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Let L=K1 U .. , U Kp.r;;;S3 be a tame link of Jl~ 1 components with group 
G=7r1(S3_L). Also, let H=G/G' be the abelianization of G; H is then the 
(multiplicative) free abelian group generated by the meridians t1, ••• , tp. of L, and 
its integral group ring ZH consists of polynomials (with integer coefficients) in 
t 1 ,. .. , tp.' til, ... , t;l. The homomorphism 6: ZH~Z (which has 6(t;)=1 for 
each i) is the augmentation map, and its kernel is the augmentation ideal IH of 
ZH. 

If p: X~X =S3 - L is the universal abelian cover of X, and F is its fiber, then 

0= H 1(F; Z)~ HICK; Z)~ H 1(X, F; Z) 

~ Ho(F; Z)~ HoCK; Z)~ HoCK, F; Z) = 0 

is a portion of the long exact homology sequence of the pair (X, F). H can be 
canonically identified with the group of covering automorphisms of X, and this 
identification leads naturally to H-module structures on the homology groups. 
In particular, Ho(F; Z)~ZH and Ho(X; Z)~Z as H-modules; furthermore, 
the isomorphisms can be chosen so that their composition with the map 
Ho(F; Z)~Ho(X; Z) induced by inclusion is the augmentation map. Thus we 
obtain the short exact sequence 

O~Hl(X; Z)~HI(X, F; Z)~IH~O 

of ZH-modules; this is the module sequence of L. This sequence is discussed in 
greater depth in [2]. 

The ZH-module H l(X, F; Z) has been called the Alexander module of L [2]; 

I '.i' we will denote it AL • The ZH-module H 1(X; Z) has been called the Alexander 
invariant of L [6]; we will denote it Bv 

Both these ZH-modules are finitely presented, and so have well defined 
determinantal ideals Ek(AL), Ek(BL)r;;; ZH for each integer k. (The algebraic 
theory of these invariants, also known as elementary ideals or Fitting invariants, 
is discussed in [5].) In previous papers [9; 10] we have discussed various 
properties of the elementary ideals of AL (in both the notation Ek(AL)=Et(L) 
was used). Our aim here is to find analogous properties of those of BL • 

If Jl~2, let Lp. be the sublink Lp.=L-Kp. of L, Gp. its group, and Hp. the 



Lorenzo TRALDI364 

abelianization of Gil; let ¢: ZH-+ZHIl be the homomorphism given by ¢(t/)=ti 
for i<p, and ¢(tll ) = 1. In [9J the relationship between the determinantal ideals 
of AL and the images, under ¢, of those of AL was considered; our first theorem 

" here is concerned with the relationship between the determinantal ideals of BL 
and BL,.. 

THEOREM 12 : If p=2, then for any value of k 

Ek(BL,) 2 ¢Eic(Bd 2 ct= i-)Ek(BL,) +Ek-1(BL). 

THEOREM Ill: If p;;:;;3, then for any value of k 

Ek(BL,) 2 ¢Ek{Bd 2 

1l-1 1l-2({ n t5;)-I) (IHIl )Il-3Ek(BL) + :r (lHIl)iEk-Il+l+i{BL,)
J=l . .=0 

1l-21l-1 
+ L L (£j)({tr 1/j#r})i-1Ek_Il+I+i{BL.)

i=1 )=1.·· . 

l 

where the sum L is taken over the set of all p-tuples (jl,. .. ,jp) with 

I:::;'jl < "'<jp<p. (If p=3 the final sum is 0.) 

(For O<j <p, we have used £j to denote the linking number £(Kj' K Il ). 
Also, for any ideal D of ZH, DO ZH.) 

It follows from Torres' second relation [7J and the work of Crowell and 
Strauss [3J that the second inclusion of Theorem I is an equality for k = 0 and 
any p;;:;;2. However, for specific links L and values of k;;:;; 1 it is possible for either 
inclusion of Theorem I to be an equality (without the other's being one), or neither, 
or both. For instance, calculations which we will not present here indicate 
that all four possibilities are displayed by the links of [9, Examples 1 through 5]. 

If K £: S3 is a tame knot (Le., a one-component link), then it is well known 
that Eo(BK), the princinpal ideal of ZH generated by the Alexander polynomial of 
K, has the property that eEo(BK) = Z [6, p. 207J. A simple inductive argument, 
using this fact and Theorem 1, is sufficient to verify 

COROLLARY I: eEk(BL)=Z whenever k;;:;;(i). 
For p E Z we have used (~) to denote the binomial coefficient; in particular, 

(~)=O for p:::;, 1. If p;;:;;2, let A=(jl';(P,q» be the p x (~)matrix whose rows and 

columns are indexed by the sets. {1, ... , p} and {(p, q)ll:::;,p<q:::;'p}, respectively, 
and whose entries are given by 
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£(Ki, Kq) if i = P 

Ai(p,q) = - £(Kb Kp) if i = q 
{ 

. 0 . if p #= i #= q. 

