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Introduction

A link in S%is a union L=K, U---U K, of finitely many, pairwise disjoint,
embedded copies of S1, its components. In this paper we will consider links that
are ordered (each component K; has been assigned a certain index i) and oriented
(each component has a preferred orientation). Two such links are equivalent
iff there is an orientation-preserving auto-homeomorphism of S3 under which the
image of the ith component of one is the ith component of the other, for each i;
the orientations of the components must also correspond under the atuo-
homeomorphism. We will restrict our attention to links that are tame, that is,
equivalent to polygonal links.

Among the simplest invariants of such a link are the linking numbers. If
i#je{l,..., u}, the linking number /(K;, K;)=/(K;, K;) can be obtained from a
regular projection of L in the plane (that is, a projection in which the only sin-
gularities are double points, of which there are only finitely many) by assigning to
each crossing of K; over K; one of the integers +1, according to a suitable ori-
entation convention, and then adding up the integers assigned to the various
crossings of K; over K;. (Other definitions are given in [3, p. 132].) We will
call a link null iff the linking number of every pair of its components is zero.

The group of a link L is the fundamental group G=mn,(S3—L) of its comple-
ment. Certain elements of this group, the meridians, are distinguished; if 1<
i<u the ith meridian m; of L (or the meridian to K; in G) is represented by a
loop in S3— L which is simply linked with K; (with linking number +1), and is
unlinked from the sublink L—K,; The meridians are well defined only up to
conjugacy.

The lower central series subgroups of G are given by: G, =G, and if g>1
then G,, , is the subgroup generated by the set of commutators [g, h]=ghg~'h™!
with ge G, and he G. As an abuse of language, if ¢>2 we will use “meridians’’
to refer to the images m;G, of the meridians of L in G/G,. In particular, if L=
R, u--U K, is a tame link in S* with the same number of components as L,
and G is the group of L, then a homomorphism G/G,—G/G,, p, 4>2, is meridian-
preserving iff the image of the ith meridian m;G, of L is the ith meridian n“a‘,.Gq of
L, for 1<i<p. Similarly, if p,g>3 a homomorphism G,/G,~G,/G, is
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meridian-preserving iff the image of the commutator [m;, m;1G, is [, n'zj]Gq
whenever 1 <i, j<u. Of course, a meridian-preserving homomorphism G/G,—
G/Gq induces a meridian-preserving homomorphism G,/G,— Gz/Gq by restriction.

In this paper we are concerned with the relationship between the linking
numbers in a link L and the isomorphismtypes of the groups G/G; and G,/G;
under both meridian-preserving and arbitrary isomorphisms. This relationship
was first noted by K.-T. Chen [1].

He showed that the group G/G; has the presentation

{Xgseens Xus Pis Pijk>,
in which there are relators

Pijx = [[x, xj]’ xi]
whenever 1<1, j, k<p and

pi = TI [xi x;]t&KeKD
J#i

whenever 1<i<pu. Here the generator x, represents the meridian m;G;. (Also,
any one of the relators p; is a consequence of the other relators, and can be deleted

from the presentation without effect.)
He also showed that the abelian group G,/G,, written multiplicatively, has

the presentation

{X125000s Xy 1 3 Oy 0'ijhk>
in which there is a generator x;; whenever 1 <i< j<u, a relator
Cijhe = [xij’ X
whenever 1<i<j<pand 1<h<k<y, and a relator

o, = (J] x4&050) - (TT xifpKekr)
Jj<i j>1

whenever 1<i<pu. Here the generator x;; represents the commutator [m;, m;1Gs.
(As before, any one relator o; is redundant, and can be deleted.) Equivalently,

if we define a px (",‘) matrix A, with rows and columns indexed by {1,..., 4} and
{(p, 9I1 < p<q<yu} respectively, by
/(K;, K)) if i=p
A‘l(p,q) =\i— /(K{, Kp) if i = q
0 if p#i#gq,

then A is a presentation matrix for the abelian group G,/G;.
Using these presentations, it is a simple matter to verify
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TheoReM 1. Let L=K,; U--U K, and L=K, u--u K,S8° be tame
links with groups G and G, and suppose that either

/(Ki, KJ)= /(Iz,', K_,) fo" a” i#je{l,..., [.l} or /(K,', K_])= - /(K,', K,)
Jor all i#je{l,...,u}. Then there are meridian-ptrserving isomorphisms
G/G3=G|G; and G,/G,=G,|G,.

