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Abatract 

We discuss the relationship between Crapo's/3-invariant and the expected 
number of connected components of a graph. Also, we list the 3-con.nected 
graphs G with fJ(G) < 10. 

1. -Introduction 

In this paper we discuas the ,fl-invariant, which was introduced for matroids by Crapo 
[3]. The relevant theory is a standard topic in matroid theory texts 19, 11], although 
most texts on graph theory (like [1]) do not mention it. If r is the rank function of a 
matroid M on a set E then 

,fl(M) = (_I)'"(M) L (_I)ISlr(S). 
St;;;,E 

In particular, if G is a graph then the ,fl-invariant of (the polygon matroid of) G is 

,fl(G) = (_I)IV(G)I-"'(G) L (-I)ISI(IV(G)I-w(G:S». 
S~E(G) 

where w (G) is the number of connected components in G and for S ~ E (G), G: S 
is the subgraph of G" with V (G : S) = V (G) and E (G : S) = S. Some interesting 

.. properties of the ,fl-invariant are these: ,fl(M) is a non-negative integer; if e is not a 
loop or bond in M then ,fl(M) = ,fl(M/e) +,fl(M - e)j and if ITG (k) is the chromatic 
polynomial of a graph G then ,fl (G) = IIT~ (1)1. 

There are other polynomial invariants of graphs and matroids that are related to 
the ,fl-invariant, aside from the chromatic polynomial. To define one such invariant, 
we consider the edges of a graph G to be independently subject to failure, with every 
edge e having probability p = p (e) of operating successfully. The expected number of 
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connected components of G, after the failure of some of its edges, is then a polynomial 
in Pi it is given by 

Ew (G) = :E pisl (1 - p)IE(G)-SI w (G : S). 
S';;.E(G) 

It is apparent that if E(G) :f:. 0 then up to sign, [:J (G) is equal to the coefficient of 
pIE(G)1 in Ew (G). It may be less apparent that in fact, Ew (G) is almost completely • 
determined by the fJ-invariants of G and its subgraphsj in Section 2 we prove that it 
is. 

Theorem 1.1. If E(G) :f:. 0 then 

Ew(G) -IV(G)I = (_I)IV(Gll-l :E (_I)ISI+w(G:S)[:J(G: S)plsi. 
0#S';;.E(G) 

Readers familiar with network reliability will observe that Theorem 1.1 resembles 
the result of Satyanarayana and Khalil [61 that gives an expansion of the reliability 
polynomial of a graph in terms of the reliability dominations of its subgraphs. The 
resemblance is made more striking by Huseby'~ work [4] relating the reliability dom­
ination of a graph to the [:J-invariant of a certain extension of the graph's polygon 
matroid. It turns out that this resemblance is part of a general relationship between 
reliability and expected value that we will not discuss in detail herei the interested 
reader is referred to [7]. 

Several authors have proven theorems characterizing the matroids with particular 
[:J-values. Crapo [3] proved that the only connected matroid with [:J = 0 consists 
solely of a single loop, and that all disconnected matroids have [:J = O. Brylawski 
[2] proved that a matroid has [:J = 1 iff it is the polygon matroid of a series-parallel 
network, and noted that the [:J-invariant of a parallel connection of two matroids is 
the product of their [:J-invariants. Oxley [5] listed all the 3-connected matroids with 
[:J :5 4, and observed that the number of nonisomorphic 3-connected matroids with 
any given value of [:J must be finite. (This follows inductively from Thtte's wheels 
and whirls theorem [8], because there are only two matroids M with a given value 
of [:J - the wheel and whirl of the appropriate size - that do not have at least one 
3-connected minor M - e or M/e with a smaller [:J-invariant.) 

Our second principal theorem is the following partial extension of Oxley's list. 

Theorem 1.2. A simple, 3-connected graph G with [:J(G) :5 9 must be isomorphic 
to one of the following: a wheel graph with no more than eleven vertices; K 3,3; K 5 ; 

or one of the other graphs appearing in Figures 1-6. 

