
The Efron dice voting system

E. Gilson1, C. Cooley1, W. Ella2, M. Follett3 and L. Traldi3

1Northwestern University, Evanston IL 60208
2George Washington University, Washington DC 20052

3Lafayette College, Easton PA 18042

June 14, 2011

Abstract

About �fty years ago, Efron noted some counterintuitive properties
of the long-term behavior of contests involving dice. For instance, con-
sider the 6-sided dice whose sides are labeled (4,4,4,4,0,0), (3,3,3,3,3,3),
(6,6,2,2,2,2), and (5,5,5,1,1,1). Each die has a 2/3 probability of rolling a
higher number than the next one in the list, and the last has the same 2/3
probability of rolling a higher number than the �rst. The nontransitiv-
ity of games involving non-identical dice was popularized by Gardner in
Scienti�c American. Although Gardner and other authors have observed
that nontransitive dice serve to illustrate the complexities of the theory
of voting, it does not seem that much attention has been paid to the cor-
responding voting system. Our purpose in this paper is to present this
voting system, and compare its properties with those of other voting sys-
tems. One of the most interesting properties is the fact that cancellation
with respect to the Efron dice voting system can replace cancellation with
respect to pairwise preferences in Young�s characterization of the social
choice function associated with the Borda Count.

1 Introduction

Suppose a set of n voters is presented with the opportunity to choose among
m candidates, with each voter providing a strict preference ordering of the
candidates. One way to assess the relative support for candidates x1 and x2
would be to ask the following question: among the n2 ways to choose voters
vi and vj at random from the population, does it happen more often that vi�s
ranking of x1 is higher than vj�s ranking of x2, or that vi�s ranking of x1 is lower
than vj�s ranking of x2? If the answer is �higher�then it would be reasonable
to think that support for x1 is generally stronger than support for x2, and if the
answer is �lower�then it would be reasonable to think the opposite.
This voting system may also be described using dice. For each candidate,

construct an n -sided die that lists the various rankings given to that candidate
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by the voters. Then assessing the likelihood that randomly chosen voters vi and
vj will have vi�s ranking of candidate x1 higher than vj�s ranking of candidate
x2 is the same as assessing the likelihood that rolling the dice corresponding to
candidates x1 and x2 will result in a higher roll for x1. We call the resulting
voting system Efron dice voting. Using �dice�as part of the name for this voting
system may be misleading, though, because �rolling the dice�usually describes
a random process. The Efron dice voting system has no random character, as
it does not draw conclusions from single dice rolls; rather all rolls of the dice
representing two candidates are taken into account.
For example, consider a pro�le of �ve candidates and �ve voters. We tally

votes by awarding four points for a �rst place vote, three points for a second
place vote, and so on. Suppose candidate x1 receives two �rst place votes and
three third place votes; the corresponding die is (4; 4; 2; 2; 2). If candidate x2
receives three �rst place votes and two fourth place votes, then the corresponding
die is (4; 4; 4; 1; 1). There are 25 possible results when rolling the two dice; 6
are ties, 10 are wins for x1 and 9 are wins for x2, so the Efron dice system
judges that x1 has won, 10-9. In contrast, the Borda Count (which compares
the total rankings of the candidates) judges that x1 and x2 are tied with 14
points apiece, and Condorcet�s method (which compares the numbers of voters
who prefer each candidate over the other) judges that x2 has won, 3-2.
Even though the Efron dice voting system does not always give the same

results as the Borda Count or Condorcet�s method, it shares many character-
istics with one or the other. Like Condorcet�s method, the Efron dice system
provides pairwise rankings of the candidates, which are not generally transitive.
Like the Borda Count, the Efron dice system takes into account the precise
placement of two candidates in the voters�preference rankings, not merely each
voter�s preference between the two. That is to say, the Efron dice system is a
�positional�voting system in a general sense. However the Efron dice system
is not a positional voting system in the sense of Saari [5], as it does not decide
between candidates by adding up point totals.
In Section 2 we introduce our basic terminology regarding ballots and pro-

�les, and in Section 3 we de�ne the voting systems we will discuss. In Section
4 we consider pro�les in which voters express only two or three levels of pref-
erence. A striking result is that in such pro�les, Efron dice voting provides
transitive social preferences that are sometimes di¤erent from those provided
by the Borda Count. Several other properties of Efron dice voting are also dis-
cussed in Sections 4 and 5, including the unusual property that the results of
a dice election may be changed by voters who are indi¤erent (i.e., they have
precisely the same opinion of every candidate).
In some sense, the Efron dice system is �between� the Borda Count and

Condorcet�s method, and as we discuss in Sections 6 �7, its relationship with
either one of these two familiar voting systems is rather similar to their relation-
ship with each other. Pairwise dice results can be aggregated to yield the Borda
Count, in much the same way as ordinary pairwise results can (see Chapter
4 of [6]). This aggregation process yields several other similarities among the
Borda-Condorcet, Borda-dice and dice-Condorcet relationships. For instance:
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if either Condorcet�s method or the Efron dice voting system concludes that all
the candidates in a strict election are tied, then the Borda Count must do the
same; and if xr is the unique winner of a strict election according to any one
of these three systems, then it cannot be the unique loser according to either of
the other two systems.
In Section 8 we prove our most striking result, that Young�s characterization

of the social choice function associated with the Borda Count [9] may be modi�ed
to refer to Efron dice voting rather than pairwise preferences.

Theorem 1 The social choice function associated with the Borda Count is
uniquely characterized by �ve properties. Three appear in Young�s characteriza-
tion [9]: consistency, faithfulness and neutrality. The fourth property, anonymity,
is not explicitly mentioned in Young�s characterization; but it appears implicitly,
as it follows from the other properties given there. The �fth property is that for
every strict pro�le in which all candidates are tied according to the Efron dice
voting system, the social choice function also indicates that all the candidates
are tied.

In the last section of the paper we mention some open questions and direc-
tions for future research.

2 Preference orders and ratings

We follow [1] for much of our notation and terminology, with some modi�cations.
Before going into speci�cs we should make it clear that our discussion is naïve:
we do not consider the distinction between the opinions a voter expresses and
the opinions the voter actually holds. This naïveté is unrealistic both because
sincerity often does not serve a voter�s interest, and because choosing a partic-
ular kind of ballot excludes sincere voters whose opinions are not structured in
the appropriate way.
Consider a set of n � 2 voters, V = fv1; :::; vng, and a set of m candidates,

X = fx1; :::; xmg. Voter vi expresses his or her opinions of the candidates, giving
a weak preference order %i on fx1; :::; xmg; the n-tuple (%1; :::;%n) is a voter
preference pro�le. We presume each voter�s preference order %i is complete (for
every pair r and s, xr %i xs or xs %i xr) and transitive (if xr %i xs and xs %i xt,
then xr %i xt). The associated indi¤erence and strict preference relations are
given by: (a) xr �i xs if xr %i xs and xs %i xr, and (b) xr �i xs if xr %i xs
and xs 6%i xr. The transitivity of %i implies that �i and �i are also transitive;
moreover �i is an equivalence relation.
A basic feature of the Efron dice voting system is that it involves comparing

the preferences of di¤erent voters. In order to perform these comparisons, we
would like to re-express preference orders using numerical ratings. That is, we
would like voter vi to assign ratings �i1; :::; �im to the candidates, in such a way
that �ir � �is if and only if xr %i xs. Then we will compare vi�s assessment of
xr to vj�s assessment of xs by comparing �ir to �js. We distinguish two types
of ratings.
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De�nition 2 Suppose each voter�s preference order is strict, i.e., xrj1 �i xrj2 �i
::: �i xrjm for some choice of distinct indices rj1 ; :::; rjm . Then the correspond-
ing strict ratings are �irj1 = m� 1; �irj2 = m� 2; :::; �irjm = 0.

In a strict pro�le, vi�s preference order is equivalent to vi�s ratings; either
determines the other.

De�nition 3 Suppose k � m and for every voter vi, the indi¤erence relation
�i produces no more than k equivalence classes. The voters�preference orders
are then weakly k-chotomous.

The adverb �weakly�may be omitted if for every voter vi, the indi¤erence
relation �i produces precisely k equivalence classes. The most common special
cases of De�nition 3 are indicated by the terms (weakly) dichotomous (k = 2)
and (weakly) trichotomous (k = 3). The version of De�nition 3 that appears
in [1] includes only k-chotomous pro�les. We extend the de�nition to allow
weakly k-chotomous pro�les in order to highlight two interesting properties
of the Efron dice voting system: weakly trichotomous pro�les yield transitive
societal preferences, and indi¤erent voters can make a di¤erence. Details and
examples are provided in Section 4.