If ,u=1, on the other hand, then letA be the one-by-one matrix whose lone entry 
is 1. 

THEOREM 2: If,u:? 2 and 1:5:: k S; ( ~)then 

Since the rows of A are linearly dependent if ,u;;::2, EiA) =0 whenever j:5:: 

( i)-,u. Combining this observation with Theorem 2, we obtain 

Also, combining Theorem 2 and Corollary 1 we conclude 

COROLLARY 3: For any k E Z, BEiBd=Ek(A). 

In this respect, the behavior of the determinantal ideals of BL is quite different 
from that of those of Av since (as noted in [9, §1]) the augmented ideals BEk(AL) 

are completely determined by ,u. 
Recall that the lower central series subgroups of G are given by G 1 = G and, 

for q;;::1, Gq + 1 = [Gq, G]. Our proof of Theorem 2 is based on the work of 
K. T. Chen, who has shown [1, Corollary 2] that the matrix A is a presentation 
matrix for the abelian group G2/Ga, for any ,u:?1. Using the well-known structure 
theorem for finitely generated abelian groups, it follows that the ideals Ek(A) ~ Z 
form a complete set of invariants of G2/G3 • Thus Corollary 3 may be stated in 
the following alternate form. 

COROLLARY 4: Let Hand jj be the abelianiztltions of the groups G and Ci 
of two tame links Land r in S3; also, let B: ZH~ Z and l: zjj~ Z be the aug

mentation maps. Then the abelian groups G2/G 3 and Ci2 /Cia are isomorphic if, 

and only if, BEk(Bd = lEk(BrJVk E Z. 

Note that Corollaries 1,2, 3, and 4 hold for any ,u;;:: 1, while Theorems 1 and 
2 require p..:? 2. 

It should be remarked that, although the results of this paper show that the 
determinantal ideals of the ZH-modules AL and BL have some analogous proper
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ties, we will not actually discuss the relationship between these two sequences of 
determinantal ideals. The reader interested in this relationship (which is not 
completely understood) is referred to [3; 8]. In addition, we should remark that 
Theorem 2 can be generalized to a relation between the elementary ideals of BL 
and the Milnor invariants of L [11]. 

The author would like to thank the referee who read [9], and suggested the 
line of inquiry that led to Theorem 1. Also, we must thank William S. Massey, 
whose comments inspired a great simplification of our original proof of Theorem 2. 

1. A Presentation Matrix of Bl,. Suppose a regular projection of the 
tame link Ls:;;S3, of Jl21 components, is given. If the projection is normalized 
by removing short arcs surrounding the underpassing point of each crossing, 
then it consists of pairwise disjoint, tame; simple arcs in the plane. We may denote 
these arcs eij (1::::; i::::;Jl and 1::::;j::::;ji' the latter considered modulo j/), the indices 
being chosen so that for each i eil U ... U eill is the image of the ith cornponent 
Ki in the projection, and so that eil' eil,"" eil. appear consecutively around K/; 
we orient Ki so that this direction around it is preferred. We refer to the crossing 
that separates eij from eij+ 1 as the iph crossing of the projection, and we define 
Oij = 1 or 1 according to whether the overpassing arc of the ijlh crossing is 
oriented from ieft to right or from right to left, relative to the orientation of the 
underpassing component. 

As is well known, a presentation <Xij; r ij ) of G= TC 1(S3 - L) may be obtained 
from this regular projection. A generator xi} corresponds to each arc elj' and a 
relator ri} to each crossing; if epq is the overpassing arc of the iph crossing then 

It suits our purpose here to modify this presentation. We introduce new gener
ators Yu, one corresponding to each arc eij in the projection, and for each such 
generator we introduce a relator YijXilXI1' (In particular, note that Yi1 is a relator 
for each i, so the generators Yil could simply be deleted; in order to keep our de
scription of the presentation as simple as possible, though, we shall not delete 
them.) Then we delete each generator Xij and each relator YijXi/xu for 1::::; i::::;Jl 
and 2 ::::;jh and replace every occurence of a generator xi} in one of the remaining 
relators by XilYij' The result is a presentation <xu, Ylj; Yu, qlj) in which there is 
a generator Xil and a relator YI1 for each i E {I, ... , Jl}, a generator Yij corresponding 
to each arc elj' and a relator 

qij = (XpIYpq)oiJXilYij(XpIYpq)-Ii'JYi/ + lXil 

whenever epq is the overpassing arc in the ijlh crossing. 
If F is the free group on the set {xu, Yijll::::;i::::;,u, l::::;j::::;j/} of generators, 

then there is an epimorphism 11: F ..... G whose kernel is the normal subgroup of F 
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generatred by {y,tl U{q'J}' If tX: G-+H is the abelianizing homomorphism, then 
it is a simple matter to show that tXt1(Y'J) = 1 whenever 1 ~ i ~ P. and 1 ~j~j" and 
that H is the free abelian group on the set of elements t,=C1:I1(XIl), 1~ i ~ p.. 