The graphs pictured in Figure 1 are those with [:J(G) :5 4. Those in Figures 2, 3, 
4,5 and 6 have [:J(G) = 5,6,7,8 and 9, respectively. 
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2. 	 The Ew-polynomial 

In this section we prove Theorem 1.1, and also discuss several other properties of 
Ew(G). All of these properties generalize, mutatis mutandis, to the polynomial that 
gives the expected rank of a randomly chosen subset of a matroid; we leave the 
formulation of these generalizations to the reader. 

Proposition 2.1. Let e be any edge ofa graph G. Then Ew(G) = pEw(Gle) +(1­
p)Ew(G - e). 

~ 	 Proof. This follows immediately from these two facts: if e ;. 8 ~ E(G) then 
w(G: 8} = w«G - e) : 8}, and if e E 8 ~ E(G} then w(G : 8) = w«GIe} : (8 - e».

•
We leave it to the reader to use Proposition 2.1 to verify two calculations: if G is a 

forest (i.e., all its connected components are trees) then Ew(G} = IV(G}I- p IE(G)I, 
and if G is a circuit then Ew(G} = plV(G)1 plV(G)I + IV(G}I. 

Proposition 2.2. Let G be a graph with k isthmuses. Then the derivative Ew(G)' 
is -k when p = 1. 

Proof. IT IE(G)I = 0 then Ew(G) = IV(G) I is constant and Ew(G)' is identically 
zero. 

Suppose IE(G)I ~ 1, and pick an edge e E E(G). Since Ew{G) = pEw(Gle) + 
(l-p).Ew(G-e), Ew(G)' = pEw(Gle), +Ew(Gle) + (1-p)Ew(G-e)' -Ew(G-e). 
Evaluating at p = I, we conclude that Ew(GY(I) = Ew(Gle)'(I) + Ew(Gle)(I)­
.Ew{G - e)(I). IT e is not an isthmus, Ew(Gle}(l} - Ew(G - e)(l} = w(G/e) ­
w{G - e) = 0, and consequently Ew(G)'(I) = Ew(Gle)'(I). If e is an isthmus, 
then Ew(G/e)(l) - .Ew(G - e)(l) = w(Gle) - w(G - e) = -1, and consequently 
Ew(G)'(I) = Ew(Gle)'(I) - 1. The proposition follows, by induction.• 

In particular, if G has no isthmuses at all then p = 1 is a critical value for Ew(G)j 
the polynomial can have either a local minimum (as does Ew(K3» or an inflection 
point (as does Ew(K.» at p = 1. 

Note that the degree of Ew(G) can be no higher than IE(G)li we let b(G) denote 
_, the coefficient of pIE(G)1 in Ew(G). Proposition 2.1 immediately implies that b(G) = 

b(Gle) - b(G e) for any edge e of G. 

Proposition 2.3. H E(G) = 0 then beG) = IV(G)I. If E(G) :F 0 then 

(_I)IE(G)I-IV(G)I+w(G)-l. b(G) = f3(G). 

Proof. The first assertion is obvious. 
IT G has 8: loop R. then f3(G) = 0; also Ew(G) = Ew(G - t) is of degree no higher 

than IE(G)I- 1, and consequently beG) = O. 
If G has an isthmus i that isn't the only edge of G then f3(G) = OJ also Ew{G) = 

Ew(G - i} P is of degree no higher than IE(G)I- 1, and consequently b(G) = O. IT 
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G has only one edge and it is an isthmus, then Ew(G) = IV(G)I- p, 80 b(G) = -1; 
since ,8(G) = 1 and IE(G)I-IV(G)I+w(G)-1 = -1, the second assertion is satisfied. 