De�nition 4 A set of ratings is weakly k-chotomous if (a) the associated pref-
erence orders are weakly k-chotomous, (b) �ir 2 f0; :::; k� 1g for every voter vi
and candidate xr, and (c) �ir � �is if and only if xr %i xs.

In a weakly k-chotomous pro�le, vi�s preference order %i is determined by
vi�s ratings: xr %i xs if and only if �ir � �is. If �i produces k di¤erent equiv-
alence classes, then vi�s ratings are determined by %i. However, if �i produces
fewer than k equivalence classes, then vi�s ratings are not determined by %i;
for instance, an indi¤erent weakly dichotomous voter may choose to assign 0
to every candidate, or choose to assign 1 to every candidate. Consequently we
regard a weakly k-chotomous pro�le as consisting of the voters�ratings, rather
than their preference orders.

3 Five voting systems

Outside of Section 8 we focus on pairwise voting systems, which assess societal
preferences between pairs of alternatives, rather than social choice functions,
which choose winners from the entire slate of candidates. The reason for this
focus is simply that we are writing about the Efron dice voting system, which
is a mechanism for choosing between pairs of candidates.

De�nition 5 A pairwise voting system is a function that assigns to each pro�le
and each pair of candidates a (societal) preference, xr % xs or xs % xr.

The societal preferences given by a pairwise voting system yield an indif-
ference relation and a strict preference relation in the same way as the voters�
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preference orders do: xr � xs if xr % xs and xs % xr; and xr � xs if xr % xs
and xs 6% xr. The societal preferences need not be transitive in any sense; that
is, xr � xs and xs � xt need not imply xr � xt, xr � xs and xs � xt need not
imply xr � xt, xr � xs and xs � xt need not imply xr � xt, etc.

De�nition 6 The Efron dice voting system (DV) is the pairwise voting system
in which xr % xs if and only if

jf(i; j)j�ir � �jsgj � jf(i; j)j�is � �jrgj :

Note that we use jSj to denote the number of elements in a set S.

De�nition 7 Condorcet�s method (CM) is the pairwise voting system in which
xr % xs if and only if

jfij�ir � �isgj � jfij�is � �irgj , or equivalently jfijxr %i xsgj � jfijxs %i xrgj :

When a pairwise voting system is intended only for a certain kind of pro�le,
we refer to it as a strict or (weakly) k-chotomous voting system.

De�nition 8 The approval voting system (AV) is the weakly dichotomous pair-
wise voting system in which xr % xs if and only if

jfij�ir � �isgj � jfij�is � �irgj , or equivalently
nX
i=1

�ir �
nX
i=1

�is:

De�nition 9 The combined approval voting system (CAV) is the weakly tri-
chotomous pairwise voting system in which xr % xs if and only if

nX
i=1

�ir �
nX
i=1

�is:

De�nition 10 The Borda Count (BC) is the strict pairwise voting system in
which xr % xs if and only if

nX
i=1

�ir �
nX
i=1

�is:

Observe that under AV, CAV and BC each candidate xr is given a scorePn
i=1 �ir, and societal preferences are determined by comparing scores. As

numerical inequalities are transitive, societal preferences are transitive in these
systems. DV and CM do not work in the same way, and often give intransitive
societal preferences.
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4 Weakly dichotomous and weakly trichotomous
systems

Theorem 11 On a weakly dichotomous pro�le DV, CM and AV are all the
same. Moreover, if a strict pro�le has only two candidates then each of these
systems is the same as the Borda Count.

Proof. For each candidate xr, let �r1 be the number of voters who assign xr
the rating 1; then �r0 = n��r1 is the number of voters who give xr the rating
0.
In approval voting, xr % xs if and only if �r1 � �s1.
In dice voting, xr % xs if and only if �r1(n� �s1) � �s1(n� �r1); as this is

equivalent to �r1n � �s1n, it is true if and only if �r1 � �s1.
For i; j 2 f0; 1g let nij denote the number of voters who give xr the rating i

and xs the rating j; then xr % xs according to Condorcet�s method if and only
if v10 � v01. This occurs if and only if v10 + v11 � v01 + v11, i.e., �r1 � �s1.
If there are only two candidates in a strict pro�le then for each candidate

xr, the sum
nX
i=1

�ir

that appears in the de�nition of BC is �r1.
When three or more ratings are used, the situation is quite di¤erent: the

voting systems of Section 3 are all distinct. As a �rst step in verifying this, we
recall the following surprising result of [8].

Proposition 12 The Efron dice voting system is transitive on weakly trichoto-
mous pro�les.

Proof. For � 2 f0; 1; 2g and r 2 f1; :::;mg let �r� denote the number of voters
who assign candidate xr the rating �. Then xr % xs according to DV if and
only if

2 � jf(i; j)j�ir > �jsgj � 2 � jf(i; j)j�ir < �jsgj ;
or equivalently

2�r2 � (�s1 + �s0) + 2�r1 � �s0 � 2�s2 � (�r1 + �r0) + 2�s1 � �r0:

With a little algebra we see that this is equivalent to

2�r2�s1+�r2�s0��s2�r0�2�s1 ��r0 � 2�s2�r1+�s2�r0��r2�s0�2�r1 ��s0:

Adding �r2�s2 � �r0�s0 to both sides, we see that this is equivalent to

(�r2 � �r0) � (�s2 + 2�s1 + �s0) � (�s2 � �s0) � (�r2 + 2�r1 + �r0):

Consequently xr is preferred over xs in the Efron dice voting system if and only
if

�r2 � �r0
�r2 + 2�r1 + �r0

� �s2 � �s0
�s2 + 2�s1 + �s0

:
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Note that the two sides of the inequality di¤er only in that r appears on the left
where s appears on the right. We conclude that the Efron dice voting system
assesses societal preferences by assigning each candidate a numerical score, and
then comparing the scores. As inequalities of real numbers are transitive, the
proposition follows.
We refer to the fraction

�r2 � �r0
�r2 + 2�r1 + �r0

as the dice strength of candidate xr, and denote it str(xr). Observe that the
dice strength gives a connection between the Efron dice system and combined
approval voting: when there are only three ratings, DV prefers xr over xs if and
only if str(xr) > str(xs), and CAV prefers xr over xs if and only if the numerator
of str(xr) is greater than the numerator of str(xs). As the denominator varies
from candidate to candidate, the two systems sometimes disagree. In fact:

Theorem 13 On weakly trichotomous pro�les, CM, DV and CAV are distinct.
On strict pro�les with three or more candidates, CM, DV and BC are distinct.

Proof. As CAV coincides with BC on strict pro�les with precisely three candi-
dates, we may verify the two statements simultaneously by providing examples
of strict three-candidate pro�les for which the voting systems come to di¤erent
conclusions. The ballots are indicated by listing the candidates in order of in-
creasing preference; for instance x3x2x1 indicates a ballot with x1 �i x2 �i x3
and (hence) �i3 = 0, �i2 = 1 and �i1 = 2.
Pro�le 1:

x3x2x1 x2x3x1 x3x1x2 x1x3x2 x2x1x3 x1x2x3
45 4 10 5 0 36

Here �12 = 49, �11 = 10, �10 = 41, �22 = 15, �21 = 81, �20 = 4, �32 = 36,
�31 = 9 and �30 = 55. In this situation the Efron dice system asserts that
x1 � x2 � x3, because

str(x1) =
8

110
� 0:073 > str(x2) =

11

181
� 0:061 > str(x3) =

�19
109

� �0:174:

The Borda Count and Condorcet�s method, instead, assert that x2 � x1 � x3.
Pro�le 2:

x3x2x1 x2x3x1 x3x1x2 x1x3x2 x2x1x3 x1x2x3
49 0 6 9 4 32

Once again �12 = 49, �11 = 10, �10 = 41, �22 = 15, �21 = 81, �20 = 4,
�32 = 36, �31 = 9 and �30 = 55. As these are the same values obtained from
Pro�le 1, the Efron dice system again asserts that x1 � x2 � x3, and the Borda
Count again yields x2 � x1 � x3. This time, though, Condorcet�s method
agrees with the Efron dice system.
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Pro�le 3:

x3x2x1 x2x3x1 x3x1x2 x1x3x2 x2x1x3 x1x2x3
0 49 5 41 0 5

In this pro�le �12 = 49, �11 = 5, �10 = 46, �22 = 46, �21 = 5, �20 = 49,
�32 = 5, �31 = 90 and �30 = 5. The Borda Count and the Efron dice system
agree that x1 � x3 � x2, but Condorcet�s method results in a cycle: x2 � x1 �
x3 � x2.
There are many other examples that illustrate the di¤erences among the

voting systems. Here is a particularly striking example, a strict pro�le involving
nine voters and seven candidates. According to Condorcet�s method, candidate
x1 is weaker than every other candidate, and x7 is stronger than every other
candidate. But according to DV, x1 is stronger than x7.