Counterexamples to the converse of THEOREM 1 are constructed in §1, using
connected sums of links. Motivated by these, we make the following

DEeFINITION: A link L has inseparable linking numbers (loosely, L is
inseparable) iff whenever the linking numbers in a connected sum L’ # L” are
identical with those in L, at least one of L, L” is null (or a knot).

This definition is discussed further in §2. Using it, we prove

THEOREM 2. Let L=K,; U---U K, and L=K, U---U K, be tame links in
S3, with groups G and G. Then any two of the following are equivalent.
(a) Whenever K; U---U K;, has inseparable linking numbers, either /(K
K,-k)=/(12,.j, R.) for all j#ke{l,....n} or /(K;, K,.k)=—/(12,.1, R.) for all
J#ke{l,...,n}.
(b) There is a meridian-preserving isomorphism G/G;=G/G,.
(¢) There is a meridian-preserving isomorphism G,/Gy=G,/G,.
(d) There are matrices B and C with A=BJ and 1=CJ, where 1 is the matrix
defined as A was above, but using the linking numbers in L rather than those in
L,

In particular, then, the converse of Theorem | does hold for inseparable
links.

Theorem 2 also yields a simple necessary condition for the existence of
meridian-preserving isomorphisms, when combined with the observation that
any two-component link is inseparable, namely, the following

COROLLARY. Let L, LS S3 be tame links with groups G and G, and suppose
there is a meridian-preserving isomorphism G,/G, ~G,/Gy. Then /(K;, K))=
+/(K,, I?J-)for all i#je{l,..., u}.

Given a ux u integral matrix A, let 4 be the (é‘) X (f)‘) matrix, with rows and

columns indexed by {(p, q)|l<p<qg<u}, whose (i, AP, @) entry is g jpay=
Ayp0 54— 305, Whenever 1<i<j<p and 1<p<qg<u. As can easily be verified,
if A is nonsingular, 4 will be too; in fact, (4)~1=(4"1).

THEOREM 3. Let L=K, U--U K, and L=K, U--- U R, be tame links in
83, with groups G and G. Then GJG, ~G/G,; iff there are ux pu matrices A, B,
and C, A invertible, with A=BIA~! and 1=ClA.

Before concluding this section, we must thank Sharon Richter for her il-
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lustrations. It should also be mentioned that an earlier version of some of this
work was presented to the American Mathematical Society on August 19, 1981,
in Pittsburgh, Pennsylvania.

1. Some Counter-Examples to the Converse of Theorem 1.

The class of examples we consider consists of certain links which can be
decomposed as ‘“‘products’ or ‘“connected sums’. Following Schubert [4,
p. 142], this concept is defined as follows. Let S<S? be a tame embedded two-
sphere; then S3—S is the union of two open three-balls, say, B’ and B”. Let
L'=K, U--U K, and L"=K{ U---U Kj be tame links such that L'SS U B,
L"cS U B",and L' n S=L" n S consists of a single simple arc (that is, a home-
omorphic image of the closed interval [0, 1]). Let I be the interior of this arc,
and suppose that I receives opposite orientations from the components of L' and
L”, say, K; and K7, that contain it. Then L=L' Uy L"—Iisalink of p=a+f-1
components in S3, each of which inherits an orientation from the component of
L' or L” that intersects it; the ordering of the components of L can follow any
pattern one may choose. Wesay Lisa connected sum of L' and L" obtained by
splicing together K and K'j. An example of such a connected sum is illustrated
in FIGURE 1; there L=K, U K, U K3 U K, is a connected sum of L'=K} U K}
and L"=K% U K% U K% obtained by splicing together K3 and Kq. (K} and Kf
have been moved off S, in the interest of clarity.)

A simple application of the Seifert-van Kampen theorem [3, p. 370] allows
one to deduce that if L is a connected sum of L’ and L” obtained by splicing
together K and K, and G, G’ and G” are the groups of L, L', and L" (respec-
tively), then G is isomorphic to the free product with amalgamation

GI:GII’

where C is an infinite cyclic group and the homomorphisms C—G’ and C—G"
which define the amalgamation map a generator of C to the ith meridian of L'
and jth meridian of L”. Furthermore, the meridians of L are precisely the images
in G of the meridians of L' and L".

