graph in which each edge of G is replaced by a pair of
oppositely directed edges. (Each loop of G is to be replaced by two loops in D.) Let
O be any ordering of V(G), with any vertex playing the role of *. Then Proposition
4.7 and the recursive description (T3) of the Tutte polynomial imply

Proposition 4.8. In this situation

t0P9) f(D, 0;t, 2) = t9) (2 4 1)IEONYG;t, 2).

Let h3(D; z) and hg( D, O; z) be the respective polynomials obtained by evaluating
at t = 0. The next proposition is easily deduced from Propositions 4.6 and 2.6.

Proposition 4.9. Let D be a rooted digraph, and let O be any ordering of V(D)
with * = vg. Then h3(D;z) = hg(D,0; z).

If D has a * rooted spanning arborescence then the common evaluation discussed
in the proposition is the one-variable greedoid polynomial Ap(y) of [1], as was dis-
cussed in Section 2. Therefore fi, fa, f3, fr, and fz may all be regarded as strength-
ened versions of A, with different properties: f; satisfies a complete recursion and is
largely insensitive to the portion of a directed graph not reachable from the root (it
only notices the number of edges in this portion); f; satisfies no recursion at all in
general and is also largely insensitive to the unreachable portion of a digraph; f5 sat-
isfies only a partial recursion and is much more sensitive to the unreachable portion
of a digraph; and f; and fs satisfy complete recursions and are sensitive to the un-
reachable portion of a digraph, but require the imposition of edge- and vertex-orders
to define their recursions. (In Section 5 we will mention a realistic context in which
the imposition of such orders may not seem completely unnatural.)

5. Weighted and doubly weighted digraphs.

A weighted digreph is a directed graph D together with a function w : E(D) — R,
where R is some commutative ring with unity. Any one of the polynomials fi, ..., fe, f&
can be modified to reflect the edge-weights in D by defining

f.(D) = Z (H w(e)) t"l(D)"'(")z‘M"x(A)‘
ACE(D) \egd

For convenience’ sake we will often suppress the O when discussing fs in this
section and the next. A common feature of several of these polynomials is their
relationship with the Kirchhoff matrix K (D) associated to D. (See [9, Chap. VI] for
a discussion of this matrix).
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Proposition 5.1. Let D be a weighted, rooted digraph that has a * rooted spanning
arborescence, and let K, (D) be obtained from K(D) by deleting the row and column
corresponding to x. Then f(D), f(D), (D), and fs(D) all yield the determinant of
K, (D) when evaluated at t = z = 0.

Proof. Observe that the 1-, 2-, 3-, and 8-bases of D are precisely the x rooted
spanning arborescences in D. The proposition follows from this observation and the
matrix-tree theorem [9, Theorem VI.27].

A doubly weighted digraphis a weighted digraph which has a complementary weight
function ¢ : E(D) — R in addition to its weight function. Once again, it is a simple
matter to extend the polynomials given by (T1) to this context; we define

(D)= 3 (H w(e)) (HC(C)) 47+ (D)=n(4) 1 Al-ri(4),

ACE(D) \e€A egA

One can consider an ordinary digraph as a doubly weighted digraph in which both
weights are identically 1, and a weighted digraph as a doubly weighted digraph with ¢
identically 1. Many of the properties of the f; generalize to this context, with simple
modifications. For instance, if i # 7 then the following holds.

Proposition 5.2. (a) If e is an i-loop, fi(D) = (zw(e) + c(e)) fi( D —e€).
(b) If € is an i-isthmus, fi(D) = (w(e) + te(e)) fi(D/e).

(¢) If € has w(e) = 0 and ¢(e) = | then f;(D) = t(P)=rilP=e) f.(D — ¢).

(d) Let e be any edge with initial vertex x, a loop or not. Then fori=1,3, or8

il D) = w(e)le(Dle)IH—IV(D)If‘(D/C) + (e} PIriP=) (D _¢),
Moreover, if € is an i-isthmus then fi(D —e) = fi(D/e).