The Alexander matrix M of the presentation (Xii> Yij; YIl' qlj) is an 
(m +p.) x (n +p.) matrix, where m is the number of crossings in the projection and 
n=Ij, is the number of arcs. The matrix has one row for each relator in the 
presentation, and one column for each generator; the common entry of the row 
corresponding to the· relator p and the column corresponding to the generator z 
iStX11(a(p)/{}Z). We order the rows and columns of M in the obvious way: 
the first p. columns are those corresponding to xu,... , xp1 , and of the remaining 
n columns the one corresponding to Yah precedes the one corresponding to Yed 
if a< c or a= c and b< d; similarly, the first p. rows are those corresponding to 
Yu,"" Ypl' and of the remaining m rows the one corresponding to qah precedes 
the one corresponding to qed if a < c or a= c and b< d. That the Alexander 
matrix M is a presentation matrix for the Alexander module AL is well known 
[2, §3]. Regarding terminology, we should note that Rolfsen [6] uses "Alexander 
matrix" to refer to an arbitrary presentation matrix of the Alexander invariant BL , 

in contrast with our usage here. 
Following Crowell and Strauss [3], we define the matrices N 2(P.) and N 3(fJ.). 

If p.:?:. 2, N 2(P.) is a( i) x p. matrix, whose columns are indexed by {1, ... , p.} and 

whose rows are indexed by {(p, q)ll~p<q~p.}; the only nonzero entries in the 
(p, q) row are 1- tq (in the pth column) and tp-l (in the qth column). If p.:?:. 3, 

N3(p.)is a( ~) x( i) matrix, whose columns are indexed by {(p, q)ll ~p<q~p.} 
and whose rows are indexed by {(p, q, r)ll~p<q<r~p.}; the only nonzero 
entries in the (p, q, r) row are t,-1 (in the (p, q) column), 1- tq (in the (p, r) 

column), and tp-1 (in the (q, r) column). We also adopt specific orderings of the 
rows and columns of these matrices: {1,... , p.} is ordered in the usual way, 
{(p, q)} is ordered in such a way that (p, q) precedes (p', q') iff q < q' or q = q' and 
p<p', and {(p, q,r)} is ordered so that (p, q, r) precedes (p', q', r') iff r<r' or 
r=r' and (p, q) precedes (p', q'). 

It is convenient to partition the Alexander matrix M as M = (M1 M2), where 
M1 consists of the first p. columns of M, and M 2 the remaining n. If p.:?:. 2, M 1 

factors as a product Ml =M'.N2(p.) for some (m+p.) x (i) matrix M'; such a 

matrix is explicitly described below. As in [3, §6], if p.:?:. 3 the matrix 

M'. M2) 
P = ( N3(P.) 0 

is a presentation matrix for 1JL , while if p.=2 

P = (M' M 2) 
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is a presentation matrix for Bv IfJl=i tIlen ZH~IH as ZH-modules, so the 
Ii~k module sequence of L ~ust split; it is not difficult to deduce from this and 

.. . 

the detailed description of the sequence in [2J that then 

is a presentation matrix for Bv 
In order to explicitly describe the matrices Mz, and M', it is convenient to 

assume that the given regular projection of L contains no crossing which is trivial 
in the sense that the overpassing arc of the crossing coincides with one of the 
underpassing arcs; clearly, any such crossing could be removed from the pro
jection. Also, we assume that each j; is .at least two,1 . 

. Given. these. assumptions, the (m +Jl) x n matrix M 2, which has a row for 
each Yil> a row for each qij' and a column for each Yij' has these entdes: 
if 1sis Jl the only nonzero entry in the row corresponding to Yil is a.1 in the 
column corresponding to Yil ;and if epq is the overpassing arc in the ijlhcrossing of 
the projection, then the only nonzero entries in the row corresponding to qiJ are 
tit~IJ in the column corresponding to Yij' - t/ in the column corresponcling to 
Yij+l> and eith,er tp(l-t/) or t;-1 in the column corresponding to Ypg, according 
to whether b1j is 1 or -1. . 

