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Let L=K,U--UK,=8% be a tame link of u>1 components with group
G=mn,(S*~L). Also, let H=G/G' be the abelianization of G; H is then the
(multiplicative) free abelian group generated by the meridians ¢,,..., t, of L, and
its integral group ring ZH consists of polynomials (with integer coefficients) in
tiseees by t7L,, 1. The homomorphism ¢: ZH-+Z (which has s(f)=1 for
each i) is the augmentation map, and its kernel is the augmentation ideal IH of
ZH,

If p: X— X =83 — L is the universal abelian cover of X, and F is its fiber, then

0= H(F, Z)—’H1(X; Z)_)HI(X‘) F; Z)
— Hy(F; Z)——’HO(X; Z)—»Ha(f, F;Z2)=0

is a portion of the long exact homology sequence of the pair (X, F). H can be
canonically identified with the group of covering automorphisms of X, and this
identification leads naturally to H-module structures on the homology groups.
In particular, Hy(F; Z)= ZH and H(X; Z)= Z as H-modules; furthermore,
the isomorphisms can be chosen so that their composition with the map
Hy(F; Z)»HyX; Z) induced by inclusion is the augmentation map. Thus we
obtain the short exact sequence

0— H,X;2Z —HX,F; Z)— IH—0

of ZH-modules; this is the module sequence of L. This sequence is discussed in
greater depth in [2].

The ZH-module H,(X, F; Z) has been called the Alexander module of L [2];
we will denote it 4;,. The ZH-module H,(X; Z) has been called the Alexander
invariant of L [6]; we will denote it B;.

Both these ZH-modules are finitely presented, and so have well defined
determinantal ideals E(A4;), E(B;)= ZH for each integer k. (The algebraic
theory of these invariants, also known as elementary ideals or Fitting invariants,
is discussed in [5].) In previous papers [9; 10] we have discussed various
properties of the elementary ideals of 4, (in both the notation E,(A4;)=E(L)
was used). Our aim here is to find analogous properties of those of B;.

If u=>2, let L, be the sublink L,=L—K, of L, G, its group, and H, the
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abelianization of G,; let ¢: ZH— ZH,, be the homomorphism given by ¢(1) =1,
for i<y, and ¢(t,)=1. In [9] the relationship between the determinantal ideals
of 4;, and the images, under ¢, of those of A, was considered; our first theorem
here is concerned with the relationship between the determinantal ideals of B,
and B; .

THEOREM 1,: If u=2, then for any value of k

tl—]‘

] thr—1
Ey(BL,) 2 ¢E(By) 2 ( ')ER(BL“)+Ek—1(BL“)-
| THEOREM 1,0 If u>3, then for any value of k
» E(BL) = d’Ek(BL) = ' o
Bt . #=2 . ‘
‘ (¢ }].31 ) —-1) (I'Hp)“_a‘sk (B.,) + g—::() UH)'Eyi1+(BL,)
B2 g1 . )
D=1 AP Erperai(BL,)

B2 i P .
+ 5, 3 DT 40 =1) ({t,= 1020t = Ur#7,Y0)) " Encprsi(BL,),
where the sum 3, is taken over the set of all p-tuples (j,,...,Jj,) with
1<jy < <j,<p. (If p=3 the final sum is 0.) ’ :

(For O0<j<p, we have used £; to denote the linking number (K, K,).
Also, for any ideal D of ZH, D°=ZH) )

It follows from Torres’ second relation [7] and the work of Crowell and
Strauss [3] that the second inclusion of Theorem 1 is an equality for k=0 and
any u>2. However, for specific links L and values of k> 1 it is possible for either
inclusion of Theorem 1 to be an equality (without the other’s being one), or neither,
or both. For instance, calculations which we will not present here indicate
that all four possibilities are displayed by the links of [9, Examples 1 through 5].
- If KcS3is a tame knot (i.e., a one-component link), then it is well known
that E4(By), the princinpal ideal of ZH generated by the Alexander polynomial of
K, has the prbperty that eEy(By)=2Z [6, p. 207]. A simple inductive argument,
using this fact and Theorem 1, is sufficient to verify :

CorOLLARY 1: sEy(B;)=Z whenever kz(g )

For pe Z we have used ( é’)to denote the binomial coefficient; in particular,

(é’):O for p<1. I u>2, let A =(Ayp,q) be the px ( g >matrix whose rows and

columus are indexed by the sets {1,..., u} and {(p, @Il < p<g<u}, respectively,
and whose entries are given by . :
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UK, K,) if i=p
A’i(p,q) = _Q(Ki, Kp) lf i= q
0 if p#i#aq.