We may now describe the examples we have in mind. Let L'=Kj U -+ U
K., ['=K{ u--U K., and L"=K} U---U Kj be tame links in §3 in each of
which some pair of components has nonzero linking number, and such that / X,
K%)= —/(K;, K}) for all i#je{l,...,a}. LetL be a connected sum of L' and
L’ obtained by splicing together, say, K; and K7, and let L be a connected sum of
L’ and L” obtained by splicing together K, and K. Let G, G, G', G, and G" be
the groups of L, L, L', L', and L”, respectively. Then G/G; is isomorphic to the
quotient of
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FIGURE 1
(G'/G3)x(G"/G3)
by its third lower central series subgroup, and G/Gj is isomorphic to the quotient of
(G'!GQ):(G”;’GZ)

by its third lower central series subgroup. By Theorem 1, there is a meridian-
preserving isomorphism between G’/G% and G'/Gj; hence there is also a meridian-
preserving isomorphism between G/G, and G/G,, even though L and L do not
satisfy the hypothesis of Theorem 1.

2. Links with Inseparable Linking Numbers

Restating a definition given earlier, a link L=K; U ---U K, has inseparable
linking numbers iff whenever a connected sum L'#L"=K, U--U K, has
/(K;, Kp)=/(K,;, K)) for all i#je{l,..., u}, at least one of L' and L” is either
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null or a knot. In this section we discuss this concept further, after recalling
some definitions from graph theory, taken (with slight modifications) from [5].

A simple graph ,=(V, E) consists of a set V (the set of vertices of ;) and a
set E of doubleton subsets of ¥ (the set of edges of 4); either E, or both E and ¥,
may be empty. Two vertices v, we V are adjacent iff {v, w}e E. The graph &
is connected iff whenever v, we V there is a finite sequence v=uvy,..., U,,=w of
vertices, each of which is adjacent to its successor. The maximal connected
subgraphs of a graph are its connected components.

In a connected graph g, it may be that the removal of a single vertex (and the
edges which contain it) will produce a disconnected graph; such a vertex is some-
times called an articulation point of ,. We will call a connected graph 2-
connected iff none of its vertices is an articulation point; for instance, we consider
any simple, connected graph with no more than two vertices to be 2-connected.
(Though convenient for us, this use of the term “2-connected’’ is not completely
standard [35, p. 131].)

Now, suppose L=K,; U---U K,=8% is a tame link. We define the linking
graph of L to be the graph &4(L)=(V, E) with V={v|/(K;, K;)#0 for some
j#ie{l,..., u}} and E={{v, v;}|/(K;, K;)#0}. For instance, the linking graph
of the link L of Figure 1 is indicated in Figure 2. (As usual in pictorial repre-
sentations of graphs, dots represent vertices, and line segments represent edges.)
Note that this graph is not 2-connected; the vertex v, is an articulation point.

FIGURE 2

This is no mere coincidence, as we see in

PROPOSITION 2.1.  The link L has inseparable linking numbers iff its linking
graph 4(L) is 2-connected.

Proor. If the linking numbers in L are not inseparable, then there is a con-
nected sum L' # L”, whose components have the same linking numbers as those of
L, and in which neither L' nor L” is either null or a knot; then 4:(L)=
(L # L") The graph 4(L’ % L") cannot be 2-connected, though, for it is
connected, the vertex corresponding to the component along which L’ and L”
are spliced together will, clearly, be an articulation point.

On the other hand, suppose 4(L) is not 2-connected. If it is not connected,
let L' be the sublink of L consisting of those components with the same indices
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as the vertices of some single connected component of %(L), and L” the link
consisting of the remaining components of L together with a single unknot, un-
linked from them. Any connected sum of links equivalent to L’ and L”, in which
this unknot in L” is spliced together with some component of L', will, clearly,
have the same linking numbers as L.

If éa(L) is connected but not 2-connected, it must have an articulation point
v;. Let L’ be the sublink of L consisting of K; and those components of L with
the same indices as the vertices of some single connected component of the graph
obtained from 4(L) by deleting v; (and all edges containing v;). Let L” be the
sublink of L containing K; and, in addition, all the components of L not con-
tained in L'. Then the connected sum of links equivalent to L' and L”, in which
the two copies of K; are spliced together, will have the same linking numbers as L.