ballot (in order of increasing preference) number of ballots
x7x6x5x4x3x2x1 2
x1x6x5x4x3x7x2 2
x1x6x5x4x2x7x3 2
x6x5x4x3x2x7x1 2
x1x6x5x3x2x7x4 1

Before discussing some familiar properties of voting systems in the next sec-
tion, we take a moment to point out that the Efron dice voting system has
an unfamiliar property not shared by any of the other pairwise voting systems
mentioned in Section 3: the addition of indi¤erent voters may change the out-
come of a weakly k-chotomous election. (A voter vi is indi¤erent if xr �i xs
8r; s; equivalently, the rating �ir is the same for every candidate.) Moreover,
the e¤ect of adding indi¤erent voters may be altered by changing their ratings,
even though each of them assigns the same rating to every candidate.
For example, suppose we add 100 indi¤erent voters to Pro�le 1 mentioned

in the proof of Theorem 13. If they all assign the rating �ir = 2 for every r,
then the Efron dice voting system again asserts that x1 � x2 � x3, because

108

210
� 0:514 > 111

281
� 0:395 > 81

209
� 0:388:

However, if the indi¤erent voters all assign the rating �ir = 1 for every r, then
the Efron dice voting system asserts that x2 � x1 � x3, because

11

381
� 0:029 > 8

310
� 0:026 > �19

309
� �0:061:

It can even happen that adding indi¤erent voters has the e¤ect of bringing
the least-preferred candidate to most-preferred status. For instance in the strict
pro�le

x3x2x1 x2x3x1 x3x1x2 x1x3x2 x2x1x3 x1x2x3
3 50 2 50 0 0
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DV asserts that x1 � x2 � x3, because

3

107
� 0:028 > 2

108
� 0:019 > � 5

205
� �0:024:

However, if 100 additional indi¤erent voters all assign the rating �ir = 0 for
every r, then DV asserts that x3 � x1 � x2, because

�105
305

� �0:344 > �97
207

� �0:469 > �98
208

� �0:471:

A related property is that DV outcomes may be changed by adding sym-
metric blocs of voters. For instance, suppose we add 600 new voters to Pro�le
1 mentioned in the proof of Theorem 13, with each of the six di¤erent strict
ballots submitted by 100 of the new voters. Although the Efron dice system has
x1 � x2 � x3 in Pro�le 1, it has x2 � x1 � x3 in the new pro�le because

str(x2) =
11

981
� 0:011 > str(x2) =

8

910
� 0:009 > str(x3) =

�19
909

� �0:021:

5 Some properties of pairwise voting systems

In this section we brie�y discuss some familiar properties of pairwise voting
systems. Most of the de�nitions are modi�ed directly from [1], [7] or [9].
A pairwise voting system is anonymous if the societal preferences cannot be

changed by simply permuting the voters�ballots; that is, the societal preferences
are not a¤ected if v1; :::; vn are re-indexed. Similarly, a neutral voting system
has the property that the societal preferences are the same if x1; :::; xm are re-
indexed before or after applying the voting system. A voting system satis�es
non-imposition if every candidate can be the unique winner for some pro�le of
voters. A voting system is faithful if, when there is only one voter, the societal
preferences precisely re�ect that voter�s preferences. A voting system satis�es
Pareto if, in every pro�le in which every voter has xr %i xs, the voting system
concludes that xr % xs.
All of these properties are shared by the pairwise voting systems of Section

3. The only instance of this assertion that may not be obvious is the Pareto
property of the Efron dice system, as the hypothesis that no individual voter
prefers xs over xr certainly does not prohibit one voter�s rating of xr from being
lower than another voter�s rating of xs. The justi�cation is simple, though: if
�ir � �is for every i, then

f(i; j)j�ir � �jsg � f(i; j)j�ir � �jrg � f(i; j)j�is � �jrg;

so jf(i; j)j�ir � �jsgj � jf(i; j)j�is � �jrgj. Observe also that if �ir � �is for
every i and at least one voter has xr �i xs then (i; i) 2 f(i; j)j�ir > �jsg and
(i; i) =2 f(i; j)j�is > �jrg, so the Efron dice system concludes that xr � xs. The
other voting systems of Section 3 also satisfy this strict form of Pareto.
In addition, all �ve pairwise voting systems are monotone: if xr % xs in P1

and the only di¤erence between P1 and P2 is that one voter vi has a higher rating
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of xr in P2, then xr % xs in P2 also. (The phrase �only di¤erence�is interpreted
di¤erently for strict pro�les �where it indicates that vi has exchanged the places
of xr and the next most-preferred candidate �and weakly k-chotomous pro�les
�where it indicates that vi has moved xr from one preference class to the next
most-preferred class.) Once again, the only system for which this may not be
obvious is the Efron dice system; the argument is quite similar to the Pareto
proof. All the systems also satisfy the strict form of the property (in which
xr � xs holds in both P1 and P2) and the decreasing form (in which the only
di¤erence between P1 and P2 is that one voter vi has a lower rating of xs in P2).
Some familiar properties are not shared by all of the voting systems men-

tioned in Section 3. An example is strict majority : if most voters have xr �i xs,
then xr � xs. This property is satis�ed by approval voting, the Efron dice sys-
tem and Condorcet�s method, but not by combined approval voting or the Borda
Count. A consistent pairwise voting system has the property that whenever
fv1; :::; vwg and fvw+1; :::; vng separately prefer xr over xs, so does fv1; :::; vng.
It is easy to see that CM, AV, CAV and BC are all consistent; the Efron dice
system is not, though, as indicated by the following example.

ballot number in A number in B number in A [B
x3 � x2 � x1 22 1 23
x2 � x3 � x1 4 0 4
x3 � x1 � x2 10 20 30
x1 � x3 � x2 5 0 5
x2 � x1 � x3 0 20 20
x1 � x2 � x3 13 0 13

Dice system results x3 � x2 � x1 x3 � x2 � x1 x3 � x1 � x2

This should not be very surprising, because the separate results within Pro�le
A and Pro�le B do not re�ect any cross-pro�le comparisons.
A pairwise voting system satis�es cancellation if for every strict pro�le in

which Condorcet�s method indicates that the candidates are all tied, this system
also indicates that the candidates are all tied. CM, AV, CAV and BC all satisfy
this property but DV does not.

x4x2x3x1 x2x3x1x4 x1x3x2x4 x4x3x1x2 x4x2x1x3
3 1 4 1 1

For instance, in the strict 4-candidate pro�le indicated above, BC and CM indi-
cate that all the candidates are tied. Candidate x1 has the die (0,0,0,0,2,2,2,3,3,3),
x2 has the die (0,1,1,1,1,2,2,2,2,3), x3 has the die (1,1,1,1,1,1,2,2,2,3) and x4 has
the die (0,0,0,0,0,3,3,3,3,3); we leave it to the reader to verify that x1 � x2 �
x3 � x4 � x1 according to DV.
Another familiar property is Independence of Irrelevant Alternatives (IIA).

Let P be a strict pro�le, and let P � xr denote the strict pro�le obtained from
P by removing xr from the slate of candidates, and recalculating the ratings
according to De�nition 2. Then a strict pairwise voting system satis�es IIA if
for every choice of s; t 2 f1; :::;mg�frg, the societal preference between xs and
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xt in P �xr is the same as the societal preference between xs and xt in P . The
recalculation of ratings can a¤ect cross-ballot inequalities, and can change the
candidates�rating totals; consequently it is no surprise that of the strict pairwise
voting systems of Section 3, only Condorcet�s method satis�es IIA. The Efron
dice system and the Borda Count both violate IIA in Pro�le A discussed in the
paragraph before last.

6 Dice and the Borda Count

In this section we recall several theorems relating Condorcet�s method to the
Borda Count. These results have close analogues relating the Efron dice system
to the Borda Count.

6.1 Aggregation

Suppose P is a strict pro�le, and xr is one of the candidates. Saari [6] calls the
sum X

s 6=r
jfijxr �i xsgj

the aggregated pairwise tally of xr. It is the number of times a voter chooses xr
over some other candidate.

Theorem 14 [6] The aggregated pairwise tally of xr is the same as the Borda
score for xr.

Proof. We simply reorganize the sum:

X
s 6=r

jfijxr �i xsgj =
X
s 6=r

nX
i=1

�
1, if xr �i xs
0, if xs �i xr

=
nX
i=1

X
s 6=r

�
1, if xr �i xs
0, if xs �i xr

=
nX
i=1

�ir.

It turns out that dice results can be aggregated in an analogous way to
obtain the Borda score. The aggregation takes all rolls of the dice into account,
including ties.