Proposition 5.2 is of special significance for the polynomial fg. If Dy is a directed
graph with no edge incident on », consider the digraph D obtained from Dy by
inserting an edge ¢ directed from vy = * to vy, with w(e) = 0 and ¢(e) = 1. Then
Dy = D —e and rg(D) = 1+ rg(Dy), so by 5.2 (c) tfs(Dg) = fs(D). Moreover, e is an
8-isthmus in D, so 5.2 (b) gives f3(D) = tfs(D/e); consequently fs(Do) = fa(D/e).
Thus Proposition 5.2 implies 4.7 (d).

An important example of a doubly weighted digraph is a probabilistic digraph, i.e.,
a digraph given with a function p = w : E(D) — [0,1]. If we regard D as representing
some directed network {e.g., a municipal water supply system), then for e € E(D),
p(e) can be taken to be the probability that the element of the network represented
by e (e.g., a water main) will operate successfully for a certain period of time; the
complementary weight ¢(e) = 1 — p(e) measures the probability that this element will
fail sometime during this period.

The general notion of the reliability of a probabilistic digraph involves the assess-
ment of the likelihoods of various possible attributes of the portion of D that has not
failed after the passage of a single time period. A commonly studied special case (see
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[5], for instance) is the assessment of the probability that if all the vertices of D are
reachable from *, then the portion of D that survives after a single time period still
has this property. The polynomials fi, ..., fs, fa contain a great deal of general relia-
bility information, for the coefficient of $°z* in f;(D;t, 2) is the probability that after
the passage of a single period of time, the remaining network will have ¢; = ¢;(D) +a
and will have b — a — ¢;(D) + |V(D)| operative edges.

For instance, suppose every vertex of D is reachable from = and it is desired that
after the passage of a single period of time this property be restored to what remains
of D by adjoining edges. (We presume for the moment that it is just as easy to adjoin
new edges as it is to restore edges of D that have failed.) Then the coefficient of
t* in fi(D;t,1) measures the likelihood that precisely a — 1 vertices of D need to
have their reachability from * restored, while the coeflicient of ¢* in f3(D;t, 1) gives
the probability that @ — 1 is the minimum number of edges that must be adjoined
to accomplish this restoration. Suppose a repair crew tours V(D) according to a
vertex-order O, and whenever it encounters a vertex not reachable from * the crew
installs an edge to that vertex from some vertex that is reachable from . Then the
coefficient of t® in fs(D,0;t,1) is the probability that this crew will install precisely
a — 1 edges.

In real-world situations it is often not practical to simply ignore failed elements of a
network; broken water mains must be repaired or sealed off, for instance. Information
about the number of edges likely to fail in a given period of time is contained in any
one of the polynomials f; with ¢ # 7, as was mentioned above. It may be, however,
that certain edges represent elements of a network that are more difficult or expensive
to repair than others, and the polynomials can easily be modified to record this kind
of information. Suppose there are functions r and s mapping E(D) into the field
R of real numbers that give the repair cost and value of the individual edges of D,
respectively. (The value could be used, for instance, in calculating the network’s
worth as collateral for a loan.) Let z and y be indeterminates, and define two weight
functions w,c : E(D) — R[z,y] by w(e) = p(e)y*®) and c(e) = (1 — p(e))z7*). The
resulting polynomials f;(D;t,z,,y) will have the property that the coefficient of
t*zbz°y? is the likelihood that after the passage of a single period of time the remnant
of D will have ¢; = ¢;(D) + a, this remnant will have b—a —¢;(D) + |V/(D)| operative
edges, it will cost ¢ to repair all the edges of D that will have failed, and the edges
of the remnant will have a total value d. (We are assuming that the total repair cost
and total value are simply the sums of the repair costs of the failed edges and the
values of the operative edges, respectively.)