Either way, we conclude that if 4(L) is not 2-connected L cannot have
inseparable linking numbers. Q.E.D.

3. The Maximal Purely Inseparable Sublinks of a Link

We will say that the linking numbers in a link are purely inseparable (or,
loosely, that the link itself is purely inseparable) iff they are inseparable and, in
addition, every component of the link has nonzero linking number with some other
component. An arbitrary tame link L in S may then be expressed in an es-
sentially unique way as L=Lg, U--- U Ly, where L, is the (possibly empty)
sublink of L consisting of those components whose linking numbers with all other
components are zero, and L,),..., L, are the maximal purely inseparable sub-
links of L; in particular, v=0 iff L is null. Also, note that Loy n L is empty
if j>1, and if j>i>1, L; n L is either empty or a single component of L,
for if L;;) and L;, were to have two or more components in common Ly U L
would be purely inseparable, violating the maximality of L and L;,.

LemMA 3.1.  Ly,,..., L,y can be indexed in such a way that for j>2, L;yn
(Lty U---U Li;_yy) is either empty or a single component of L.

PROOF. Observe, first, that there can be no sequence Lg,yseees L,y of
pairwise distinct, maximal purely inseparable sublinks of L, n>3, such that
L,y 0 Lg,y#8# L,y N Lg,,,, for 1<k<n; for if there were such a sequence,
L,y U+ U L,y would be purely inseparable. We inductively index the set of
all maximal purely inseparable sublinks of L as follows. First of all, let Ly be
any maximal purely inseparable sublink of L.  Suppose that, for some integer j(1 <
Jj<v), we have already chosen Ly,,..., L ;. If there is a maximal purely inse-
parable sublink L’ of L distinct from L,),..., L(;), such that L' 0 {L¢;, U -+ U Ly}
#@, then let L;, ;) be any such sublink. If there are no such sublinks, then let
L;.+,y be any maximal purely inseparable sublink of L which is distinct from
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Liyys..., L¢jy. By this process, we obtain an indexing L,y,..., Ly, of all maximal
purely inseparable sublinks of L. From the observation of the preceding para-
graph, we can see that this indexing has the required properties. Q.E.D.

The reader may have recognized that this proof is essentially graph-theoretic:
in the first paragraph it is observed that a certain graph with v vertices is a forest
(that is, its connected components are trees), and the remainder of the argument
is based on this observation.

Given a link L and its sublinks L,..., L, defined above, we define a se-
quence L,,..., L, of links in the following manner: if Li;, N (Lo U+ U Lg;-1y)
=g (in particular, if j=0), L;, consists of L;, and a single unknot, unlinked from
Ly if Ly 0 (Ley U+ U Ly-1)#8, L;=Ly). A link L can be obtained
from links equivalent to Ly,..., L, by repeated use of connected sums, ar-
ranged so that in the formation of the jth connected sum either the extra unknotted
component of L;, is spliced together with some component of the result of the
first j— 1 connected sums (if L(;# L ;), or else the two copies of the component
Ly, has in common with L, U+ U L(;_,y are spliced together (if Ly=L;).
Clearly this link L has the same linking numbers as L.

Let G;=n,(S3—L;) for 0<j<v. Let P be the group obtained from
by repeated use of free products with amalgamation, arranged so that in the
formation

G(0y/Goy3s++» Gw/Guys

of the jth free product with amalgamation the amalgamated subgroups are either
both trivial (if L ;,# L;), or are both infinite cyclic subgroups, generated by the
meridians to the copies of the component L, and Ly, U+ U L¢;—;, have in
common (if L;;,=L;). Then we have

PROPOSITION 3.2. The quotients P|P; and G|Gy are isomorphic and fur-
thermore, such an isomorphism exists, under which the meridian to K; in G/G;
corresponds to the image in P[Py of the meridian to K; in G;/G;y; whenever
K;s L.

Proor. By Theorem 1, if G is the group of L then there is a meridian-
preserving isomorphism G/G;=G|G,. Thus it suffices to show that there is an
isomorphism, as described, between P/P; and G|G,. This follows immediately
from the relationship between the group of a connected sum and the groups of the
links which are spliced together to form it (see §1). Q.E.D.