Suppose now that IE(G)I ~ 2 and G has no loops or isthmuses; choose any 
e E E(G). Since b(G) = b(G/e) -b(G -e) and ,8(G) = ,8(G/e) + ,8(G - e), the second 
assertion follows by induction. • 

We turn now to the proof of Theorem 1.1 of the introduction, which by Proposition 
2.3 is equivalent to the assertion that 

Ew(G) = E b(G: 8)plsl. 
S!;E(G) 

If E(G) = 0 then Ew(G) = IV(G)I and Theorem 1.1 is satisfied. 
If an edge I. of G is a loop then Ew(G) = Ew(G - I.) and b(G : 8) = 0 for every 

8 ~ E(G) with I. E 8, so both sides of the equality are the same for G as for G - I.. 
If e E E(G) is not a loop then observe that if 8 ~ E(G) contains e, b(G : 8) = 

b((G: 8)/e) - b((G: 8) - e) = b((G/e): (8 - e)) - b((G - e): (8 - e)). Presuming 
that Theorem 1.1 applies to G/e and G - e, we conclude that 

E b(G : 8)p1SI 
eeS!;E(G) 

E (b((G/e) : (8 - e)) - b((G - e) : (8 - e)))pISI 
eeS!;E(G) 

E b((G/e): (8 - e))pls-el+l - E b((G - e) : 8)p1SI+l 
eeS!;E(G) e~S!;E(G) 

=pEw(G/e) - pEw(G - e). 

Since Ew(G) =pEw(G/e) + (1- p)Ew(G - e), Theorem 1.1 follows by induction. 

CoroUary 2.4. The constant term ofEw(G) is IV(G)I. The coefficient ofp in Ew(G) 
is -e(G), where e(G) is the number of non-loop edges in G. The coefficient ofp2 in 
Ew(G) is the number ofpairs of parallel non-loop edges in G. 

Proposition 2.5. Let G and GO be dual graphs, and let Ew(G; 1- p) be the poly­
nomial obtained from Ew(G) by replacing p by 1- p. Then 

Ew(GO) + pIE(G)1 = Ew(G; 1- p) -IV(G)I + 1 + IE(G)I· 

Consequently, Ew(G; 1 - p)and Ew(GO) are identical except for their constant and 
linear terms. 

Proof. The rank functions r and rO of the polygon matroids of G and GO are 
related by rO(8) = 181 - r(E) + r(E - 8). It follows from this and Euler's formula 
thatfor 8 ~ E(G), w(Go : (E(GO) -8)) = w(G: 8)+ 181 +1-IV(G)I. Consequently 
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Ew(G·) - Ew(G; 1-p) 

= Ew(G·) - L (1 - p)ISlpIE(G)-Slw (G : S) 

S!;;;E(G) 


=Ew(G·) - L (1 p)ISlpIE(G)-SI (w(G· : (E(G·) - S)) -lSI 1 + jV(G)I) 
S!;;;E(G) 

= -IV(G)I + L (1 p)ISlpIE(G)-SI(ISI + 1) 

S!;;;E(G) 


= -IV(G)I + L plSI(1 - p)IE(G)-sl(lE(G) - SI + 1). 

S!;;;E(G) 


This last sum may be thought of as Ew(T), where T is a tree with IE(G)I edges. It 
follows that 

Ew(G*) - Ew(Gj 1-p) = -IV(G)I + IV(T)I- pIE(T)1 

= -jV(G)1 + 1 + IE(G)I- p IE(G)I 

as claimed .• 

3. Low values of the ,8-invariant 

As was mentioned in the introduction, Thtte's wheels and whirls theorem !8] implies 
that for any integer fJ > 0 there are only finitely many nonisomorphic 3-connected 
matroids with fJ( M) =fJ, namely the wheel and whirl of the appropriate size and some 
3-connected matroids M with 3-connected minors N = M -e or N =Mle such that 
o< fJ(N) < fJ. Given a list of the 3-connected matroids N with 0 < fJ(N) < fJ, then, 
one could also list all the 3-connected matroids M with fJ(M) =fJ by including every 
3-connected M that results from inserting a single additional element into such an N 
so that N is a minor of M and fJ(M) = fJ, and then also including the appropriate 
wheel and whirl. Theorem 1.2 of the introduction can be proven in this way; We leave 
the details to the interested reader. 