If u=1, on the other hand, then let 1 be the one-by-one matrix whose lone entry
is 1.

THEOREM 2: If u>2 and 1<k< (g)zlzen

% Eg-1 By (IH) + (TH)
| =5 Eg-ssidD-UH) + (R

' Since the rows of A are linéarly dependeht if u=2, E J:(,l)=0 whenever j§

( g )— 4. Combining this observation with Theorem 2, we obtain

COROLLARY 2:  Egg-1y_(By)S(IH)* for any k>1.
Also, combining Theorem 2 and Corollary 1 vée conclude
COROLLARY 3: For any ke Z, eE(B,)=E,{A).

In this respect, the behavior of the determinantal ideals of B, is quite different
from that of those of 4, since (as noted in [9, §1]) the augmented ideals eE,(4,)
are completely determined by u.

Recall that the lower central series subgroups of G are given by G, =G and,
for g>1, G,41=[G,, G]. Our proof of Theorem 2 is based on the work of
K. T. Chen, who has shown [1, Corollary 2] that the matrix 1 is a presentation
matrix for the abelian group G,/G;, forany p>1. Using the well-known structure
theorem for finitely generated abelian groups, it follows that the ideals E{()c Z
form a complete set of invariants of G;/G;. Thus Corollary 3 may be stated in
the following alternate form.

COROLLARY 4: Let H and H be the abelianizations of the groups G and G
of two tame links L and L in S®; also, let &: ZH—Z and &: ZH— Z be the aug-
mentation maps. Then the abelian groups G,/G, and G,|G, areisomorphic if,
and only if, eE)(B,)=8E(By)Vke Z.

Note that Corollaries 1, 2, 3, and 4 hold for any u> 1, while Theorems 1 and
2 require pu>2. o ‘ «

Tt should be remarked that, although the results of this paper show that the
determinantal ideals of the ZH-modules 4, and B, have some analogous proper-
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ties, we will not actually discuss the relationship between these two sequences of
determinantal ideals. The reader interested in this relationship (which is not
completely understood) is referred to [3; 8], In addition, we should remark that
Theorem 2 can be generalized to a relation between the elementary ideals of By
and the Milnor invariants of L [11].

The author would like to thank the referee who read [9], and suggested the
line of inquiry that led to Theorem 1. Also, we must thank William S. Massey,
whose comments inspired a great simplification of our original proof of Theorem 2.

1. A Presentation Matrix of B,. Suppose a regular projection of the
tame link L= 83, of u>1 components, is given. If the projection is normalized
by removing short arcs surrounding the underpassing point of each crossing,
then it consists of pairwise disjoint, tame, simple arcs in the plane. We may denote
these arcs ¢; (1<i<p and 1<j<j, the latter considered modulo j;), the indices
being chosen so that for each i ¢; U+ U ey, is the image of the i** component
K; in the projection, and so that e, ¢;,..., ¢;;, appear consecutively around K;;
we orient K; so that this direction around it is preferred. We refer to the crossing
that separates e;; from ¢;;,, as the ij** crossing of the projection, and we define
dy=1 or —1 according to whether the overpassing arc of the ij** crossing is
oriented from left to right or from right to left, relative to the orientation of the
underpassing component.

As is well known, a presentation {x;;; r;;> of G=m,(5*— L) may be obtained
from this regular projection. A generator x;; corresponds to each arc ¢;;, and a
relator r;; to each crossing; if e,, is the overpassing arc of the ij'" crossing then

— w8 ] - §
Tij = XpifXijXpg X1 41

It suits our purpose here to modify this presentation. We introduce new gener-
ators y;;, one corresponding to each arc ¢;; in the projection, and for each such
generator we introduce a relator y;x7fx;;. (In particular, note that y;, is a relator
for each i, so the generators y;; could simply be deleted; in order to keep our de-
scription of the presentation as simple as possible, though, we shall not delete
them.) Then we delete each generator x;; and each relator y;;xj}x, for 1<i<u
and 2 <j < j;, and replace every occurence of a generator x;; in one of the remaining
relators by x;;y;;. The result is a presentation {(x;;, ¥;;; ¥, 4;;7 in which there is
a generator x;; and a relator y;, for each i € {1,..., u}, a generator y,; corresponding
to each arc ¢;;, and a relator

qi; = (xplypq)éijxilyij(xp1ypq)~6”yi-jl+1x;11
whenever e, is the overpassing arc in the ij*® crossing.