4. Proof of Theorem 2
Suppose L=K; U--U K, and L=K, u--U K, are tame links in S°
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satisfying condition (a) of the statement of Theorem 2. Since any two-component
link is inseparable, it follows from (a) that /(K;, K;)=+/(K;, K}) for all i
je{l,...,pu}, and so if iy,...,i,e{1,..., u} then K; U---U K;, has (purely) in-
separable linking numbers iff 12,.1 U--u K;n does.

In particular, then, if L=Ly U---U Ly, is the decomposition of L defined
in §3, and for 0< j<v we let EU, be the sublink of L consisting of those com-
ponents K; such that K;= L ;), then L=L, U--- U L, is the decomposition of
L defined in §3. That is, Lo, consists of those components of L whose linking
numbers with all other components of L are zero, and L,,,..., L, are the
maximal purely inseparable sublinks of L. For 0<j<v let Gy=mn(S83—L;)
and G;,=n,(S*~L). By (a) and Theorem 1, for each j there is a meridian-
preserving isomorphism between G;/G;); and G ;/G ;3. The existence of a
meridian-preserving isomorphism between G/G; and G/G; now follows from
Proposition 3.2.

Thus if L and L satisfy (a), they also satisfy (b). Obviously, if L and L satisfy
(b) they must satisfy (c).

If L and L satisfy (c), then the elements a,..., o, of the (multiplicative) free
abelian group on {x;;|1 <i<j<pu} (given by the formula appearing in the pre-
sentation of G,/G; mentioned in the introduction) must be elements of the sub-
group generated by the elements 4,,..., &, (given by the analogous formula);
that is, there must be a u x y integral matrix B with A=BJA. Similarly, there must
be a yux p integral matrix C with A=CJ. Thus if L and L satisfy (c), they also
satisfy (d).

To complete the proof of Theorem 2, then, it suffices to show that if L and
L satisfy (d), they must satisfy (a) too. Note that since the sum of the rows of 1
is zero, for any je{l,..., u} there is a matrix C, with 1=CJ, whose jth column
is without nonzero entries. Similarly, for any je{l,..., u} there is a matrix B
with 2=BJ, whose jth column consists entirely of zeroes.

Suppose iy,...,i,€{l,...,u} and K; U---U K;, has inseparable linking
numbers. We distinguish three cases: this link may be null, or purely inseparable,
or neither.

Suppose, first, that K; U--U K;, is null. For convenience’ sake, we may
assume that i, <.--<i,. If B=(b;) and C=(c;;) are matrices with A=BJ and
A=C2 then, in particular, for 1< j<k<n we have

~ —~ i
/(Kij’ K;) =1ij(ij,ik) = .';1 Cijiiciz i)

= ciji]/(Kl' Kik) - ci/ik/(Ki_,9 Kik) = 05

j’

since /(K;, K;)=0. Thus K; U---u K, isalso null, so

j’

/(K K) = /(K K) = — /(K,, R,)  forall j#ke(l,.,n}.

1
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Second, suppose that K; U -+ U K;, is purely inseparable; as before, we may
assume that i; <---<i,. As noted earlier, there are matrices B=(b;;) and C=
(c;)) such that A=BIi, 1=C2, and b;,=0=c;, for all ie{l,...,u}. Then for
1< j<k<n we have

/(K Klk) = 'll](l_, i) = Z biﬂil(lj ) = (bl_,lj bU,k)/(KU, Knk)

U’

I
- lik(ij.lk) == l_; biki'li(ij,ik) = (bikik .,J,)/(K;,, K.'k)

and, similarly,

4.1 /(Izip Izi,‘) = }‘i_,(ij,ik) = (Ci,i,- .,:k)/(K.,, K;)
ol Iik(i/,ik) = (Cipin— .,‘x,)/(K.ja K;).
Also, for 1 < j<n we have

/(K; /(Ki, K,) = —b;;,2(Ki, K;)

ip Ki,,) = bljlj

and

(42) /(K K ) Bl cl]l,/(Kl_n ) i 1,,1_,/(K1p Ki,,)'

lj’

In particu]ar, note that for j#ke({l,..., u} the integers /(K;, K;) and
/(K;, K,) are multiples of each other, and hence /(K,, K)=+7/(K,, k).
If n=2, this is all we need prove.