De�nition 15 The aggregated dice tally of xr is the number of rolls won by xr
against other candidates, plus half the number of rolls tied by xr against other
candidates: X

s 6=r
jf(i; j)j�ir > �jsgj+

1

2

X
s 6=r

jf(i; j)j�ir = �jsgj :

11



Theorem 16 If P is a strict pro�le then the aggregated dice tally of xr is the
product of the number of voters and the Borda score of xr.

Proof. Again, we simply reorganize the sum:

X
s 6=r

jf(i; j)j�ir > �jsgj+
1

2

X
s 6=r

jf(i; j)j�ir = �jsgj =
X
s 6=r

nX
i=1

nX
j=1

8<: 1, if �ir > �js
1
2 , if �ir = �js
0, if �ir < �js

=
nX
i=1

nX
j=1

X
s 6=r

8<: 1, if �ir > �js
1
2 , if �ir = �js
0, if �ir < �js

=
nX
i=1

nX
j=1

8<: �ir +
1
2 , if �ir < �jr

�ir, if �ir = �jr
�ir � 1

2 , if �ir > �js

=
nX
i=1

nX
j=1

�ir +
nX
i=1

nX
j=1

8<:
1
2 , if �ir < �jr
0, if �ir = �jr
� 1
2 , if �ir > �js

= n
nX
i=1

�ir +
nX
i=1

nX
j=i

�
� 1
2 �

1
2 , if �ir 6= �jr

0 or 0 + 0, if �ir = �jr
= n

nX
i=1

�ir + 0.

Theorem 17 [6] Suppose P is a strict pro�le and candidate xr has xr % xs 8s
according to CM, i.e., no other candidate is preferred over xr by a majority of
the voters. Then one of these conditions must hold: (a) there is at least one s
with xr � xs according to BC, and at least one t with xr � xt according to CM;
or (b) all the candidates are tied according to BC, and xr � xs 8s according to
CM.

Proof. The hypothesis xr % xs 8s implies that the aggregated pairwise tally
of xr satis�esX
s 6=r

jfijxr �i xsgj �
X
s 6=r

jfijxs �i xrgj

=
X
s 6=r
(n� jfijxr �i xsgj) = n(m� 1)�

X
s 6=r

jfijxr �i xsgj

and hence
2 �
X
s 6=r

jfijxr �i xsgj � n(m� 1):

Consequently the Borda score for xr is at least
n(m�1)

2 . Observe also that if
xr � xt for some t according to CM then the inequalities are strict and the
Borda score of xr is strictly greater than

n(m�1)
2 .

For n voters and m candidates there are n
Pm�1

i=0 i = n
m(m�1)

2 points avail-
able in the Borda process; consequently if it is not the case that the candidates
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are all tied according to BC, then there is at least one candidate xs whose Borda
score is strictly less than the average, n (m�1)2 . Then xr � xs according to BC.
If instead the candidates are all tied according to BC, then each of them

must have Borda score n (m�1)2 . As observed above, the Borda score of xr is

strictly greater than n (m�1)2 unless there is no s with xr � xs according to CM.

In case (b) it is not necessarily true that all the candidates are tied according
to CM, because there may be Condorcet cycles involving candidates other than
xr.
Here is the analogous result involving the Efron dice system.

Theorem 18 Suppose P is a strict pro�le and xr has xr % xs 8s according to
DV. Then either (a) there is at least one s with xr � xs according to BC, and
at least one t with xr � xt according to DV; or (b) all the candidates are tied
according to BC, and xr � xs 8s according to DV.

Proof. The proof is essentially the same as the proof of Theorem 17. As
xr % xs 8s, the aggregated dice tally of xr cannot be below the average, and
will be strictly greater than the average if xr wins any pairwise dice contest.
Consequently Theorem 16 tells us that the Borda score of xr cannot be below
the average, and will be strictly greater than the average if xr wins any pairwise
dice contest. If there is one xs whose Borda score is strictly less than the average,
then xr � xs according to BC. If there is no such xs, then the candidates must
all be tied according to BC. This cannot happen if xr wins any pairwise dice
contest.
Reversing the inequalities in the proofs, we have the �opposite�results.

Theorem 19 [6] Suppose P is a strict pro�le and xr has xs % xr 8s according
to CM. Then either (a) there is at least one s with xs � xr according to BC, and
there is at least one t with xt � xr according to CM; or (b) all the candidates
are tied according to BC, and xr � xs 8s according to CM.

Theorem 20 Suppose P is a strict pro�le and xr has xs % xr 8s according to
DV. Then either (a) there is at least one s with xs � xr according to BC, and
there is at least one t with xt � xr according to DV; or (b) all the candidates
are tied according to BC, and xr � xs 8s according to DV.

It is not possible to strengthen �at least one�in these results. For instance,
in the following pro�le x1 � xs 8s > 1 according to both CM and DV, and
x2 � x4 � x1 � x3 according to BC.

ballot (in order of increasing preference) number of ballots
x4x3x2x1 2
x3x4x2x1 1
x3x2x4x1 2
x1x3x4x2 1
x1x3x2x4 3

13



The agreement between CM and DV in this pro�le is coincidental. In general,
CM and DV may almost always disagree with each other; examples are given
in Section 7.
It appears from computer testing that if BC and DV give opposite societal

preferences for two candidates, then the greatest possible discrepancy in the
Borda scores will occur when one candidate receives only second-place votes,
and the other receives a bare majority of �rst-place votes, supplemented by
last-place votes. This example indicates that the di¤erence between the Borda
scores of two dice in an m-candidate, n-voter pro�le, in which the die with the
smaller Borda score is favored by DV, can be as large as n(m�2)�

�
n+1
2

�
(m�1).

6.2 Subset relations

Subset relations for the Borda Count have been explored by Saari in [5] and
other papers. These relations are suggested by the voting system property IIA,
but are enough weaker that they do not give rise to impossibility results. We
�rst present a subset relation for the Borda Count, which is somewhat more
general than those of [5]; then we show how analogous subset relations for the
Efron dice voting system are derived from the Borda relations.
If P is a strict pro�le and S � fx1; :::; xmg then we use P jS to denote

the strict pro�le obtained in the natural way from P by restricting the voters�
preference orders to the candidates in S.

Theorem 21 Let P be a strict pro�le, and suppose S is a family of subsets of
fx1; :::; xmg such that x1 is contained in every S 2 S and every other candidate
is contained in exactly k of the S 2 S, k > 0. Suppose further that for each
S 2 S, the Borda score of x1 in P jS is at least n � jSj�12 , the average Borda score
in P jS. Then the Borda score of x1 in P is at least the average value, n � m�12 .

If in addition the Borda score of x1 is strictly greater than n � jSj�12 in at least
one restriction P jS with S 2 S, then the Borda score of x1 is strictly greater
than n � m�12 in P .

Proof. According to Theorem 14, for each S 2 S the sumX
xs2S
s>1

jfi 2 fi; :::; ngjx1 �i xsgj

is the Borda score of x1 in S. As the Borda score of x1 in S is at least n � jSj�12
by hypothesis, we conclude thatX

xs2S
s>1

jfi 2 f1; :::; ngjx1 �i xsgj � n �
jSj � 1
2

for each S 2 S and consequentlyX
S2S

X
xs2S
s>1

jfi 2 f1; :::; ngjx1 �i xsgj �
�n
2

�
�
X
S2S

(jSj � 1):

14



As each xs 6= x1 is contained in precisely k sets S 2 S, it follows that

k �
X
s>1

jfi 2 f1; :::; ngjx1 �i xsgj

=
X
S2S

X
xs2S
s>1

jfi 2 f1; :::; ngjx1 �i xsgj �
�n
2

�
� (m� 1) � k;

and hence X
s>1

jfi 2 f1; :::; ngjx1 �i xsgj �
�n
2

�
� (m� 1):

The closing sentence of the statement follows from the fact that if there is
at least one S 2 S withX

xs2S
s>1

jfi 2 f1; :::; ngjx1 �i xsgj > n �
�
jSj � 1
2

�

then the inequalities obtained by summing over S are also strict.
We conclude that dice results that are consistent in certain families of re-

strictions cannot be completely reversed in P :

Corollary 22 Let P be a strict pro�le, and suppose S is a family of subsets of
fx1; :::; xmg such that x1 is contained in every S 2 S and every other candidate
is contained in exactly k of the S 2 S, k > 0. Suppose further that for each
restricted pro�le P jS with S 2 S, DV asserts that x1 % xs 8xs 2 S. Then there
must be at least one s > 1 with x1 % xs in P according to DV. If in addition
there is at least one restriction P jS with S 2 S such that x1 � xs for at least
one xs 2 S according to DV, then there is at least one s > 1 such that x1 � xs
in P according to DV.