The proof of Theorem 1.2 developed during the research project which led to this 
paper actually did not involve Thtte's wheels and whirls theorem. Instead, ad hoc 
arguments - amounting, essentially, to proofs of special cases of 'futte's theorem ­
were devised to guarantee that the list given in Theorem 1.2 really does include all 
the graphs with fJ < 10. Most of these arguments are perhaps not of independent 
value, though Theorem 3.2 below, and its corollaries, may be of some interest. 

It follows· from Crapo's characterization of the matroids with fJ = 0 [3] that the 
fJ-invariant of a graph G is 0 iff at least one of the following is true of G: E(G) =0, 
some edge of G is a loop, or IE(G)I 2: 2 and K(G) = 1, where K(G) denotes the 
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vertex connectivity of G. Consequently, if IE(G)I ~ 3 then fJ(G) is unchanged by 
either the deletion of a parallel edge or the contraction of an edge incident on a vertex 
of degree dG(v) = 2. We refer to these operations as simple series-pamllel reductions. 
We call a graph reducible if it admits a simple series-parallel reduction, and reduced 
if it does not. fJ(G) = 1 iff G is a series-parallel network, i.e., iff G is reducible to a 
single edge through some sequence of simple series-parallel reductions [2]. 

SupposeGI andG2 are graphs with V(G1)nV(G2 ) = {u,v}. IT the edge e = {u,v} 
is present in both graphs then their union G1 U G2 is the pamllel connection of G1 

and G2 with respect to e, denoted G1 II. G2 , or simply G1 II G2 if no confusion can 
arise; we refer to e as the edge 0/ connectiofL In this situation fJ(G) = fJ(G1)fJ(G2 ), 

and if e is not the only edge of either G1 or G2 then fJ(G - e) = fJ(G1)fJ(G2 ) also [2]. 

Lemma 3.1. lfG is a simple graph such that fJ(G) = 1 and IV(G)I ~ 3 then either 
G ~ K3 or G has two non-adjacent vertices of degree 2. 

Proof. Since fJ (G) = 1, G is a simple series-parallel network. IT IV(G)I = 3 then 
G~K3. 

Suppose IV(G)I > 3. Since G is a simple series-parallel network, G has at least 
one degree-2 vertex Vi let e be an edge incident on v. In G/e there can be no more 
than one pair of parallel edgesi for if there is one, it must arise from a 3-cycle of G 
containing e, and since dG(v) = 2 there cannot be more than one such 3-cycle. Let H 
be the simple graph obtained from G/e by removing one of its two parallel edges, if 
indeed G/e has any parallel edges; observe that dH(W) = dG(w) for every wE V(G) 
that is not adjacent to v. Since IV(G)I > IV(H)I ~ 3, it can be presumed that either 
H ~ K3 or H has two non-adjacent degree-2 vertices. Either way, G must have a 
degree-2 vertex not adjacent to v. • 

Suppose A is a simple graph. Then we will call A an accordion gmph if there 
is a finite sequence C1 , ••• , Cn of 3- and 4-cycles in A such that n ~ 2, C1 and Cn 
are 3-cycles, for 1 $ i < n the intersection of Ci and CHI consists of one edge and 
its two vertices, the only vertices of degree 2 in C1 U ... U Cn are the vertices of C1 

and Cn which they do not share with C2 and Cn- l (respectively), and A consists of 
C1 U ... U Cn together with a single additional edge, which connects these two vertices 
of C1 and Cn. We call this additional edge a stmp. Note that all wheel graphs are 
accordions, and that every edge on the "rim" of a wheel can be considered a strap; 
see Figures l(e), 2(a), 3(d), 4(c), 5(i), 5(k), 6(e), 6(g) and 6(h) for other examples of 
accordions. 