We claim that necessarily c;; =0 whenever j#ke({l,..,n—1} Since
K;, U--U K;, is purely inseparable, its linking graph /Z(K; U-U K;) is
connected and has no articulation points, by Proposition 2.1. In particular, if
j#ke{l,..., n—1} then since v;, is not an articulation point of this graph, there
must be some sequence v, =uv;,, U, ,---» Uy, =0;, Of vertices, each of which is
adjacent to its successor, such that k,,;éj for 0< p<n. By replacing this sequence
by an initial segment, if necessary, we may assume that k,#n for 0<p<n. For
L<p<nuy,,_ , is adjacent to v, , so /(K,k o K,-k");éO.

Now, if 13p<n then since k,,_laéj;ékp,

0 = il](lk’, s lkp) Z Cljl l(lk’, 1 ikP) (cijl'kp_l_cijikp)“/(Kl'k’,_,’ Klkp)

if k,_, <k,, while if k,_; >k,

O = ;Li.l(ikp'ikp—l) = (cl'jl'k', '_I'kp 1)/(K'kp “‘)1—1).
In either case, since / (K«'k,,_ ) / (K,k ) _)#0, necessarily ¢, =
Cijiep s Since this holds for 1< p<n, we conclude that Cijiv,,_, =Ciji- Also, since

kn—l #j#kn=na
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le(l,‘"_ in) = C‘Jikn 1/(K'kn—1’ Kin) =0

so since /(K _,K;)#0, necessarily c _,=0. This verifies our claim that

=0 wheneverj;éke{l s p—1}.

A second claim we make is that ¢;; =¢;;, for all je{2,..,n—1}. Since
%(K;, U---U K; ) is connected and v;, is not an articulation point, if 1< j<p

there must be some sequence v;,=uv;,..., ;, =v; of vertices, each of which is

adjacent to its successor, such that Jp#Fn for 0<p<m. For 1<p<m, /(Kilp-n

K,.Jp);éO since Viy,_, is adjacent to v;, . By (4.1) and the first claim,

l]lk

l/lk

/(Kij',_]’ Kij’,) = cilp-li!p-l ‘ /(Kij,,_]’ Kijp) = Cl'lpij ) /(Ki.lp-l’ Kl'jp)!
and hence ¢;,_ ;. ,=¢;,i,,» for 1<p<m. Thus Ciji,=Ci,4,, verifying our second
claim.
By (4.1), (4.2), and our two claims,
/(szﬁ Klk) e cun/(Kl_,’ Kik)

for all j#ke{l,...,n}. As noted earlier, /(K,J, ) /(K;, K;,) for all
J#ke{l,..,n}. SinceK; U--U K;, is purely 1nseparable some linking number
/(K;, K;) is certainly nonzero; from this we may conclude that ¢y, =+1
This completes our consideration of the second case.

Recall that, in the third case, K;, U--- U K, is supposed to be inseparable,
but neither null nor purely inseparable. If L’ is the maximal purely inseparable
sublink of K;, U---U K;, then /(K;, K;)=0 whenever either of K;, K, is not
contained in L’.  As in the second case above, thereis a c= +1 with /(K » I?,-k)=
c-/(K;, K;,) whenever L' contains both K; and K,. On the other had, if
j#ke{l,...,n} and either of K;, K,_is not contained in L’, then by the first case
above (applied to the null sublink K;, U K,), 0=/(K;, K,)=c-/(K;, K,).
Thus /(K,j, w=c-/(K;, K;,) for allj;éke{l,..., n}.

Combining our three cases, we see that if links L and L satisfy the condition
(d) of the statement of Theorem 2, then they must also satisfy (a). This completes
our proof of Theorem 2.

S. Proof of Theorem 3

As is well known, if K is a group and x,, y,, x,, y, € K satisfy x, K, =x,K,
and y,K,=y,K,, then [x,, y;]1K3=[x,, y,]K;. (This is a simple consequence
of [2, Theorem 5.3].) Thus if x, ye K/K, there is a single element of K,/K,,
which we will denote [x, y]JK;, with the property that [x, yJK;=[x,, y,1K;
whenever x=x,K, and y=y,K,. Also, if K=G/G, then the groups. G/G, and
K/K 3 are canonically isomorphic, as are G,/G5 and K,/K;; we will identify these
groups with each other. Using these notational conventions, we have
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LemMMA 5.1. Let L and L be tame links in S3, with groups G and G. Then
G/Gy=G|G, iff there are isomorphisms g: G/G,—G/G, and h: G,/G;—G,/G,
such that

h([x, y1G3) = [9(x), 9(»)1Gs
for all x, y e G/G,.