If F is the free group on the set {x;;, y;;|1<i<p, 1<j<j;} of generators,
then there is an epimorphism #: F- G whose kernel is the normal subgroup of F
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generatred by {y;} U {qy}. If a: G—H is the abelianizing homomorphism, then
it is a simple matter to show that on(y,;)=1 whenever 1<i<uand 1<j<j, and
that H is the free abelian group on the set of elements f;=un(x;), 1 <i<u.

The Alexander matrix M of the presentation <{x;;, yi;; yu, 4;;> is an
(m+ p) x(n+ p) matrix, where m is the number of crossings in the projection and
n=2ZLj, is the number of arcs. The matrix has one row for each relator in the
presentation, and one column for each generator; the common entry of the row
corresponding to the relator p and the column corresponding to the generator z
is an(d(p)/0z). We order the rows and columns ‘of M in the obvious way:
the first ¢ columns are those corresponding to x,;,..., x,;, and of the remaining
n columns the one corresponding to y,, precedes the one corresponding to y,
if a<c or a=c and b <d; similarly, the first u rows are those corresponding to
Vi1seees Yu1» and of the remaining m rows the one corresponding to g,, precedes
the one corresponding to q.4 if a<c or a=c and b<d.  That the Alexander
matrix M is a presentation matrix for the Alexander module A4, is well known
[2, 83]. Regarding terminology, we should note that Roifsen [6] uses “Alexander
matrix”’ to refer to an arbitrary presentation matrix of the Alexander invariant B;,
in contrast with our usage here.

Following Crowell and Strauss [3], we define the matrices N,(u) and N;(u).

If u=2, No(u is a'< é‘ ) x ¢t matrix, whose columns are indexed by {1,..., u} and

whose rows are indexed by {(p, Q1 <p<q<y}; the only nonzero entries in the
(p, q) row are 1—¢, (in the p*® column) and ¢,—1 (in the g** column). If >3,

Ny is a( g‘) x( g ) matrix, whose columns are indexed by {(p, 9)|1<p<q<u}

and whose rows are indexed by {(p, g, N|1<p<g<r<uy}; the only nonzero
entries in the (p, g, r) row are t,—1 (in the (p, g) column), 1—¢, (in the (p, r)
column), and t,—1 (in the (g, r) column). We also adopt specific orderings of the
rows and columns of these matrices:  {1,..., u} is ordered in the usual way,
{(p, ¢)} is ordered in such a way that (p, q) precedes (p/, ¢’} iff g< ¢’ or g=¢q' and
p<p', and {(p, g, r)} is ordered so that (p, g, r) precedes (p’, ¢', r) iff r<r’' or
r=r' and (p, q) precedes (p’, ¢°).

It is convenient to partition the Alexander matrix M as M =(M, M,), where

M, consists of the first u columns of M, and M, the remaining n. If u>2, M,
factors as a product M, =M"-N,(u) for some {(m+ u)x (g) matrix M’; such a
matrix is explicitly described belqw. Asin [3, §6], if u>3 the matrix

(oo o)
P=1
Na(w) 0

is a presentation matrix for B;, while if u=2
- - P=M My
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isa presentauon ‘miatrix for BL If u= i then ZH ~IH as ZH-modules, so the
link module sequence of L must split; it is not difficult to deduce from this and
the detailed descrlptlon of the sequence in [2] that then

P=M,

is a presentation matrix for Bj.

1In order to explicitly describe the matrices ‘M, and M’, it is convenient to
assume that the given regular projection of L contains no crossing which is trivial
in the sense that the overpassing arc of the crossing coincides with one of the
underpassing arcs clearly, any such crossing could be removed from the pro-
Jection. Also, we assume that each j, is at least two. v

Given these. assumptions, the (m+ wxn matrix M,, which has a row for
each y,l,‘ a row for each ¢;;» and a column for each yij» has these entries:
if 1<i<pu the only nonzero entry in the row corresponding to Vi is a1 in the
column corresponding to y;;; and if ep, is the overpassing arc in the ij“"vcross.ing of
the projection, then the only nonzero entries in the row corresponding to 4 ; are
137 in the column corresponding to y;; —¢; in the column corresponding to
Yij+1, and either t(1—1) or t;—1 in the column corresponding to y,,, according
to whether d;; i is 1 or -1

2
and one column for each pair (p, q) with 1< p<q=yp. The rows correspondmg

to the y,, are without nonzero entries. Suppose ¢,, is the overcrossing arc in the
ij*t crossing of the projection. If p<i, then the row of M’ corresponding to ¢;;
has a single nonzero entry, 1 or —#;1 (according to whether 6;;=1 or —1), in the
(p, i) column. If p>1i, the row corresponding to g; ; has a lone nonzero entry,
-1 or t;* (according to whether d;; is 1 or —1), in the (i, p) column. If p=i,
every entry of the row of M’ corresponding to g;; is zero. , '
We recall that if C is a ¢ x d matrix with entries in ZH then its determinantal
ideals are the ideals of ZH given by: E{C)=0 whenever k<0 or k<d—¢, E(C)=
ZH whenever k>d, and if 0<d—c< k<d then E,(C) is the ideal generated by the
determinants of the (d —k) x(d — k) submatrices of C. The determinantal ideals
of a finitely preserited ZH-module are those of any of its presentation matrices;
they are independent of the choice of a particular presentation matrix [5, §3.1].