Suppose D is a probabilistic digraph and K C V(D) is a set of k distinguished
vertices. For i = 1, 5, or 8 the value of ¢;(D) is the number of cells in a particular
partition of V(D), and so we can define the number of K-terminal i-componentsof D,
(D, K), to be the number of these cells that meet K. We could also define c3( A4, K)—
1 to be the minimum cardinality of a set R of edges such that ¢;(AU R, K) =1, and
¢6(A, K) — 1 to be the minimum cardinality of a set R with ¢s(AU R, K) = 1. The
associated K-terminal reliability problems involve the assessment of the probabilities
of the various possible numbers of K-terminal i-components D might have after the
passage of a period of time, and the various possible minimum numbers of edges that
will have to be installed to bring the number of K-terminal i-components down to
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1. Any one of f1, fa, fs, f6 and fs can be easily modified so as to be of value in this
K-terminal context; we need only replace r;(A) by ri(A, K) = k—¢;(A, K) and (D)
by k — ¢i(D, K) in the definition of the polynomial of a doubly weighted digraph.

Proposition 5.3. Let e be any edge with initial vertex *, a loop or not. Then for
1 =1 or8,
5i( Dy K) = (1= ple)tPE-iD=4K) £ D — o, K) + ple)2\ K/ 1= £(Dfe, K[e)

where K/¢ is the obvious subset of V(D/e).
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from a root. (See Proposition 2.5.)

Chung and Graham [4] have introduced an interesting polynomial invariant of
unrooted digraphs, the cover polynomial. Unlike the polynomials already mentioned
in this section, the cover polynomial satisfies a deletion/contraction property some-
what similar to (T3), though it does have the property that the appropriate notion
of contraction is not symmetric: the initial and terminal vertices of the edge being
contracted are treated differently.

4. Two order-dependent polynomials.

In the discussion subsequent to Proposition 2.6, it is noted that complete recursive
descriptions of f; and f3 are not possible. Nevertheless, the notions of 2-isthmus and
2-loop are similar to the notions of isthmus and loop in a graph or matroid. Recall
that an edge e in a rooted digraph D is a 2-isthmus iff e is in every maximal * rooted
arborescence (i.e., e is in every 2-basis), and is a 2-loop iff it is in no maximal * rooted
arborescence. We will define a polynomial on rooted digraphs recursively, using these
notions of isthmus and loop. We will also distinguish between 2-loops which are
ordinary loops (i.e., those in which the initial and terminal vertices coincide), and
2-loops which are not, which we will call reversed loops. (The term “loop” means
“ordinary loop”.)

We now define a polynomial f7(D) = f7(D,0;z,y,z) associated to a rooted di-
graph D whose underlying undirected graph is connected, with respect to an ordering
O on E(D). This definition is based on the recursive definition (T3).

Definition 4.1.
(a) If D = {x}, then f(D) =1.
(b) Let e be the first edge (in the ordering O) which emanates from *.
1. f2(D) =z f7(D]e) if e is a 2-isthmus.
2. f7(D)=yfr(D—¢) if e s aloop.
3. f2(D) = f2(D ~e)+ f2(D]e) otherwise.
(¢) If no edge emanales from , then let e be the first edge directed into *, i.e., e
is a reversed loop. Then f2(D) = zf;(D]e).

The next proposition can be proven using the definition and induction.

Proposition 4.2. Suppose D has a spanning arborescence rooted at *. Then for
any ordering O, fr(D) is a polynomial in z and y (i.e., no z term appears).

If D has no spanning * rooted arborescence, then it is still easy to describe the
behavior of the variable z. Let F(D,*) denote the set of vertices in D which are
reachable from *. Let H be the induced rooted subdigraph on R(D, *) and G/H the
rooted subdigraph obtained from D by contracting all of H to the single vertex x.

Lemma 4.3. f+(D) = f+(H)f+(G/H).
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