Proof. By Theorem 16, the hypotheses of the corollary imply the hypotheses
of Theorem 21. Also, the negations of the conclusions of the corollary imply the
negations of the conclusions of Theorem 21. Consequently, if the hypotheses of
the corollary hold, then the negations of the conclusions cannot.
We leave it to the reader to formulate analogous results obtained by reversing

all the inequalities and preferences in Theorem 21 and Corollary 22. There is
also an analogue of Theorem 21 with equalities and indi¤erences, but there is
no such analogue of Corollary 22 as DV does not satisfy cancellation.

7 Dice and Condorcet�s method

In this section we explore the relationship between the Efron dice system and
Condorcet�s method. There is no analogue of the aggregation result of Theorem
16, but there are the following analogues of Theorem 17 and Theorem 18.
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Theorem 23 Suppose P is a strict pro�le and xr is a candidate with xr % xs 8s
according to CM. Then either (a) there is at least one s with xr � xs according
to DV; or (b) xr � xs 8s according to both CM and DV.

Proof. According to Theorem 14 the hypothesis that xr % xs 8s according to
CM tells us that the Borda score of xr is no less than the average, and equals
the average only if xr � xs 8s according to CM.
Suppose condition (a) of the statement fails; then xs % xr 8s according to

DV. Theorem 16 tells us that the Borda score of xr is no more than the average,
and equals the average only if xr � xs 8s according to DV. Considering the �rst
sentence of the proof, we see that the failure of (a) implies that the Borda score
of xr must equal the average; under the circumstances this implies that xr � xs
8s according to both CM and DV.
Observe that Theorem 23 is not completely analogous to Theorem 17. As

DV does not satisfy cancellation, it is possible for a strict pro�le to yield xr � xs
8s according to CM, but not according to DV; an example appears in Section
5.
A direct consequence of Theorem 23 is the following.

Corollary 24 If P is a strict pro�le and xr � xs 8s 6= r according to CM, then
there is at least one s with xr � xs according to DV.

The property of DV given in Corollary 24 is mentioned by Saari [4, 5], as
part of a characterization of BC among positional voting methods, which are
pairwise voting systems de�ned by assigning each candidate a score according
to the number of voters who rank that candidate �rst, second, third, etc. The
fact that DV satis�es the property, even though it can disagree with BC, does
not contradict Saari�s result because DV is not a positional voting method.

Theorem 25 Suppose P is a strict pro�le and xr is a candidate with xr % xs 8s
according to DV. Then either (a) there is at least one s with xr � xs according
to CM or (b) xr � xs 8s according to both CM and DV.

Corollary 26 If P is a strict pro�le and xr � xs 8s 6= r according to DV, then
there is at least one s with xr � xs according to CM.

Proof. The arguments are essentially the same as the proofs of Theorem 23
and Corollary 24. Alternatively, we may deduce these results from Corollary
22.
As in Section 6, there are �opposite�results involving a candidate xr that is

not preferred over any other; we leave it to the reader to formulate them. The
examples described in Theorems 27 and 29 show that it is not generally possible
to improve the �at least one�in part (a) of Theorem 23 or 25.

Theorem 27 If m � 3 then for all n � 8m � 15 there are strict pro�les with
n voters and m candidates, such that x1 � xr 8r > 1 according to CM and x1
loses all but one of its pairwise DV contests.
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Proof. Consider a pro�le in which
�
n
2

�
+ 1 voters - that is, slightly more than

half of the voters in the pro�le - rank the candidates in the following order:
x1 � x2 � � � � � xm. We construct the rest of the pro�le as follows. First, all of
the remaining n � 1 �

�
n
2

�
voters rank x1 last and xm second-to-last. Second,

the �rst-place votes among these voters are distributed as evenly as possible
among x2; :::; xm�1. As n � 8m� 15, n� 1�

�
n
2

�
� 4m� 8 and consequently

each of x2; :::; xm�1 receives at least four �rst-place votes.
Because x1 is ranked �rst by more than half of the voters, x1 � xr 8r > 1

according to CM. We claim that whenever 1 < r < m, xr � x1 according to
DV. The claim is veri�ed by counting rolls of the dice. The die corresponding
to x1 has

�
n
2

�
+1 labels equal to m� 1 and n� 1�

�
n
2

�
labels equal to 0, while

the die corresponding to xr has at least four labels equal to m�1, and all labels
greater than 0. Consequently no more than

(n� 4)
�jn
2

k
+ 1
�

rolls of the dice favor x1, and precisely

n(n� 1�
jn
2

k
)

rolls of the dice favor xr. The claim follows from the fact that the di¤erence is
negative:

(n� 4)
�jn
2

k
+ 1
�
� n

�
n� 1�

jn
2

k�
= (2n� 4)

jn
2

k
+ 2n� 4� n2

� (2n� 4)
�n
2

�
+ 2n� 4� n2 = n2 � 2n+ 2n� 4� n2 = �4:

The inequality n � 8m � 15 is not a tight bound. For instance, if n is
odd then the construction used in the proof of Theorem 27 requires only two
�rst-place votes for each of x2; :::; xm�1, because

(n� 2)
�jn
2

k
+ 1
�
� n

�
n� 1�

jn
2

k�
= (2n� 2)

jn
2

k
+ 2n� 2� n2

= (2n� 2)
�
n� 1
2

�
+ 2n� 2� n2 = n2 � 2n+ 1 + 2n� 2� n2 = �1:

Consequently if n is odd and n � 4m � 7 then there are strict pro�les with n
voters and m candidates, such that x1 � xr 8r > 1 according to CM and x1
loses all but one of its pairwise DV contests.
Even though the bound n � 8m � 15 is not tight, examples like those of

Theorem 27 cannot have arbitrarily small numbers of voters; indeed n < m� 1
is impossible in such a pro�le.

Proposition 28 Let P be a strict pro�le with n voters and m candidates, such
that x1 � xr 8r > 1 according to CM. Then x1 wins at least m�1n of its pairwise
DV contests.
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Proof. Let P be a strict pro�le, and let b denote the Borda score of x1.
According to Theorem 14,

b =
X
s>1

jfijx1 �i xsgj :

As x1 � xs 8s > 1 according to CM, jfijxs �i x1gj � jfijx1 �i xsgj � 1 8s > 1
and hence

(m� 1)n =
X
s>1

jfijx1 �i xsgj+
X
s>1

jfijxs �i x1gj

�
X
s>1

jfijx1 �i xsgj+
X
s>1

(jfijx1 �i xsgj � 1)

= 2 �
X
s>1

jfijx1 �i xsgj � (m� 1)

and consequently

(m� 1)(n+ 1) � 2 �
X
s>1

jfijx1 �i xsgj = 2b:

By Theorem 16, nb equals the aggregated dice tally of x1. It follows that
the aggregated dice tally of x1 cannot be less than

(m� 1)n(n+ 1)
2

:

The total number of rolls of x1�s die against the die corresponding to an xs with
s > 1 is n2, so if x1 loses or ties the dice contest with xs then the aggregated dice
tally of x1 cannot include more than n2

2 winning rolls against xs. Consequently
if x1 wins precisely k pairwise DV contests then it must be that

(m� 1)n(n+ 1)
2

� kn2 + (m� 1� k)
�
n2

2

�
and hence

(m� 1)(n+ 1)
n

� 2k + (m� 1� k) = m+ k � 1:

This requires

k � (m� 1)(n+ 1)
n

� (m� 1) = m� 1
n

:

Theorem 29 If m � 3 then there are strict pro�les with m candidates, such
that x1 � xr 8r > 1 according to DV and x1 loses all but one of its pairwise
CM contests.
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Proof. If m = 3 an example is provided by Pro�le 1 mentioned in the proof of
Theorem 13.
Suppose m � 4. We begin with a pro�le P0 consisting of (m � 1)! voters,

in which every possible strict ballot involving x1; :::; xm�1 occurs once. A new
pro�le P is constructed by modifying P0 in two ways. First, we adjoin one
new candidate xm, with the proviso that every voter�s preference order lists
xm directly after x1. Second, we adjoin one new voter, with preference order
xm�1 � xm�2 � ::: � x1 � xm. Clearly then every candidate xr with 2 � r �
m� 1 has xr � x1 according to CM, and also x1 � xm according to CM.
We claim that x1 � xm�1 according to DV. Observe that the die corre-

sponding to x1 has (m � 2)! labels equal to k for each k 2 f2; :::;m � 1g, and
1 + (m � 2)! labels equal to 1. The die corresponding to xm�1 has (m � 2)!
labels equal to 0, one for each ballot of P0 on which xm�1 is least preferred.
However there are only (m�3) � (m�3)! labels equal to 1, corresponding to the
ballots of P0 on which xm�1 is next-to-last and x1 is not last. There are also
(m� 3) � (m� 3)! labels equal to 2; (m� 4) � (m� 3)! of them correspond to the
ballots of P0 on which xm�1 is next-to-next-to-last and x1 � xm�1, and another
(m� 3)! of them correspond to ballots of P0 on which xm�1 is next-to-last and
x1 is last. Similarly, there are (m � 3) � (m � 3)! labels equal to k whenever
2 � k � m � 2. The remaining 1 + (m � 2)! labels of the die corresponding to
xm�1 all equal m� 1.
Consequently the die corresponding to xm�1 may be obtained from the die