The (m+ Jl) x (~) matrix M' has one row for each Yil, one row for each qu, 
and one column for each pair (p, q) with 1sp<qsJl. The rows corresponding 
to the Yil are without nonzero entries. Suppose epq is the overcrossing arc in the 
ijlb crossing of the projection. If p< i, then the row of M' corresponding to qij 

has a single nonzero entry, lor _t;1 (according to whether bij=l or -1), in the 
(p, i) column. If p> i, the row corresponding to qlj has a lone nonzero entry, 
-1 or r;1 (according to whether bij is lor -1), in the (i, p) column. If p=i, 
every entry of the row of M' corresponding to qij is zero. 

We recall that if C is a ex d matrix with entries in ZH then its determinantal 
ideals are the ideals of ZH given by: E,lc)=O whenever k<O or k<d-c, Elc)= 
ZH whenever k~d, and if O<d-cs k<d then Ek(C) is the ideal generated by the 
determinants of the (d - k) x (d - k) submatrices of C. The determinantal ideals 
of a finitely presented ZH-module are those of any of its presentation matrices; 
they are independent of the choice of a particular presentation matrix [5, §3.1J. 

2. A Lemma. In this section we calculate the determinantal ideals of a 
certain matrix V, which will appear in the. proof of Theorem 1 (§3). The 
calculation depends on a portion of the theory of determinants due to Crowell and 

(1) It is not difficult to show that any link, even the trivial link of one component, has some 
regular projection in the plane satisfying these two assumptions. Furthermore, note that for 
such a projection m=n. 

= 
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Strauss [3], which we proceed to discuss. 
Let R be an integral domain. If r, s;;:::; 1 we use M,,.(R) to denote the R .. 

module consisting of all r x s matrices with entries in R; also, if t;;:::; 1 then M".(R)t 
denotes the t-fold Cartesian product of this module with itself. If C e Mc.iR) 
then for any k;;:::;O a multilinear mapping Oe: Ml.c+k(R)d+k-+R can be defined by 

gdUl , ... , Ud+k) = det ( ~1 ). (C 0.), 
Ud +k 0 I 

where I is a k x k identity matrix; if k=O the matrix on the right should be C. 
If k>c and k;;:::;d another multilinear mappingfe: Ml,,,(R)"-c-+R is given by 

if k=d the block of zeroes in the lower right-hand corner should not appear. 
Suppose d> c;;:::; 1, C E MciR), and D e Md,d-c(R). Let N(C) be the collection 

of all the c xc submatrices of C, and let N(D) be the collection .of all the (d-c) x 
(d-c) submatrices of D. We define a bijection 'r: N(C)-+N(D) as follows. 
IfX E N(C), X can be obtained from Cby deleting, say, the ilh, ... , i~~c columns of 
C; reX) is the (d-c)x(d c) submatrix of D obtained by deleting all its rows 
except for the ilk, ... , i~~c' 

PROPOsmON (2.1): Let C and D be as described. Suppose further that 
CD=O, Ed- c(C):;60, and Eo(D):;60. Then for any k;;:::;O, and any X E N(C) 
with detr(X):;60, the multilinear mappings 

have the property that (detX}gD= ±(detr(X»1e identically. 

PROOF: First we show that fe and gD have the property that gD(Ul ,,,,, 

UHd-c)=O whenever fcCU!, ... , UHd-J=O. For if 

det{ u5~-c}= 0 

C 0 

then the rows of this matrix must be dependent, that is, if ct, ..., C; are its last c 
rows then 
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for some ai,"" aHd-c' bi , ... , be e R, not all of which are zero. Since Ed_c(C}#=O, 
the last c rows of this matrix are independent, so some of the aj must be nonzero. 

so the rows of the matrix 

Then are dependent, so gD(U l "", UHd-e)=O. 
Now, suppose that XeN(C) is obtained from C by deleting its ilh,... , i~h..e 

columns. Choose U i"'" UHd - c e Mi,d+k(R) so that for 1 ::;;,i::;;kthe only nonzero 
entry of Ui is its (d + i)th, which is a 1, and for l::;;'j::;; d - c the only nonzero entry 
of UH j is its i}h, which is a 1. A simple expansion by minors shows that le(U1'"'' 

UHd - e)= ±detX; also, it is not difficult to show that gD(U1"", UHd - c)= 
± det 1:(X). In particular, since det 1:(X) #=0 it follows from the first paragraph Qf 
this proof that det X #= O. 

Thus we have 

L 

with r=det 1:(X) and s=detX. It follows from [3, Theorem (4.1)] that r'le= 
±S·gD identically, as claimed. Q. E. D. 