The (m+ nx ( # ) matrix M’ ha.s one row for each y;,, one row for each 9ip»

2. ALemma. In this section we calculate the deiefminantal ideals of a
certain matrix ¥, which will appear in the proof of Theorem 1(§3). The
calculation depends on a portion of the theory of determinants due to Crowell and

(1) It is not difficult to show that any link, even the trivial link of one component, has some
regular projection in the plane satisfying these two assumptions. Furthermore, note that for
such a projection m=n.
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Strauss [3], which we proceed to discuss. - -
Let R be an integral domain, If r, s> 1 we use M, ,(R) to denote the R-
module consisting of all r x s matrices with entries in R; also, if t>1 then M, (R)*
denotes the t-fold Cartesian product of this module with itself. If Ce M, (R)
then for any k>0 a multilinear mapping ge: My .+ (R)*** >R can be defined by

U, c 0
gc(Uys..., Ugyy) = det : . s
Ud"l"k 0 I

where I is a kx k identity matrix; if k=0 the matrix on the right should be C.
If k> c and k>d another multilinear mapping fc: M, (R)}* >R is given by

U,
[y Uy =det{ Up_. »;
C 0

if k=4 the block of zeroes in the lower right-hand corner should not appear.

Supposed>c>1,Ce M, {R),and De M, ,_(R). Let N(C) be the collection
of all the ¢ x ¢ submatrices of C, and let N(D) be the collection of all the (d—c¢) x
(d—¢) submatrices of D. We define a bijection 7: MC)—»ND) as follows.
If X € M(C), X can be obtained from C by deleting, say, the itt,..., it . columns of
C; ©1(X) is the (d —c) x(d—c) submatrix of D obtained by deleting all its rows
except for the ith,..., ith .

~ ProrosiTiON (2.1):  Let C and D be as described. Suppose further that
CD=0, Ed LO)#0, and Ey(D)#£0. Then for any k>0 and any XeN(C)
with det r(X)qéO the multilinear mappings

fos 90t My 4 (R)¥47¢ —> R
have the property that (det X)-gp= t(det t{X))-f; identically.

PkOOF: First we show that f; and gp have the property that gp(Uy,...
U,‘M o= Owheneverfc(Ul, s Ugra—=0. Forif

U,
det Uk‘;d—c =O
C 0

then the rows of this matrix must be dependent, that s, if Cl, , Cl are its last ¢
rows then '

YaU +3% biC;: 0




370 Lorenzo TRALDI -

for some ay,..., Ggp - P1y--» b€ R, not all of which are zero.. Since E;_ (C)#0,
the last ¢ rows of this matrix are independent, so some of the a; must be nonzero.

‘D 0\ D0\ Do
0=2%a,U; + 25:C; = 2.a;U ,
e e 1) 0 I 0

v, D0
(Uk-l-‘d—c)(o'1>'
Then are dependent, so gp(U,,..., Upya_=0.

Now, suppose that X € MC) is obtained from C by deleting its it8,..., itk
columns. Choose U,,..., Upyq-. € M, 44 (R) so that for 1 <i< k the only nonzero
entry of U, is its (d+ i)', which is a 1, and for 1 < j<d—c the only nonzero entry
of U, ,isits i{", whichisa 1. A simple expansion by minors shows that f(U,,...,
Upia-o)=tdet X; also, it is not difficult to show that gp(U,,..., Upss.)=
+det 7(X). In particular, since det z(X }#0 it follows from the first paragraph of
this proof that det X #0.

Thus we have

so the rows of the matrix.

flUpsos Ugpand) = £ SQB(U;’“U Ukra-o) # 0,

with r=det 1(X) and s=det X. It follows from [3, Theorem (4.1)] that r-fo.=
+ s-gp identically, as claimed. Q.E.D.

