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Abstract. We discuss the production of ortho-projection graphs from al-
ternating knot diagrams, and introduce a more general construction of such
graphs from “splittings” of closed, non-orientable surfaces. As our main result,
we prove that this new topological construction generates all ortho-projection
graphs. We present a minimal example of an ortho-projection graph that does
not arise from a knot diagram, and provide a surface-splitting that realizes
this graph.

1. Introduction

The aim of this article is to reveal the equivalence of certain seemingly unrelated
objects from graph theory, linear algebra over F = Z/2Z and low-dimensional topol-
ogy. This equivalence is given in the following theorem, which is an amalgamation
of the results found below.

Theorem 1.1. Let A be a symmetric n×n matrix over F . Then the following are
equivalent:

(1) The (looped) graph G with adjacency matrix A has the property that two
vertices are adjacent if and only if they have an odd number of common
neighbors.

(2) A is idempotent over F .
(3) Multiplication by A defines an orthogonal projection Fn → Fn, with respect

to the standard dot product (mod 2).
(4) There exists a splitting of a (marked) closed, non-orientable surface Σ of

genus n whose associated projection H1(Σ; F ) → H1(Σ; F ) has matrix A.

We call graphs that have the property specified in (1) ortho-projection graphs,
for the reason given in (3). Thus, ortho-projection graphs “encode” the various or-
thogonal decompositions of finite-dimensional vector spaces over F . These graphs,
which arise naturally in knot theory and low-dimensional topology, are closely re-
lated to circle graphs, which have been studied extensively; for example, see [1, 2]
and their references. Specifically, ortho-projection graphs provide a succinct answer
to the following question, which stems from work of Gauss: Which circle graphs
are realizable by generic closed curves in the plane? The answer, which appears
as Theorem 2 b) in [4], is that an arbitrary circle graph Λ is realizable by a plane
curve if and only if it “extends” to an ortho-projection graph, i.e., if and only if
there exists an ortho-projection graph that, when stripped of its loops, becomes Λ.
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Just as some circle graphs arise from chord diagrams produced by immersed
circles in the plane, some ortho-projection graphs arise from signed chord diagrams
generated by alternating knot projections. Indeed, a computer-assisted search has
shown that all ortho-projection graphs with eight or fewer vertices are realized in
this way [5]. However, there exist ortho-projection graphs that do not arise in this
manner; we discuss a minimal example in Section 3.

In this paper, we review the knot-theoretic production of ortho-projection graphs,
and we present a more general topological construction using splittings of closed,
non-orientable surfaces. (A splitting of a surface Σ is simply a decomposition with
Σ = ΣA ∪ΣB and S = ΣA ∩ΣB, where S is a separating simple closed curve in Σ,
and ΣA and ΣB are the closures in Σ of the two components of Σ − S.) Our main
result is Theorem 6.2, which shows that our new construction suffices to realize all
ortho-projection graphs. The construction itself is iterative in nature—a suitable
splitting is built inductively starting from a trivial decomposition of an appropriate
surface. The creation of the desired surface-splitting is analogous to the creation
of a specific orthogonal splitting of a vector space by successively shifting particu-
lar orthonormal basis vectors from a subspace to its orthogonal complement. The
reader who so wishes can interpret our main result as a topological characterization
of certain distinguished subspaces of vector spaces over F : a subspace is the image
of an ortho-projection Fn → Fn (i.e., it has trivial radical) if and only if it arises
from a topological splitting of a closed, non-orientable surface of genus n.

We end this introduction by summarizing the organization of our article. In
Section 2, we discuss ortho-projection graphs and their connections to orthogonal
splittings of vector spaces over F . We review the production of such graphs from
alternating knot diagrams in Section 3, where we also present an ortho-projection
graph Γ that does not arise in this way. In Section 4, we describe our construction
of ortho-projection graphs from splittings of closed, non-orientable surfaces, using
homology with coefficients in F as a primary tool. Section 5 contains a review of
useful results on orthogonalization of vector spaces over F . Finally, in Section 6,
we state and prove our main result (Theorem 6.2), we illustrate the non-uniqueness
of surface-splittings realizing a given ortho-projection graph, and we finish by pre-
senting a splitting that yields the graph Γ.

2. Ortho-Projection Graphs

Let n ≥ 1 and let G be an undirected, looped graph (without multiple loops
and without multiple edges) on the vertex set {v1, . . . , vn}. As introduced above,
G is an ortho-projection graph (or, op-graph) if it satisfies the following adjacency
condition: arbitrary (not necessarily distinct) vertices are neighbors in G if and
only if they have an odd number of common neighbors. (We say that a vertex is a
neighbor of itself if and only if it is looped.) See Figure 1 for an example.