Suppose 53 is a tame link of J.l ~ 2 components, given with a regular pro~ 

jection In the plane, as described in Section 1. We define a (1 +j Il +(J.li' 1» x 

(J.l-l +jll) matrix V, with entries in ZHIl, as follows. The first row corresponds 
to the relator Ylll' the next rows correspond to the relators qlll'"'' qllil" and the 

last(J.l21)rows correspond to the triples (p, q, J.l) with 1~p<q<J.l. The first 

J.l-l columns of V correspond to the pairs (p, J.l), 1~ p < J.l, and the rest correspond 
to the generators Ylll'"'' Yilil" The only nonzero entry of the first row is a 1 in 
the column corresponding to Yill' For l::;;'j::;;'jll therow corresponding to qllj 
has these nonzero entries: if epq is the overpassing arc of the J.ljth crossing in the 
projection and 1::;;, p < J.l, then there is an entry of 1 or - t;1 (according to whether 
81l)= 1 or -1) in the (p, J.l) column, an entry of t:1'J in the column corresponding 
to YIl}' and an entry of -1 in the column corresponding to YIlJ +1; if ellq is the 
overpassing arc of the J.ljlh crossing, then there is an entry of 1 in the column 
corresponding to YIl}, and one of -1 in the column corresponding to Y Il}+l' 

Finally, if 1::;;, p < q < J.l the row of V corresponding to the triple (p, q, p.) has 
two nonzero entries: 1- tq(in the(p,J.l)column) and tp-1 (in the (q, J.l) column).' 
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That is, V is the matrix 

(1, p.) (p.-I, p.) YIL1 Y IL2 

o o o o 

o 

o -1 

-I 

o 

where the entries Vj and Vij are as described above. (If p.=2, N 2(p.-1) and the 
lowermost block of zeroes should not appear.) By adding suitable multiples of 
the preceding rows to the jib row, 2~j ~jIL+1, and reversing the sign of each of 
the last j IL -1 columns of the resulting matrix, we obtain a matrix 

(:~). 

where 

and I is a j IL X j IL identity matrix. The entries of the first row of X are given by 

j",-1 },. 

=Xi Vj i + L ( n Vk)Vjj. 
,. }=1 k=j+1 

It is not difficult,becaustl .. of.the manner in which X was obtained from V, 
to show that Ek(V) =Ek(X)V k E Z. (See [5, Theorem 104 and Lemma 1.2]; note 
that our notation differs somewhat frilm that used there.) As the first step in 
the calculation of these ideals, we have. 
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PROOF: Note that whenever 1 S;jS;jl' 

and hence 
1'-1 j" 1'-1
L xr(tj-l) = ( n V.) - 1 = (n tt,) - 1. 
j=1 j=1 J 1=1 

If 1S; i<Jl and 1S;j S;jl' then Vjr(t j -1) is either tt", -1 or 0, according to 
whether or not the overpassing component of the Jlpb crossing of the projection 
is K j ; since tr -1 =7·(tj -1) (mod (IHI')2) for any 7 E Z, it follows that 

the congruences holding modulo (IHp)2. Thus if IS; i1 < ... < i" <p. 

. Q.E.D. 

If /1 =2, X is a 1 x 1 matrix with the same determinantal ideals as V, so we 
immediately obtain 

COROLLARY (2.3): If p.=2, E1(V)=ZHI' and 

Eo(V) = CJ;=: ). 
If /1= 3, X is the 2 x 2 matrix 

, 

so since the determinantal ideals of X and V coincide we obtain 

COROLLARY (2.4): 1£/1=3, Ez(V)=ZHI" El(V)=(tl,t2)+IHI" and 

Eo(V) = «tjlt~2) -1). 

PROOF: The determination of Eo(V) = Eo(X) follows immediately from the 
first assertion of Lemma (2.2), while that of E1(V)=E1(X) follows from the 
congruence XiS ti (mod IHI')' which is a consequence of the second assertion of 
Lemma (2.2). .. Q. E. D. 
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The determination of the determinantal ideals of X and V for p. Z 4 requires 
a detailed discussion of the submatrices of Nip. - 1). To facilitate this discussion 
it is convenient to introduce a new piece of notation: if1::::;;i 1 <···<::i,k<p.then 
N201'"'' ik) is the submatrix of N2(P.- n obtained by deleting its ith column 
wheneveri~ {i l , ... , i,,}, and deleting the row corresponding to (p, q) whenever 
either of p,q is not amongi!> ... , ik • (Equivalently,N2(il'"'' ik) is obtained from 
Nz(k) by replacing tj by t'J' l::::;;j::::;;k.) 

LEMMA (2.5): Suppose Yis a square submatrix of N2(p.-i) and det Y~O. 
Then by permuting rows and columns Y can be brought into upper triangular 
form. 