Suppose LS S? is a tame link of y22 components, given with a régular pro-
Jectmn in the plane, as described in Section 1 We define a (1+), (” 1)) X

(u~—1+j,) matrix ¥, with entries in ZH,, as follows The first row corresponds
to the relator y,,, the next rows correspond to the relators 4u1s--» 9uj,o and the

last (,u )rows correspond to the triples (p, ¢, u) with 1<p<g<pu. The first

p—1 columns of ¥ correspond to the pairs (p, u), 1 < p<p, and the rest correspond
to the generators y,;,..., y,;,- The only nonzero entry of the firstrowisa 1 in
the column corresponding to y,,. For 1<j<j, therow corresponding to gq,;
has these nonzero entries: if e, is the overpassing arc of the uj'® crossing in the
projection and 1< p<y, then there is an entry of 1 or —¢,* (according to whether
d,;=1or —1) in the (p, ) column, an entry of 1%« in the column corresponding
to y,;, and an entry of —1 in the column corresponding to y,;.,; if e,, is the
overpassing arc of the gj'* crossing, then there is an entry of 1 in the column
corresponding to y,;, and one of —1 in the column corresponding to y” jtie
Finally, if 1<p<g<pu the row of V corresponding to the triple (p, g, 4) has

two nonzero entries: 1—¢,(in the (p, u) column) and ¢, — 1 (in the (g, #) column).
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That is, Vis the matrix

(ls ﬂ) vt (}1""1, .u) Yo Yuz * 0 Vuj,

0 - O I 0 « . 0
By ot Opuny v =1 |
. . . . 0
. . 0 - -1
TR T V).
\ Ny(u-1) 0

where the entries v; and v;; are as described above. (If u=2, N,(u~1) and the
lowermost block of zeroes should not appear.) By adding suitable multiples of
the preceding rows to the j** row, 2< j<j,+1, and reversing the sign of each of
the last j, —1 columns of the resulting matrix, we obtain a matrix

(o)

( Xy vt Xyey ) V
X o= L .
Ny(u—1)

and I is a j, x j, identity matrix. The entries of the first row of X are given by

where

Fu=1 I
X; = 0; ; + U0 ;.
i Jui j=21 (&g+l k) Ji

It is not difficult, because of the manner in which X was obtained from V,
to show that E{V)=E(X)Vke Z. (See [5, Theorem 1.4 and Lemma 1.2]; note
that our notation differs somewhat from that used there.) - As the first step in
the calculation of these ideals, we have

- Lemma (2.2): B
o S = S
o T sea-D=(T -1 -

. 5 =1 .
and'if 1<ij < - <f<p
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k k
3 % (=1 = 11 the + 1€ UH%
PROOF: Not§ that whenever 1<j<j,
' » #-1
.~§1 v (—1) =v; - 1,
and hence
=1 Ju 1,
L xelti-D = (}l v) = 1=(IT#) -1

If 1<i<p and 1<£j<j, then v;(#;,—1) is either ¢} —1 or 0, according to
whether or not the overpassing component of the uj*® crossing of the projection
is K;; since #;—1=r(t;—1) (mod (IH,)?) for any r € Z, it follows that

in
x-(ti—1 = '21 v (= =4, (=D =1t} — 1,
J=
the congruences holding modulo (‘IH“)Z. Thus if 1<i; <+ <i,¢ <g -
o A .
g;xn.'(ti,.'— ) = Z (- 1) = (I':I “'*') -1
modulo (IH,)2. B . . " Q.E.D.

If u=2, X is a 1 x1 matrix with the same determinantal ideals as V, so we
immediately obtain '

COROLLARY (2.3): ¥ pu=2, E(V)=ZH, and

121 —

If p=3, X is the 2x 2 matrix

1“;‘t2 tl"‘l ’

so since the determmantal 1deals of X and Vcomclde we obtain
COROLLARY (2.4). If,,u==3, Ez(I/)=ZH E, (V) 4y, 2)-}-IH‘,‘, and
Eo(V) = (theg)—1).

Proor: The determination of Ey(V)=Ey(X) follows immediately from the
first assertion of Lemma (2.2), while that of E,(V)=E(X) follows from the
congruence x;= £, (mod IH,), which is a corisequenéé of the second assertion of
Lemma (2.2). oo w o ~QUED.
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The determination of the determinantal ideals of X and V for u>4 requires
a detailed discussion of the submatrices of N Hu—1). To facilitate thls discussion
it is convemcnt to introduce a new piece of notation: if 1<i,<- <zk<y then
N,i,,... zk) is the submatrlx of N,(u—1) obtained by deleting its z“’ column
whenever z%{:l, A and deleting the row corresponding to (p, ¢) whenever
either of p, q is not among iy,..., i, (Equivalently, N,(i,,..., iy) is obtained from
N (k) by replacing ¢, by tis lsjsk.) S

LemMa (2.5): Suppose Y is a square submatrix of N,(u—1) and det Y#0.
Then by permuting rows and columns Y can be brought into upper triangular
form.