Theorem 3.2. Suppose G is a simple graph, fJ(G) > 1, and either G has precisely 
one vertex of degree 2 or G has precisely two vertices ofdegree 2, which are adjacent. 
Then G is isomorphic to Gr II. 1 or (Gr 11.1) - e, where Gr is a reduced graph and 
there is an accordion graph A such that 1 = C2 U ... U Cn- l and e is in C2• 

Proof. IT G has precisely one degree-2 vertex V, let V be adjacent to u and w. 
Then the 3-cycle C with V(C) = {u,v,w} has G = G' II. Cor G = (G' II. C) - e, 
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where e = {u, w} and 0' - e = 0 - v-e. Similarly, if v and v' are the two adjacent 
degree-2 vertices in 0, and they are also adjacent to u and w respectively, then the 
4-cycle C with V(C) = {u, v, v', w} has 0 = G lie Cor 0 = (0' lie C) - e. 

If 0' has no degree-2 vertex then it is reduced and the theorem is satisfied. 
The only possible degree-2 vertices of G are the vertices of e, and {3(0') ={3(0) > 

I, so if 0' is not reduced then the inductive hypothesis implies that the theorem is 
true for 0'. Since C is a 3- or 4-cycle, this immediately implies that the theorem is 
true for O.• 

Corollary 3.3. Suppose It (0) = 2 and 0 is reduced. Then there are reduced graphs 
Oland O2 and an I as specified in the previous theorem such that 0 is isomorphic 
to 0 1 II I II O2 • possibly with one or both edges of connection removed. 

Proof. Let 0 be isomorphic to HI lie H2 or (HI lie H2) - e. HI and H2 must 
meet the criteria of the previous theorem if they are not reduced, for the only possible 
degree-2 vertices in either are the vertices of e, and if either has {3 = 1 then it must 
have two non-adjacent degree-2 vertices, one of which would be of degree 2 in 0, an 
impossibility. It follows that HI = 0 1 II II and H2 = O2 II 12 (possibly with one or 
both edges of connection removed), where 0 1 and O2 are reduced and II and 12 are 
as described in the previous theorem. Consequently 0 ~ HI II II II 12 II H2 ~ 0 1 II 
I II O2, possibly with one or both edges of connection removed. • 

Corollary 3.4. H {3 (0) > 1, 0 is reduced and there is an e e E (0) such that 
{3 (0 - e) = 1, then 0 is an accordion with e as a strap. 

Proof. Let e = {u, v} and let w =1= u be a vertex adjacent to v. Let G = K4 II{v,w} 

(0 - e). If G is reduced then 0 - e cannot have two nonadjacent degree-2 vertices; 
Lemma 4.1 then implies that IV(O)I = IV(O - ell :$ 3. This is impossible, though, 
since {3 (0) > l. 

Hence G is not reduced; clearly its only vertex of degree 2 is u. By Theorem 3.2, 
G = Gr II I, possibly with the edge of connection removed; since {3(Gr ) = 2, Oxley's 
theorem implies that Gr ~ K4 • Indeed, Gr must be the same copy of K, that appears 
in the original description G = K, lI{v,w} (0 - e), for if not then it's a subgraph of 
0- e, an impossibility since {3(0 - e) = 1. Hence 0 - e =1. The "end cycles" of 1 
must be 3-cycles because 0 is reduced. • 

4. Characterizing graphs using the ,8-invariant 

Certain collections of information about a graph and the {3-invariant characterize the 
graph up to isomorphism. For instance, if 0 is 3-connected and one is given all the 
subsets S ~ E(O) with {3(0 : S) = 1 then one can find the circuits of 0, and by 
Whitney's theorem [12] this determines 0 up to isomorphism. It is natural to wonder 
what other such combinations of information serve to characterize a graph. 
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For instance, is it possible to characterize a 3-connected graph up to isomorphism 
by prescribing the sets bn(G) = {b I 3S ~ E(G) with lSI = n and b = fJ(G : S)}, 
0:$ n :$ IE(G)I? Inspecting the graphs of Figures 1-6, we see that when fJ (G) < 10, 
bIE(G)I-l(G) alone is enough to characterize a graph up to isomorphism. This is not 
true in general, though. For instance, the graphs pictured in Figure 7 have the same 
bIE(G)I-l(G)i indeed, for every bE bIE(G)I-l(G) they have the same number of subsets 
S ~ E(G) with lSI = IE(G)I- 1 and b= (j(G: S). 
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