PROOF: Suppose Y has y columns and rows. If y = 1, the assertion of the 
lemma is trivial. 

Proceeding inductively, suppose y>l, and suppose Yinvolves the jih, .•. , i~h 

columns of Nz(p.-l), where 1::::;;i l <";<i),' Ifsom,e row of Yhas only one non
zero entry, then by permuting rows and columns we can move this entry to the 
bottom right-hand corner of Y; thenthe (y-l)x (y-l) submatrix of Yobtained 
by deleting its last row and column tnust have nonzero determinant, soby inductive 
hypothesis it (and therefore Y) can be put in upper triangular form. On the other 
hand, if every row of Y has at.]ea,st two (and,therefore, preciseley two)'nonzero 

, , ' 

entries, then Yis a submatrix of N201"'" i)'); however, the columns of N 201"'" iy) 
are linearly dependent (if one multiplies the ph column by tii 1, 1::::;;]::::;; Y;' the 
.resulting columns add up to 0), contradicting the assumption that det Y~O. 

Q.E.p. 

Given a (not necessarily square) submatrix Y of Nz(p.-i), we define integers 
}'1(Y),"" }'p-l(Y)' Pl(Y)'"'' Pp-i(Y) as follows: }';(Y) is 1 or 0 according to 
whether or not Yinvolves the jlh column of Nz(p.-1), and p;(Y) is the number 
of pairs (p, q) such that Y involves the (p, q) row of N z{p. -1) and one of p, q is 
i. These integers are intimately related to the determinants of the square sub
matrices of N 2(P. - 1), as we see in 

LEMMA (2.6): If Y is a yxy submatrix of Nz{p.-l) with nonzero deter
minant, then 

and, in particular, plY)Z}'i(Y)jor each i. 

PROOF: If y=l then there are p, q such that }'p(Y)=1, }';(Y)=O whenever 
p~i, piy)=1=piY); ,and p;(Y)'~OwheIleve~ p:fi:i'#q(Le., Y involves the 



374 Lorenzo TRALDI 

pth column and either the (p, q) or the (q, p) row of Nip-I». Then det Y= 
±(tq-I), as claimed. 

Proceeding inductively, suppose y> 1. By Lemma (2.5), some row of Y 
must have only one nonzero entry; let Y1 be the I x 1 matrix consisting of this 
entry, and Y2 the (y-l)x(y-l) submatrix of Yobtained by deleting the row 
and column of Y containing this entry; clearly then ,lY)='I(Y1)+,lY2) and 
p,(Y)=P~Y1)+P~Y2) for any i. Since det Y=±(det Y1Hdet Yi), the result now 
follows from the inductive hypothesis. Q. E. D. 

Let N 1(p-l) be the (p-1) x 1 matrix whose jth entry is t;-1. Note that 
N2(p-1}N1(p-l)=0 for any p;;:; 3. 

PROPOSITION (2.7): Let C be a (p-2)x(P-l) submatrix of Nip-I). 
If Et(C)=O thenfc is identically zero, while ifEl(C)#O 

identically. Conversely, whenever PI'"'' P,.-1 are non-negative integers with 
~p,=p- 3, N 2(p-1) has some (#-2) x (p-l) submatrix C such that 

identically, 

PROOF: First, suppose C is a (p- 2) x (P - 1) submatrix of Nip-l). If 
E1(C)=0 then the rows of C must be linearly dependent; clearly thenfc is indeed 
identically zero. 

If E1(C) #0, let Ybe a(p-2)x(p-2) submatrix of Cwith nonzero deter
minant; then Y is obtained from C by deleting a single column, say, the qth. 
By Lemma (2.6), 

Since N ip-l).N1(P-l)=0, certainly CoN1(p-1)=0. By Proposition (2.1), 
then, 

(det y)·gN,(U-1) = ± (det1:(Y»'fc 

identically, where 1:(Y) is the submatrix of N1(p-l) obtained by deleting all 
its rows except the qth; that is, 1:( Y) is the 1 x 1 matrix whose sole entry is tq - l. 
That 
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follows immediately, by cancellation. 
For the converse, suppose PI'"'' Pp-l are as in the statement. As shown 

by Crowell and Strauss [3, Proposition (5.2)], NiJ.l-l) has some (J.t - 2) x (J.l-'- 2) 
submatrix Y with 

"-1
det Y= ±(t1 -1)· n (t l -1)1", 
. 1=1 

which does not involve the first column of NiJ.l-1). If C is the (J.l- 2) x (J.l-l) 
submatrix of NiJ.l-l) of which Yis a submatrix, then by Proposition (2.1) 

(det Y)'gN,(rl) = ± (detT(Y»'fc 

identically. Since T(Y) is the 1 x 1 matrix whose lone entry is t1 -1, we obtain 

by cancellation. Q.E.D. 