Proor: Suppose Y has y columns and rows. If y=1,the assertion of the
lemma is trivial. : :

Proceeding inductively, suppose y> 1, and suppose Ymvolves the ifh,.., ith
columns of N,(u—1), where 1<i; <+ <i,. If some row of Y has only one non-
zero entry, then by permuting rows and columns we can move this entry to the
bottom right-hand corner of Y; then the (y— 1) x (y~1) submatrix of Y obtained
by deleting its last row and column must have nonzero detérminant, soby inductive
hypothesis it (and therefore Y) can be put in upper triangular form. On the other
hand, if every row of Y has at least two (and, ‘therefore, preciseley two) nonzero
entries, then Yisa submatrix of N 2(iys-.., iy); however, the columns of N iy iy)
are linearly dependent (if one multiplies the j* column by ¢, —1, 1<j <y, the
:esultmg columns add up to 0), contradicting the assumptlon that det Y#0.

Q E.D.

Gwen a (not necessarily square) submatrix Y of N (u—1), we define integers

7P Vue s (T, 92V, pui(¥) as follows: y(Y) is 1 or 0 according to
whether or not Y involves the i*® column of N,(u—1), and p(Y) i is the number

of pairs (p, ) such that Yinvolves the {p, g) row of N,(u—1) and one of p, q is
i. These integers are intimately related to the determmants of the square sub-
matrices of N,(u—1), as we see in

LemMA (2.6): If Y is a yxy submatrix of N,(i—1) with nonzero deter-
minant, then ’

B=1

det Y=+ I] (; _1)m(¥) yi(ry
and, in pa?éiculdf,‘pi(l’)23:5(Y)for ea'c’h i.

Proor: If y=1 then there are p, ¢ such that y(Y)=1, y(Y)=0 whenever
p#i, p(Y)=1=p(Y), and p,(Y) -0 whencver p#i#q (i.e., Y involves the
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p** column and either the (p, ¢q) or the (g, p) row of Ny(u—1)). Then det Y=
+(t,—1), as claimed. .

 Proceeding inductively, suppose y>1. By Lemma (2.5), some row of Y
must have only one nonzero entry; let Y; be the 1x 1 matrix consisting of this
entry, and Y, the (y—1)x(y—1) submatrix of Y obtained by deleting the row
and column of Y containing this entry; clearly then y(Y)=y(Y,)+y{Y,) and
pLY)=p{Y,)+pAY,) for any i. Since det Y= +(det Y,)-(det Y;), the result now
follows from the inductive hypothesis. Q.E.D.

Let N, (z—1) be the (u—1)x 1 matrix whose it entry is t;—1. Note that
Ny(u—1)-N(p—1)=0 for any p>3.

PROPOSITION (2.7): Let C be a (u—2yx(u—1) submatrix of N(u—1).
If E{(C)=0 then f is identically zero, while if E,(C)#0 .

#=-1
fc = + ( E ({i_1)pc(C)~w(C)).gN!(ﬂﬂ)

identicall Y. Conversely, whenever p,..., p,_; are non-negative integers with
Yo, =1—3, Ny(u—1) has some (u—2) x (u—1) submatrix C such that

B
fe=%( £Il &= 179 gnu-1)
identicall y. |
Proor: First, suppose C is a (u—2)x(u—1) submatrix of N z(u; 1. If
E(C)=0 then the rows of C must be linearly dependent; clearly then f is indeed
identically zero. 7 '
If E,(C)#0, let Y be a (u—2)x(u—2) submatrix of C with nonzero deter-

minant; then Y is obtained from C by deleting a single column, say, the g'*.
By Lemma (2.6), :

-1
det ¥ = (= 1)- TI (1= D)o@,
=1

. Since Ny(u—1)-N,(u—1)=0, certainly C-N;(u—1)=0. By Proposition (2.1),
then, ‘

(et ) gy,u-1y = F (det«(Y))-fc

identically, where 7(Y) is the submatrix of N,(u—1) obtained by deleting all
its rows except the ¢'t; that is, 7(Y) is the 1 x 1 matrix whose sole entry is £,—1.
That ' ‘ '

B oy . V
c=*( g (li—1)"‘(6)—?"(0)‘ng(;wl),
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follows immediately, by cancellation.