Since the number of common neighbors of vi and vj equals the number of (possi-
bly non-simple) paths of length two joining vi and vj , the definition above has the
following algebraic equivalent: G is an op-graph if and only if the mod-2 reduction
of its adjacency matrix is idempotent over F = Z/2Z = {0̄, 1̄}. Thus if G is an
op-graph, and we define an n × n matrix AG over F by AG(i, j) = 1̄ if and only if
vi and vj are neighbors, we have AG = (AG)T and AG = (AG)2. Multiplication by
AG defines an endomorphism of Fn, which by the equations above is self-adjoint
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Figure 1. An ortho-projection graph.

(with respect to the standard mod-2 dot product) and idempotent. Such an endo-
morphism is an orthogonal projection (or, ortho-projection); see Proposition 2.1.
It is for this reason that we call G an op-graph.

Proposition 2.1. Let A be an arbitrary endomorphism of Fn. Let kerA and fix A
denote the (possibly trivial) eigenspaces of A, and let imA denote the image of A.
If A is self-adjoint (with respect to the standard dot product 〈 , 〉 : Fn × Fn → F )
and idempotent then

(1) fix A = imA,
(2) kerA ⊥ fix A, and
(3) Fn = kerA ⊕ fixA.

Thus A represents orthogonal projection onto imA ⊆ Fn.

Proof. Clearly fix A ⊆ im A. Since A(Av) = A2v = Av for all v ∈ Fn, imA ⊆ fix A,
proving (1). Let v ∈ kerA and w ∈ fixA be arbitrary. Then 〈v, w〉 = 〈v, Aw〉 =
〈Av, w〉 = 〈0, w〉 = 0̄, proving (2). For arbitrary v ∈ Fn, we have v = (v+Av)+Av,
where v + Av ∈ kerA and Av ∈ fix A. Thus Fn = kerA + fixA. If v ∈ kerA∩ fix A
then 0 = Av = v. So Fn = kerA ⊕ fix A, proving (3). �

Example 2.2. The graph G in Figure 1 has adjacency matrix

AG =




0̄ 0̄ 1̄ 1̄
0̄ 0̄ 1̄ 1̄
1̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 1̄


 .

Since this matrix is symmetric and idempotent over F , we see that G is an op-graph.

At this point we have established the equivalence of (1), (2) and (3) in Theo-
rem 1.1. The equivalence of these to (4) in that theorem is established by Propo-
sition 4.2 and Theorem 6.2 below.

3. Knots and Ortho-Projections

Let n ≥ 1 and let K be a classical knot diagram with n crossings. Label the
crossings 1, . . . , n in any manner. Choose a non-crossing point ∗ ∈ K, and give
K either of its two possible orientations. Start at ∗ and trace along K in the
positive direction, recording the crossing labels sequentially as you encounter them.
Continue until you return to ∗.

This process yields a double-occurrence word (in the symbols 1, . . . , n) called
the Gauss code of K; equivalently, it gives a chord diagram for K with n labeled
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chords. Each crossing in K has a sign + or −, according to the convention shown
in Figure 2. Prefix each symbol in the Gauss code with the sign of its crossing to
obtain the signed Gauss code of K. Similarly, tag each chord in the chord diagram
with the sign of its crossing to produce the signed chord diagram for K.

Figure 2. Crossing signs.

The trip matrix TK is the symmetric n×n matrix over F gotten from the signed
chord diagram for K as follows: for j 6= k, TK(j, k) = 1̄ if and only if chords j and
k intersect; for j = k, TK(j, k) = 1̄ if and only if the sign of crossing j = k is −.

Remark 3.1. The second author introduced the trip matrix in [9], and showed that
the Jones polynomial of the associated knot can be calculated from this matrix
using elementary linear algebra over F . In [10], he proved that the trip matrix of
an alternating classical knot diagram is an ortho-projection matrix with respect to
the standard mod-2 dot product, a fact first noted by Richard Stong [6].

Remark 3.2. Reversing the orientation of K has no effect on the crossing signs,
and thus no effect on TK . TK is also unaffected by relocation of the basepoint ∗.
Relabeling the crossings of K changes TK via conjugation by a permutation matrix.