Using this result, we call prove 

THEOREM (2.8): If J.l~4 then 

where the sum L is taken over the set of all p-tuples (j1>'''' jp) with 1s:.j1 < ... < 
jp<II, and 

PROOF: Since X and V have the same determinantal ideals, we may confine 
our attention to X; that E,,_1(X)=ZHp. follows from the fact that X has only 
J.l-l columns. 

The ideal Eo(X) is generated by the determinants of the (J.l-l) x (J.l-l) 
submatrices of X. Since the columns of N2(J.l-l)a,re linearly depen~ent, if 
such a submatrix is to have nonzero determinant it must involve the first row X 1 

of X. Thus Eo(X) is the ideal of ZHp. generated by the values of fC<X1), as C 
varies over the set of (J.t-2) x (J.l-l) sUbmatrices of NiJ.l-l); by Proposition (2.7), 
then, 



376 Lorenzo TRAWI

Eo(X) = (9NI(/l_I)(X 1»·(IH/l)r3
• 

The determinantion ofEo(X) is completed by the calculation (in the_ first assertion 
of Lemma (2.2» of gNI(/l-l)(X1)' 

Suppose 1 S k s p. - 2, and let E be the ideal which, according to the statement, 
is contained in Ek(V) = Ek(X). 

Recall that by [3, Proposition (5.2)J, (IH/l)/l-I-k=Ek(Nz(p.-l», so since 
Nz(p.-l) is a submatrixof X, (IH/l)/l-1-kS;ElX). 

If lsIsp. 1, then by [3, Proposition (5.2)J ({tr -llr,o:j})/l-2-k= 
Ek(Nz{l, ... ,j -1, j+ 1,... , p.-l»; clearly (xj)·Ek(N2(1, ... , j -1, j + 1, ... , p.-l»£ 
Ek(X). By the second assertion of Lemma (2.2) X{:=tj (modIH/l)' so since 
(IH/l)/l~I-k s;Ek(V), (t j){{t,-llr,o:j})/l-2-k S; Ek(V). 

Now; suppose that 2Sp:5;,p.-1-k, lsj1 <.;.<jp<p., {r l , .. ·, rp-l-p}= 
{1, ... , P.-1}-{j1, ...,jp}, and YI,'''' Yp' Zl"'" Z/l-1-p are non-negative integers 
with Lyq=p-2 and L,zq=p.-l-k-p. By [3, Proposition (5.2)J Nz(r1, ... , 

rp-I_p) has a (p.-1-k-p)x(p.-1-k-p) submatrix Y' with 

/l-I-P
det Y' = ± n (t, ..,..1)'_Q•. 

q=1 4 . 

By the first part of this proof, the matrix 

. -( - x· JP ):-. J! .... X·-

Nijb''',}p) 

has a p x p submatrix Y" with 

det Y" = + 
-

9N
1 
(. . )«x. "'XjP »: np 

(I.Jq -1»)'4.Jl.···,JP Jl _ q=l' 

It follows from the second assertion of Lemma (2.2) that 

p . p 

det Y" := ±«n 1}Jq -1) . n (I J -1)Y4(mod (IHI')P),
q=l q q=l q 

The matrix X has a (p.-l-k) x (p.-l-k) submatrix Ywhich, when its rows and 
columns are suitably permuted, .is of the fonn 

Y" Z)( o Y' 

for some matrix Z:· Hence 

.. det Y.= ,± (deLY:)·(det ylI) 
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modulo (IH I1)1J.-l-k, so since (IH,,)11- 1- k £Ek(V) this product is an element of 
Ek(V). 

This completes th~ proof that E£Ek(V). Q. E. D. 

". The inclusion of Theorem (2.8) is actually an .equality, but since this fact will 
not be needed, we will not verify it. 

3. Proof of Theorem t.Let L £ 8 3 be a tame link of Jl2 2 components with 

a regular projection in the plane, and let P be the (Jl +m+ ( j ) ) x ( ( i)+n) 
presentation matrix of BLdescribed in Section 1. Then Ek(BL)=Ek(P) for any 
value of k, so if </J: ZH -+ ZH" is the homomorphism defined in the introduction 
</JEk(BL)= </JEk(P) = E"l</J(P» for any k, where <PCP) is the matrix whose entries 
are the images under </J of those of P. 