corresponding to x1 by making the following changes: a single label is changed
from m � 2 to m � 1; (m � 3)! � 1 labels are changed from m � 2 to 0; for
2 � k � m� 3, (m� 3)! labels are changed from k to 0; and (m� 3)! + 1 labels
are changed from 1 to 0.
To justify the claim, observe �rst that in the set of all possible rolls of the die

corresponding to x1 against an identical replica of itself, each die must have the
same number of wins and losses. (This observation follows immediately from
the fact that the two are identical.) Now consider what happens if we change
the second of these identical dice into xm�1�s die. The single change of one label
from m� 2 to m� 1 introduces (m� 2)! new winning rolls for the second die,
one for each roll in which this label is matched against a label of m� 2 on x1�s
die. Every other label change introduces at least (m � 2)! new losing rolls for
the second die, though. There are at least two of these label-reducing changes,
as m � 4 implies that (m � 3)! + 1 � 2. Consequently the second die must do
worse overall after the changes; that is, x1 � xm�1 according to DV.
If 2 � r < m � 1 then the die corresponding to xr is obtained from the die

corresponding to xm�1 by reducing one label, and clearly this cannot improve
the die�s performance in any dice contest; hence the fact that DV asserts x1 �
xm�1 implies that DV also asserts x1 � xr.
As every voter prefers x1 over xm, the die corresponding to xm is obtained

from x1�s die by reducing every label; consequently it is obvious that x1 � xm
according to DV.
The examples given in Theorem 29 involve many more voters than those of

Theorem 27; we do not know whether or not it is actually necessary to have so
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many. An argument like that of Proposition 28 tells us only that n <
p
m� 1

is impossible in such a pro�le.

Proposition 30 Let P be a strict pro�le with n voters and m candidates, such
that x1 � xr 8r > 1 according to DV. Then x1 wins at least m�1n2 of its pairwise
CM contests.

Proof. Let P be a strict pro�le, and let b denote the Borda score of x1.
According to Theorem 16,

nb =
X
s>1

jf(i; j)j�i1 > �jsgj+
1

2

X
s>1

jf(i; j)j�i1 = �jsgj :

As x1 � xr 8r > 1 according to DV,

(m� 1)n2 =X
s>1

jf(i; j)j�i1 > �jsgj+
X
s>1

jf(i; j)j�i1 = �jsgj+
X
s>1

jf(i; j)j�is > �j1gj

�
X
s>1

jf(i; j)j�i1 > �jsgj+
X
s>1

jf(i; j)j�i1 = �jsgj

+
X
s>1

jf(i; j)j�i1 > �jsgj � (m� 1);

so
(m� 1)(n2 + 1) � 2nb:

Theorem 14 tells us that the pairwise tally of x1 is b, and the inequality
above tells us that it cannot be less than

(m� 1)(n2 + 1)
2n

:

If x1 wins precisely k pairwise CM contests then the pairwise tally of x1 is at
most

kn+ (m� 1� k)
�n
2

�
:

Consequently
(m� 1)(n2 + 1)

2n
� kn+ (m� 1� k)

�n
2

�
;

so
(m� 1)(n2 + 1)

n2
� 2k + (m� 1� k) = k + (m� 1):

This requires
(m� 1)(n2 + 1)

n2
� (m� 1) = m� 1

n2
� k:
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8 Social choice functions and the Borda Count

Young [9] showed that if a social choice function de�ned on all strict pro�les
satis�es cancellation, consistency, faithfulness and neutrality, then it is equiva-
lent to the social choice function associated with the Borda Count. Lemma 1
of [9] tells us that cancellation and consistency together imply anonymity, so
Young�s characterization includes anonymity implicitly. In Corollary 3.2 of [5],
Saari observed that Young�s characterization still holds if anonymity is included
as an explicit requirement, and cancellation is replaced by some other (possi-
bly much weaker) kind of compatibility between a social choice function and
pairwise preferences. In this section we prove that cancellation may also be re-
placed in Saari�s version of Young�s characterization by requiring compatibility
with the Efron dice voting system, rather than pairwise preferences.

De�nition 31 A social choice function is a function that assigns to each strict
pro�le a non-empty subsetW of fx1; :::; xmg, called the choice set or the winning
set.

The trivial social choice function declares all candidates to be winners; it
has W = fx1; :::; xmg for every pro�le.
Any pairwise voting system gives rise to a social choice function in a natural

way: the choice set W is de�ned to be the intersection of all the nonempty
subsets X � fx1; :::; xmg such that no candidate xr =2 X has xr % xs for any
xs 2 X. (The fact that the intersection must be nonempty is readily deduced
from the fact that for any two such setsX andX 0, X � X 0 orX 0 � X.) Observe
that we lose a great deal of information when we construct the social choice
function associated with a non-transitive pairwise voting system; for instance, if
CM has x1 % x2 % � � � % xm % x1 then the choice set is fx1; :::; xmg no matter
how many of the % are actually �.
Every pairwise voting system has an opposite, obtained by reversing all so-

cietal preferences. For each strict pro�le P , the choice set of the social choice
function associated with the opposite is the losing set of candidates of P ac-
cording to the original voting system.

8.1 Cancellation

De�nition 32 A social choice function satis�es cancellation if for every strict
pro�le in which CM indicates that all the candidates are tied pairwise, the choice
set includes all the candidates.

De�nition 33 A social choice function satis�es Borda cancellation if for every
strict pro�le in which BC indicates that all the candidates are tied pairwise, the
choice set includes all the candidates.

De�nition 34 A social choice function satis�es dice cancellation if for every
strict pro�le in which DV indicates that all the candidates are tied pairwise, the
choice set includes all the candidates.

21



These de�nitions are not equivalent to the analogous de�nitions for pairwise
voting systems, because the social choice functions associated with pairwise
voting systems are so much less informative. An example given in Section
5 shows that the Efron dice voting system does not satisfy cancellation, as
the candidates are all tied under CM but form a cycle under DV; the same
example shows that DV does not satisfy Borda cancellation. Similarly, in the
standard Condorcet cycle (i.e., the strict pro�le with m = n, in which each
ballot xr � � � � � xm � x1 � � � � � xr�1 occurs once) the candidates all have
the same die, so they are all tied under DV; as x1 � � � � � xm � x1 under CM,
we conclude that CM does not satisfy dice cancellation. The same example
shows that CM does not satisfy Borda cancellation. In contrast, we have the
following.

Theorem 35 The social choice functions associated with BC, CM and DV sat-
isfy all three types of cancellation.

Proof. Clearly each of the three social choice functions satis�es cancellation
with respect to the pairwise voting system from which it is derived. It is also
easy to see that the social choice function associated with the Borda Count
satis�es De�nitions 32 and 34: if all candidates are tied under CM (or DV),
then they all have the same aggregated (dice) tally, so they all have the same
Borda score.
Let P be a strict pro�le in which the choice set of the social choice function

associated with CM is a proper subset W � fx1; :::; xmg. Say 1 � w < m and
W = fx1; :::; xwg. We claim that then x1; :::; xm do not all have the same Borda
score. Recall that the Borda score of a candidate is the same as the aggregated
pairwise tally. For each candidate among x1; :::; xw, we split the aggregated
tally into two parts: the �rst part tallies the number of times that candidate is
preferred over another one of x1; :::; xw, and the second part tallies the number
of times that candidate is preferred over one of xw+1; :::; xm. Suppose the �rst
part of the aggregated tally of x1 is the largest; then it cannot be less than
the average, which is n � w�12 . As x1 is strictly preferred over every one of
xw+1; :::; xm according to CM, the second part of the aggregated tally of x1
must be strictly greater than (m� w) � n2 . Consequently the Borda score of x1
is strictly greater than

n �
�
w � 1
2

�
+ (m� w) � n

2
=
(m� 1)n

2
;

which is the average Borda score. This veri�es the claim that x1; :::; xm do not
all have the same Borda score.
A similar argument using aggregated dice tallies shows that if P is a strict

pro�le in which the choice set of the social choice function associated with DV
does not include all the candidates, then the candidates are not all tied according
to BC. We conclude that if P is a strict pro�le in which all candidates are tied
according to BC, then the choice sets of the social choice functions associated
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with CM and DV must include all the candidates. That is, the social choice
functions associated with CM and DV both satisfy Borda cancellation.
It follows that the social choice function associated with CM or DV satis�es

cancellation with respect to the other voting system, because a strict pro�le
P in which all candidates are tied according to CM or DV must also have all
candidates tied according to BC.