Proor. If f: G/G;—G/G, is an isomorphism, the isomorphisms g and h
defined by f certainly satisfy the statement.

Conversely, suppose g and h are isomorphisms satisfying the statement.
Let @ be the free group on {x,,..., x,}. As mentioned in the introductory section
of this paper, K. -T. Chen has shown [1] that there are epimorphisms : $—
G/G, and §: —G/G; whose kernels are the normal subgroups of & generated by
{pi» pis} and {f;, pijs}, respectively (the j; are defined in analogy with the p;).
Note that ker i, ker y = &,.

For 1<i<p lot gW(x)G;) = 11 ¥(x):G;.
i=1
There is certainly a homomorphism F: &—G/G; with
'
F(x;) = jl;Il Y(x;)au

for each i; note that then F(x)G,=g(¥(x)G,) € G/G, for all xe . Consequently,
F([x, yD)=[F(x)G,, F(»)G,1G;=[g9(\(x)G2), g (»)G2)1G3=h([¥(x), ¥(»)]) for
all x, ye @, so F(c)=hy(c) for all ce @,. Since i is a monomorphism, it follows
that @, n ker F=®, n kery.

If xe @ —&,, then Y¥(x)G, % G,, so since g is a monomorphism, g(¥(x)G,)=
F(x)G,#G,; certainly then x&ker F. Thus ker FS@,. Also, keryy = ®,, as
noted earlier. Thus ker F=¢&, n ker F=®, n ker y =ker y; it follows that there
is a monomorphism f: G/G;—G|G5 with fiy =F.

If ze G/G,, then since g is an epimorphism zG,=g(¥(x)G,)=F(x)G, for
some xe®. Then zF(x"!)eG,/G;, so since h is an epimorphism zF(x™1)=
hy/(c)=F(c) for some c € @,; then z=F(cx)=fy(cx). Thus fis an epimorphism,
and hence an isomorphism. Q.E.D.

Suppose that L, L<S? are tame links, and G/G; is isomorphic to G/G.
Let g and h be isomorphisms satisfying the lemma, and let A=(a;) be the ux u
integral matrix with

9U(x)G) = I §(x)eG;,

as in the proof of the lemma. Since g is an isomorphism, 4 must be invertible.
Recall that [ab, ¢d]G,=[a, c][a, d1[b, c][b, d1G; and [a", b]G;=[a, b]"G,
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=[a, b"]G, for any a, b, ¢, d € G/G, and any integer n [2, Corollary 5.3]. Using
these facts repeatedly, if 1 <i< j<pu we have

h([Y(x), ¥(x)]1G3) = [g((x)G2), g(¥(x,)G2)1Gy

= [ 0o 11962105
= I1 11 09 x,), F(x))erreseC
= ([, IT, sy, Bx)3ersaGs)- (1T T1 DG, e reseG)
= (1, I D), §ep)erressG)- (I T1 TGk, Biep)]4seseGi)
= 11 1T D), dxeressessenGy,

Recalling that @ jy,,q = 8,04~ Qig;, is the (i, j)(p, q) entry of A4, it follows from
the fact that A is an isomorphism, and from the presentations of G,/G; and G,/G,
mentioned in the introductory section, that there must be integral matrices B and
C such that =CA4 and A=BIA!,

Conversely, suppose there are matrices 4, B, and C with 1=C14 and A=
BIA-', where A4 is invertible. Then we may define g: G/G,—»G/G, and h:
G,/G;—G,/G by the equations

9(x)G) = T1 §(x):G,

for 1<i<u, and
WUk, W0x)IGs) = T TT ey, Fxerress=eisenGy

for 1<i<j<pu. Itis a simple matter to show that g and h are isomorphisms
that satisfy the condition of Lemma 5.1, and so G/G;=G/G,.
This completes our proof of Theorem 3.
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