We rearrange the rows and columns of P in the following manner, obtaining 

thereby a matrix Q with the same determinantal ideals as P. The first(Jl2" 1) 

columns of Q are the columns of P corresponding to the pairs (p, q), 1~ p < q < Jl, 
and its next n - j /I. columns are the columns of P corresponding to the generators 
Yij' 1~ i <Jl and 1 ~j ~ji; the next Jl-l columns of Q are th0se of Pcorresponding 
to the pairs (p, Jl), 1~P<Jl, and the last j/l. columns of Q are the columns of P 
corresponding to' the generators Y"J; l~J~j,,:the first Jl-l rowsofQ are those 
of P corresponding to the relators Yi1> 1~ i <Jl, the next m - j" rows of Q are those 

of P corresponding to the relators %, 1~ i< Jl and 1 ~ j ~ ji' and its next (Jl 3 1) 

rows are the rows of P corresponding to the triples (p, q, r), l~p<q<r<Jl. 
The next row of Q is the row of P corresponding to the relator Y/1.1' and after that 

come the rows of P corresponding to the relators q/l.i' l~j~j,,; the last (Jl 2" 1) 

rows of Qare the rows of P corresponding to the triples (p, q, Jl), 1~p< q < Jl. 
It is not difficult, using the explicit description of the entries of P given in 

Section 1, to ascertain that </J(Q) may be partitioned as 

PI 

</J(Q) = 0( 

where P' isa(Jl-l +m-j" + (Jl'3 
1
)) x ((Jl2"l)+n~j,,) matrix, and Visthe 

( 1 +j" +(Jl2" 1)) x (;t - 1+j ,,) matrix discussed in Section 2 . 

. LEMMA (3.1): For any ke Z 

. PROOF: The form~r inclusion follows fromtheobs~rvatiQn thatjf Y is a 
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yx ysubmatrix of </>(Q), Y2/l+i", then the expansion of det Y by minors along 
the last /l-1 +j" columns of Y expresses det Yas the sum of certain multiples of 
the determinants of certain (y- /l+1-j,,) x(y - /l+ 1-jll) submatrices of P'. 

The latter inclusion follows from the observation that if Y'. is a y' x y' sub
matrix of P', and Y" is a y" x y" submatrix of V, then </>(Q) has a (y' +y")x (y' + y") 

submatrix whose determinant is (det Y')· (det Y"). Q. E. D. 

Just as in [9, §4], a regular projection of the link L" in the plane can be 
obtained from the given regular projection of L, by replacing each crossing in 
which K" passes over some component of L" by a trivial crossing. If this pro

jection of L" is used to obtain a presentation matrix for the ZH,,-module BL", as 
in Section 1, then P' will be the presentation matrix obtained; hence Ek(BL ) = 
EiP') for any value of k. 

Since </>Ek(BL ) =</>Ek(P) = </>Ek(Q) =Ek(</>(Q» for any k, we conclude from this 
and Lemma (3.1) that 

Et(BL) "2 </>Ek(BL) "2 1; E" I-t(V)Ek- ll + l+!(BL,J
• 

for any k e Z. ;Theorem 1 now follows from Theorem (2.8). 

4. Proof of Theorem 2. Consider the ZH-module BL/IH,BL • .. If P is any 
presentation matrix for BL (e.g., the.one discussed in Section l)then clearly. 

is a presentation matrix for this module, where I is an identity matrix. From 
[10, Lemma (3.1)] it follows that 

L. Ek+i(Bd·(IH)1 = L. Ek+~BL/IH .BL)·(IH)i 
i~O i~O 

for any ke Z. 
Massey [4, Lemma 1] has observed that BL/IH·BL and G2/G3 are isomorphic 

abelian groups. Therefore, if we consider the latter as a trivial ZH-module (i.e., 
one with the property ~h.at /:t.x=xVheHVxeG,jG3),we have Ek(BJIH.BL)=: 
Ek(GZ/G3), and hence 

L. Ek+j(Bd·(IH)1 = L. Ek+;(Gz/G3)·(IIf)i; 
i~O i~O 

for all values of k. 
As noted in the introduction, Chen [1] has shown that the matrix A. is a 

http:Ek(BJIH.BL
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presentation matrix for the abelian group G2/G3 • It follows that the trivial ZH
module G2/G3 has the presentation matrix 

(I, _'1)/ )' , 
( 

(t,. -1)1 , 

where 1 is, again, an identity matrix. Another application of [10, Lemma (3.1)] 
shows that 

for any k E Z, and in particular 

(Note that this provides an alternate proof of Corollary 1.) Consequently, if 

l~k~(~) 

= L E(~)-HI.BL)· (1H)i 
I~O 

= L Em-HI.A)·(IH)I 
I~O 

"-1 
= L Em_HlA)·(/H)i + (/H)". 

1=0 

This completes the proof of Theorem 2. 
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