8.2 Simple scoring functions

We recall some ideas used by Young [10].

De�nition 36 Let s = hs1; :::; smi 2 Rm be a vector. Then the simple scoring
function associated with s is the social choice function de�ned as follows. Sup-
pose P is a strict m-candidate pro�le, and for r; k 2 f1; :::;mg let �rk denote
the number of voters for whom xr is the kth most-preferred candidate. Then the
sum

mX
k=1

�rk � sk

is the s score of xr, and the choice set includes the candidate(s) with the largest
s score.

Proposition 37 (a) The simple scoring function associated with s is the same
as the social choice function associated with the Borda Count if, and only if,
s1 � s2 = s2 � s3 = � � � = sm�1 � sm > 0.
(b) The simple scoring function associated with s is the same as the social

choice function associated with the opposite of the Borda Count if, and only if,
s1 � s2 = s2 � s3 = � � � = sm�1 � sm < 0.
(c) The simple scoring function associated with s is trivial if, and only if,

s1 � s2 = s2 � s3 = � � � = sm�1 � sm = 0.

Proof. (a) If s1 � s2 = s2 � s3 = � � � = sm�1 � sm = � > 0, then a candidate
whose Borda score equals b receives an s score equal to n � sm + � � b. As n
and � are positive and do not vary from candidate to candidate, it follows that
the social choice function associated with BC is the same as the simple scoring
function associated with s.
Suppose conversely that the simple scoring function associated with s is the

same as the social choice function associated with the Borda Count. Suppose
further that there is an r0 with sr0 � sr0+1. Consider the strict m-candidate
pro�le P in which every possible strict ballot occurs precisely once. Let P 0 be
the pro�le obtained from P by changing every ballot of P that has x1 in the
rth0 most-preferred position and xr in the (r0 + 1)st most-preferred position, so
that in P 0 the corresponding ballot has xr in the rth0 most-preferred position
and x1 in the (r0+1)st most-preferred position. Then the candidates x2; :::; xm
are all equivalent to each other according to P 0, i.e., each of them receives the
same number of �rst-place votes, the same number of second-place votes, and
so on. Consequently x2; :::; xm all receive both the same Borda score and the
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same s score. The Borda score of x1 is lower than the common Borda score
of x2; :::; xm, so the BC choice set is fx2; :::; xmg. However the s score of x1
is no less than the s score shared by the other candidates, so the choice set
of the simple scoring function associated with s is either fx1g or fx1; :::; xmg.
Consequently the social choice function associated with BC is not the same as
the simple scoring function associated with s.
Finally, suppose sr > sr+1 for every r, but the di¤erences sr � sr+1 are not

all equal. Then there are r0 and s0 with 0 < sr0 � sr0+1 < ss0 � ss0+1. Let
P again be the strict m-candidate pro�le in which every possible strict ballot
occurs precisely once. Let P 00 be the pro�le obtained from P by making the
following changes: whenever a ballot of P has x1 in the rth0 most-preferred
position, interchange x1 with the candidate in the (r0 + 1)st most-preferred
position, and whenever a ballot of P has x1 in the (s0 + 1)st most-preferred
position, interchange x1 with the candidate in the sth0 most-preferred position.
The ballot-changes have no net e¤ect on the Borda score of any candidate, as
each candidate is moved up one place on a certain number of ballots, and moved
down one place on the same number of ballots; hence the BC choice set of P 00

is fx1; :::; xmg. On the other hand the ballot changes have a net positive e¤ect
on the s score of x1 and a net negative e¤ect on the s score of every other
candidate, so fx1g is the choice set of the simple scoring function associated
with s. Once again, the social choice function associated with BC is not the
same as the simple scoring function associated with s.
This completes the proof of part (a).
The proof of part (b) is essentially the same; simply reverse every inequality.

Part (c) is obvious.

Theorem 38 There are precisely three simple scoring functions that satisfy dice
cancellation: the social choice function associated with the Borda Count, the
social choice function associated with the opposite of the Borda Count, and the
trivial social choice function.

Proof. Let s = hs1; :::; smi 2 Rm be a scoring vector whose associated simple
scoring function satis�es dice cancellation.
If m = 2 then the three possibilities mentioned in the statement correspond

(respectively) to s1 > s2, s1 < s2 and s1 = s2.
If m = 3 then consider the 3-candidate pro�le P with two voters, one of

whom has preferences x1 � x2 � x3 and the other of whom has preferences
x3 � x2 � x1. The three candidates�dice are then (0; 2), (1; 1) and (0; 2), so
all three candidates are tied according to DV. As the simple scoring function
associated with s = hs1; s2; s3i satis�es dice cancellation, all three candidates
must have the same s score. It follows that s1 + s3 = 2s2, and hence s1 � s2 =
s2� s3. Proposition 37 tells us that the simple scoring function associated with
s is one of the three mentioned in the statement.
Suppose now that m � 4.
Consider the strict pro�le P with two voters, one of whom has preferences

x1 � x2 � � � � � xm and the other of whom has preferences xm � xm�1 �
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� � � � x1. The candidates�dice are then (0;m � 1), (1;m � 2), (2;m � 3) and
so on; clearly they are all tied according to DV. As the simple scoring function
associated with s = hs1; s2; :::; smi satis�es dice cancellation, the candidates
must all have the same s score. It follows that sr + sm+1�r = sr+1 + sm�r,
and hence sr � sr+1 = sm�r � sm+1�r, for every r 2 f1; :::;mg. That is,
s1 � s2 = sm�1 � sm, s2 � s3 = sm�2 � sm�1, and so on.
Suppose for the moment that the simple scoring function associated with

s0 = hs1; :::; sm�1i satis�es dice cancellation. Considering the two-voter pro�le
P 0 in which one voter has x1 � x2 � � � � � xm�1 and the other voter has
xm�1 � xm�2 � � � � � x1, the argument of the previous paragraph tells us that
sr + sm�r = sr+1 + sm�r�1, and hence sr � sr+1 = sm�r�1 � sm�r, for every
r 2 f1; :::;m� 1g. That is, s1� s2 = sm�2� sm�1, s2� s3 = sm�3� sm�2, and
so on. Combining these equalities with those of the preceding paragraph we see
that sm�1 � sm = s1 � s2 = sm�2 � sm�1 = s2 � s3 = sm�3 � sm�2 = ::: It
follows from Proposition 37 that the simple scoring function associated with s
is one of the three mentioned in the statement.
It remains to consider the possibility that the simple scoring function asso-

ciated with s0 = hs1; :::; sm�1i does not satisfy dice cancellation. Then there is
a strict pro�le P with candidates x1; :::; xm�1 who are all tied according to DV,
but do not all have the same s0 score. Let n be the number of voters in the
pro�le P . Theorem 16 tells us that x1; :::; xm�1 must all have the average Borda
score in P , namely n(m�2)

2 . According to Lemma 39 below, it follows that the
dice corresponding to x1; :::; xm�1 must all be tied with any �even�die that has
the same number of labels equal to each number in f0; :::;m� 2g.
We construct from P a much larger strict pro�le Q with m candidates and

n �m! voters, as follows.
(1) For each ballot in P , Q includes (m� 1)! ballots that match the original

ballot, with xm added as the least-preferred candidate.
(2) For each strict preference order of x1; :::; xm that does not have xm as

the least-preferred candidate, Q has n ballots that match that preference order.
We claim that according to DV, the candidates x1; :::; xm are all tied in Q.

To verify the claim, we must determine the dice associated with the candidates.
The die associated with xm is simplest: each of the n � (m � 1)! voters from
(1) gives xm a rating of 0, and for each � 2 f1; :::;m � 1g, n � (m � 1)! of the
voters from (2) give xm a rating of �. Consequently xm�s die is the even die
with n � (m� 1)! instances of each label in f0; :::;m� 1g. If r < m, then xr�s die
in Q includes (m� 1)! copies of xr�s die from P , with each label increased by 1,
from (1); n � (m�1)! labels of 0, from (2); and for each rating � 2 f1; :::;m�1g,
n � (m� 2)! � (m� 2) labels equal to �, from (2).
Observe that if r 2 f1; :::;m� 1g then the Borda score of xr in Q is the sum

of (m� 1)! � (n+ n(m�2)
2 ), from (1), and

n(m�2)! � (m�2)
m�1X
�=1

� = n(m�2)! � (m�2)m(m� 1)
2

= n(m�1)! �m
2 � 2m
2

;
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from (2). The sum is

n(m� 1)! � (1 + m� 2
2

+
m2 � 2m

2
) = n(m� 1)! �

�
m2 �m
2

�
=
n(m� 1) �m!