For the converse, suppose p,,..., p,~, are as in the statement. As shown
by Crowell and Strauss [3, Proposition (5.2)], N 2(#—-1) has some (]1 2)x (;1 -2)
submatrix Y with

det Y= +(t;—1)- ’:r'f (= 1),
det T =D

which does not involve the first column of N(u—1). IfC is the (u—2)x(u—1)
- submatrix of N,(u— 1) of which Yis a submatrix, then by Proposition (2.1)

(det Y) gy u-1) = £ (deto(Y))-fe

identically. Since 7(Y) is the 1 x 1 matrix whosg lone entry is t; — 1, we obtain
fe=*( zI;Ii €= D) gyu-1)
by cancellation. ‘ ' | Q.E.D.

Using this result, we can prove

THEOREM (2.8): If u>4 then

E((V) =( I'I tj) =1)-(IH 3,
Jor 1<k<pu-2 ‘

E(V) 2 (H,71 + 5 (6)-({t=1Ir £}y

* Ek z« ﬁ 9 = 1) ({1, = 1P 2 ({6 = L] Vg rih

where the sum 3 is taken over the set of all p-tuples (j,,..., j,) with 1< j, <+ <
Jp<u, and

E“_l(V) = ZHP

PrOOF: Since X and V have the same determinantal ideals, we may confine
our attention to X; that E,_,(X)= ZH follows from the fact that X has only
i—1 columns.

The ideal Eq(X) is generated by the determinants of the (u~1)x(u~1)
submatrices of X. Since the columns of N,(u—1) are linearly dependent, if
such a submatrix is to have nonzero determinant it must involve the first row X,
of X. Thus Ey(X) is the ideal of ZH, generated by the values of JdX),as C
varies over the set of (u— 2) x (1 —1) submatrices of N,(p—1); by Proposition (2.7),
then,
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Eo(X) = (9N,(;¢~1)(X1))"(IH;.)"-3 :

The determmantlon of EO(X) is completed by the calculatlon (m the first assertlon
of Lemma (2.2)) of 9&(» 1)(XI)
Suppose 1 <k < u—2, and let E be the ideal which, accordmg to the statement

is contained in E(V) = E(X).

Recall that by [3, Proposition (5.2)], (IH”)“" F=E (N {u—1)), so since
N,(u—1) is a submatrix of X, (IH, yi—k e E(X).

If 1<j<u—~1, then by [3, Proposition (5. 2)] s, —1]r¢ j})‘“"z ko
EdNy(1,.c,j=1, j+1,..., u—1)); clearly (x)-ENy(1,..., j—1, j+1,..., u—1))&
E(X). By the second assertion of Lemma (2.2) x;=£; (mod IH,), so since
(H, 17+ E(V), (6 )({t,— Lr#j})# 2 S E(V).

Now, suppose that 2<p<pu-—1-k, 1<, <--<j,<p, {rl, o Pymimpt=
{Le, =1} ={jiseers jpby @nd Yyseery Yo Zyyeees Z,-1-p ar€ nON-negative integers
with ¥ y,=p—2 and ¥ z,=u—1—k—p. By [3, Proposition (5.2)] Ny(ry,...,
Tu-1-p) has a (u—1—k—p)x(u~1—k—p) submatrix ¥’ with

w—1-p
detY = + 1‘11 (1, —1)s..
AR -
By the first paﬁ of this proof, the matrix

N2(j1”"7 Jp)
has a px p submatrix Y” w1th ’
det Y" = +* ng(.u» Jp)((xll xfp)) H (t ._l))’q
It follows from the second assertion of Lemma (2.2) that
‘ ' : p ©
det ¥' = ([T tfir = 1) [T (¢, ~ D+(mod (IH,)7).
q= q=

The matrix X has a (u—1—k)x (;@— 1—k) submatrix Y which, when its rows and
columns are suitably permuted, is of the form

Y z\
: («0 Y ) =
'for some matrlx Z Hence o
| det Y= & (det ¥)-(det ¥")

‘ Ei((l‘_It};‘é)—-l}(H(:jq—l)“)( [T @,—D%)
g=1 g=1 g=1
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modulo (IH, )17k, so since (IH,)*~! “"CE,‘(V) this product is an element of
E(V). _ _
This completes the proof that ECE,‘(V) I Q. E D.

~ The inclusion of Theorem (2.8) is actually an «equélity,A but sinée this fact will
not be needed, we will not verify it.

3. Proof of Theorem 1. Let L < S3 be a tame link of p>2 components with
a regular projection in the plane, and let P be the (;1 +m +< g )) X (( ‘g)%— n)

presentation matrix of B, described in Section 1. Then E(B;)=E(P) for any
value of k, so if ¢: ZH— ZH,, is the homomotrphism defined in the introduction
GE(B,)=¢E(P)=EJ/(H(P)) for any k, where ¢(P) is the matrix whose entries
are the images under ¢ of those of P.