2
:

As Q involves m candidates and n �m! voters, the average Borda score in Q is
nm! � m�12 ; hence xr has the average Borda score. As xm�s die is even, Lemma
39 tells us that xr and xm are tied according to DV.
Suppose r; s 2 f1; :::;m � 1g. We list all the rolls of xr�s die in Q against

xs�s die in Q: (a) there are ((m � 1)!)2 instances of each roll of xr�s die in P
against xs�s die in P , with both labels increased by 1; (b) there are (m � 1)! �
n � (m� 2)! � (m� 2) instances of each roll of xr�s die in P against the even die
with one label equal to each of f0; :::;m � 1g, with both labels increased by 1;
(c) there are (m� 1)! � n � (m� 2)! � (m� 2) instances of each roll of xs�s die in
P against the even die with one label equal to each of f0; :::;m� 1g, with both
labels increased by 1; (d) there are n � (m� 1)! � (n � (m� 1)! + (m� 1) �n � (m�
2)! � (m � 2)) rolls of a 0 of xr�s die against a higher roll of xs�s die; (e) there
are n � (m � 1)! � (n � (m � 1)! + (m � 1) � n � (m � 2)! � (m � 2)) rolls of a 0 of
xs�s die against a higher roll of xr�s die; and (f) there are (n � (m � 1)!)2 rolls
of a 0 of xr�s die against a 0 of xs�s die. Each of (a), (b), (c) and (f) results in
a �net�of 0 for each of xr and xs, and (d) and (e) cancel each other, so xr and
xs are tied according to DV.
This veri�es the claim that according to DV, the candidates x1; :::; xm are

all tied in Q. As the simple scoring function associated with s satis�es dice
cancellation, it follows that x1; :::; xm all have the same s score in Q. This
is impossible, though, as the fact that x1; :::; xm�1 do not have the same s0

score in P directly implies that they do not have the same s score in Q. By
contradiction, it cannot happen that the simple scoring function associated with
s0 = hs1; :::; sm�1i does not satisfy dice cancellation.

Lemma 39 Suppose x1 and x2 are two candidates in a strict pro�le P , and
suppose the die corresponding to x1 is even, i.e., x1 has the same number of
labels equal to each � 2 f0; :::;m� 1g. Then x1 and x2 are tied according to DV
if, and only if, they are tied according to BC.

Proof. Suppose the die corresponding to x1 has k labels equal to each � 2
f0; :::;m � 1g; then P includes n = mk voters. When we roll the dice corre-
sponding to x1 and x2 against each other, a label equal to � on x2�s die wins
against each of the k� smaller labels of x1�s die, and loses against each of the
k(m�1��) larger labels of x1�s die. Consequently a label equal to � on x2�s die
contributes k �(��(m�1��)) = 2k��k(m�1) to the net win-loss di¤erence of
x2�s die against x1�s die. The Borda score b of x2�s die is the sum of the labels
on the die, so the net win-loss di¤erence is 2kb � nk(m � 1). The two dice tie
if and only if the net win-loss di¤erence is 0, i.e., if and only if b = n(m�1)

2 , the
Borda score of x1.
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8.3 Theorem 1

Only a little more work is required to deduce Theorem 1 from Theorem 38.

De�nition 40 [10] A scoring function is a social choice function obtained from
a �nite sequence f1; :::; fk of simple scoring functions as follows. Given a strict
pro�le P , �rst obtain the choice set according to f1. Then eliminate every
candidate whose f2-score is suboptimal in this choice set. Then eliminate every
remaining candidate whose f3-score is suboptimal, and repeat this tie-breaking
process with f4; :::; fk in order.

For a social choice function, faithfulness asserts that when there is only
one voter, the choice set includes only that voter�s most-preferred candidate.
Consequently a vector s gives rise to a faithful simple scoring function if and
only if s1 is strictly larger than every one of s2; :::; sm.

Theorem 41 The only faithful scoring function that satis�es dice cancellation
is the social choice function associated with the Borda Count.

Proof. Let f be a faithful scoring function constructed from f1; :::; fk. Suppose
f satis�es dice cancellation. If P is a strict pro�le in which DV indicates that all
candidates are tied, then the choice set under f must include all the candidates.
Consequently the choice set of f1 must include all the candidates, and for i � 2,
all the candidates must have the same fi-score. That is, every one of f1; :::; fk
must have the property that its choice set includes all the candidates in P . As
this holds for every such P , every one of f1; :::; fk must satisfy dice cancellation.
Theorem 38 tells us that every one of f1; :::; fk is one of these three: the social

choice function associated with the Borda Count, the social choice function
associated with the opposite of the Borda Count, or the trivial social choice
function. It cannot be that f1; :::; fk are all trivial, for then f would be trivial,
an impossibility as the trivial social choice function is not faithful. Clearly f is
unchanged if we simple remove every trivial fi from f1; :::; fk.
Then every one of f1; :::; fk is either the social choice function associated

with the Borda Count or the social choice function associated with the opposite
of the Borda Count. It follows that f2; :::; fk will never actually break any ties
within a choice set resulting from f1, so f = f1.
If f = f1 were the social choice function associated with the opposite of

the Borda Count, then clearly f would not be faithful: in a one-voter pro�le
the choice set would include only the voter�s least-preferred candidate. By
contradiction, then, f = f1 must be the social choice function associated with
the Borda Count.
Now suppose we have a social choice function that satis�es anonymity, con-

sistency, faithfulness, neutrality and dice cancellation. Young [10] showed that
anonymity, consistency and neutrality imply that the social choice function is a
scoring function. According to Theorem 41, dice cancellation and faithfulness
imply that the social choice function is the same as the one associated with BC.
Even though we have not discussed the de�nition of consistency for social

choice functions, it is worth taking a moment to observe that it is an important

27



condition in both Young�s characterization and Theorem 1. Without consis-
tency, the characterizations are obviously incomplete: the social choice function
associated with CM satis�es all the other conditions of Young�s original char-
acterization, and the social choice function associated with DV satis�es all the
other conditions of Theorem 1.

9 Closing comments

We hope that the results in this paper will encourage interest in the Efron dice
voting system. There are many issues that would pro�t from further inquiry.
1. We have not studied strategic voting in the Efron dice system. It is

clear that strategic voters can a¤ect election outcomes by casting insincere bal-
lots that harm the strongest competitors of favorite candidates, or by changing
the way weakly k-chotomous preferences are expressed in ratings; but precise,
general results remain to be developed.
2. We have mentioned many properties of the Efron dice voting system. Do

some of these properties provide an axiomatic characterization of DV? Are there
interesting voting systems that share some properties and not others?
3. Given a strict pro�le P of n voters and m candidates, the Efron dice

voting system produces societal preferences by constructing, for each candidate,
an n-sided die that records the voters�rankings of that candidate. Consider the
set containing all nm rolls of all of these dice, and treat each roll as one voter
in a new, weakly m-chotomous pro�le Pm; the voter�s ratings of the candidates
are the same as the ratings that come up in that roll of the dice. Then the
result of applying the Efron dice voting system to P is the same as the result
of applying Condorcet�s method to Pm. To see this, consider two candidates
xr and xs. Then CM asserts that xr � xs in Pm if among the nm voters, more
favor xr over xs than favor xs over xr. But these nm voters may be partitioned
into n2 subsets of size nm�2, with each subset given by a single roll of the dice
corresponding to xr and xs in combination with all possible rolls of the other
m�2 dice. Consequently the number of voters of Pm who favor xr over xs (resp.
xs over xr) is simply nm�2 times the number of rolls of the dice corresponding
to xr and xs that are won by xr (resp. xs).
As Condorcet�s method and the Efron dice system may disagree on P , we

conclude that the map P 7! Pm may change CM�s assessment of the societal
preferences. In contrast, the aggregation results of Section 6 tell us that the
Borda Count comes to the same conclusions on P and Pm. (Technically, we
should not apply BC to Pm as Pm is not a strict pro�le. This technicality
may be addressed simply by broadening the de�nition of BC. Alternatively, Pm

may be replaced by a larger strict pro�le, in which each each voter v of Pm is
replaced by m! new voters, who respect v�s strict preferences and collectively
break all ties in v�s preference order in all possible ways, using each possible
tiebreak the same number of times.) The map P 7! Pm may be applied any
number of times; each application preserves the societal preferences of the Borda
Count and may alter those of Condorcet�s method. Each of the resulting voting
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systems yields the Borda Count through aggregation, as Condorcet�s method
and Efron dice voting do. What properties do these voting systems have? Which
other transformations of pro�les yield interesting voting systems?
4. Very many voting systems and social choice functions have been pro-

posed, in addition to the few that we have discussed. Any system that involves
processing pairwise preferences may be modi�ed to process DV preferences in-
stead: simply apply the system to Pm (or the larger strict version of Pm) instead
of applying the system directly to P . How does such �dice-based preprocessing�
a¤ect the properties of various voting systems?
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