~ We rearrange the rows and columns of P in the following manner, obtaining
thereby a matrix ¢ with the same determinantal ideals as P. The first (” 51)

columns of Q are the columns of P corresponding to the pairs (p, q), 1< p<g<p,
and its next n—j, columns are the columns of P corresponding to the generators
yip 1<i<pand 1< j< ji;; the next u—1 columns of Q are those of P corresponding
to the pairs (p, ), 1< p<y, and the last j, columns of Q are the columns of P
corresponding to the generators y” i 1<j<j,. The ﬁrst a—1 rows of Q are those
of P corresponding to the relators y;,, 1< i<y, the néxt m—j, rows of Q dre those

of P corresponding to the relators g;;, I<i<pand 1<j<jj, and its next (" 3 1)

rows are the rows of P corresponding to the triples (p, g, ), I<p<g<r<p.
The next row of @ is the row of P corresponding to the relator y,,, and after that

come the rows of P corresponding to the relators g,;, 1<j<j,; the last (*“5 1)

rows of  are the rows of P corresponding to the triples (p, g, p), I<p<g<yu.
It is not difficult, using the explicit description of the entries of P given in
Section 1, to ascertain that ¢(Q) may be partitioned as

P U
¢(Q)=< )
0o v

where P’ is a(u 1+m-~j +(”3 1)) ((‘“ 1>+n-w}“) matnx, and V i the
(1 + J,,+(” 1)>x(y 1+j,) matrix discussed in Section 2. ‘

. Lemma (3.1): Fm any keZ
E(P) = E,C(¢(Q)):' z EI(V)Ek—x(P)

* Proor: - The former inclusion follows from the observation that if Yis a
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yx y submatrix of ¢(Q), y=>u+j,, then the expansion of det Y by minors along
the last p—1+j, columns of Y expresses det Y as the sum of certain multiples of
the determinants of certain (y—pu+1—j,) x(y —u+1—j,) submatrices of P'.

The latter inclusion follows from the observation that if Y’ is a y’ x " sub-
matrix of P’, and Y” is a y” x y” submatrix of ¥, then <}>(Q) has a (y +y)x +y")
submatrix whose determinant is (det Y*)-(det Y"). ‘ Q.E.D.

Just as in [9, §4], a regular projection of the link L, in the plane can be
obtained from the given regular projection of L, by replacing each crossing in
which K, passes over some component of L, by a trivial crossing. If this pro-
“jection of L, is used to obtain a presentation matrix for the ZH,~-module B, , as
in Section 1 then P’ will be the presentation matrix obtained; hence E(B, )=
E(P’) for any value of k.

Since ¢E,(B,)=¢E(P)=9¢E Q)= E(¢H(Q)) for any k, we conclude from this
and Lemma (3,1) that

E(B.) 2 ¢E(By) 2 E:. E 1 -iV)E_ys1+4BL,)
for any ke Z. Theorem 1 n{wé follows from Theorém (28) ’
4. Proof of Theorem 2. Consider the ZH-module By/IH-B,. If P is any
presentation matrix for B, (e.g., the one discussed in Section 1) then clearly -
P
((—-DI
t,~ DI

is a presentation matrix for this module, where I is an 1dent1ty matrix. From
[10, Lemma (3.1)] it follows that

2 Ev.i(B)-(IH) = 3 Ey (B /IH - By)-(IH)
iz0 i20

for any ke Z.

Massey [4, Lemma 1] has observed that B,/IH-B, and G,/G, are isomorphic
abelian groups. Therefore, if we consider the latter as a trivial ZH-modulé i.e.,
one with the property that h-x= x\?‘keHVxeG,_/Gg,), we have Ek(BL/IH By)=
E(G,/G;), and hence

;Zb Ey, {Br) '{ (IH)i =; EQEH E(sz(;?) * (IH)ia

for all values of k.
As noted in the introduction, Chen [1] has shown that the matrix Ais a
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presentation matrix for the abelian group G,/G;. It follows that the trivial ZH-
module G,/G; has the presentation matrix :

2
(tl"l)l s
(t,— DI

where I is, again, an identity matrix. Another application of [10, Lemma (3.1)]
shows that '

T Evsi (B)-UH) = T Ey () UHY

B i20
for any ke Z, and in particular
T Eg+{By)-(IHY = T E@.{4)-(UHY = ZH.
i20 20
(Note that this provides an alternate proof of Corollary 1.) Consequently, if

1sks(g)

% v ABD) - (HY: + UHY
= 5 E-sdB0)- (UHY
= % E-ss ) ()
20
=S E-wrD-UBD + ()

This completes the proof of Theorem 2.
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