Remark 3.3. The graph GK whose adjacency matrix is TK is called the looped
interlacement graph of K in [8], following the usage in [3]. In light of Remark 3.1, if
K is an alternating diagram then GK is an op-graph. If K is a positive knot diagram
then, by definition, GK is a circle graph. More generally, the graph obtained by
stripping GK of its loops is a circle graph, for any diagram K.

Example 3.4. The labeled knot diagram K in Figure 3 yields the signed Gauss
code −6−2+1+3+4+5−2−6+3+4+5+1 and the signed chord diagram shown in
Figure 4. The trip matrix of K is

TK =




0̄ 1̄ 0̄ 0̄ 0̄ 1̄
1̄ 1̄ 1̄ 1̄ 1̄ 0̄
0̄ 1̄ 0̄ 1̄ 1̄ 1̄
0̄ 1̄ 1̄ 0̄ 1̄ 1̄
0̄ 1̄ 1̄ 1̄ 0̄ 1̄
1̄ 0̄ 1̄ 1̄ 1̄ 1̄




.

The corresponding looped interlacement graph GK appears in Figure 5. Since K
is an alternating diagram, we know that TK is idempotent and GK is an op-graph.

A computer-assisted analysis shows that each op-graph with eight or fewer ver-
tices is the looped interlacement graph of an alternating classical knot diagram [5].
However, the 9-vertex op-graph Γ in Figure 6 is not such a graph. To confirm this,
it suffices by Remark 3.3 to show that Γ is not a circle graph. So suppose it is, and
let D denote a corresponding chord diagram. From Γ, we see that chords 1, 2 and
3 are pairwise-disjoint in D. We also see that chord 4 intersects chords 2 and 3 but
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Figure 3. A labeled knot diagram.

Figure 4. A signed chord diagram.

Figure 5. A looped interlacement graph.

not chord 1, chord 5 intersects chords 1 and 3 but not 2, and chord 6 intersects
chords 1 and 2 but not 3. Thus none of the chords 1, 2 or 3 separates the other
two, which forces chords 1 through 6 in D to form a “truncated Star of David.”
Since chord 7 intersects chords 1, 2, 4 and 5 but not 3 or 6, chords 1 through 7 in D
must appear as in Figure 7, up to homeomorphism. Since chord 7 separates chords
3 and 6, it is impossible to place chord 8 in a manner consistent with Γ. Thus no
such D exists, and Γ is not a circle graph.

Remark 3.5. Note that we have actually shown that the induced subgraph on
vertices 1 through 8 of Γ is not a circle graph. In fact, the induced subgraph
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on the vertex set {1, 3, 4, 5, 7, 8} is not a circle graph. This can be seen via an
argument similar to the one given above, or by noting that local complementation
of this subgraph at vertex 3 yields the wheel W5, which is a circle graph obstruction
according to [1].

Figure 6. An op-graph Γ that does not arise from a knot.

Figure 7. A partial chord diagram for Γ.

4. Splittings and Ortho-Projections

Let n ≥ 1 and let Σ be a closed, non-orientable surface of genus n, i.e., Σ ≈
RP2# · · ·# RP2 (n summands). Let π : Z → F = Z/2Z be the canonical projection.
We use F -coefficients for all our homological calculations, though we omit the
symbol F from our notation.

H1(Σ) is an n-dimensional vector space over F . Let C1, . . . , Cn be pairwise-
disjoint, one-sided circles in Σ. (A circle is just a simple, closed curve.) Be-
cause each Cj is one-sided, 〈[Cj ], [Cj ]〉 = 1̄ for 1 ≤ j ≤ n, where 〈 , 〉 : H1(Σ) ×
H1(Σ) → F is the mod-2 intersection form. Since these circles are pairwise-disjoint,
〈[Cj ], [Ck]〉 = 0̄ for j 6= k. Thus 〈[Cj ], [Ck]〉 = δj,k = π(δj,k) for 1 ≤ j, k ≤ n, which
implies that C = {[C1], . . . , [Cn]} is a basis for H1(Σ). We let C = C1 ∪ · · · ∪ Cn,
and refer to the pair (Σ, C) as a marked surface.
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Remark 4.1. The curve system C allows us to identify H1(Σ) with Fn, by having
C correspond to the standard basis. Note that the mod-2 intersection product
corresponds to the mod-2 dot product under this identification.

An open regular neighborhood of C in Σ is the disjoint union of n open Möbius
bands. Removing such a neighborhood from Σ leaves a compact surface Σ|C home-
omorphic to a sphere with n holes. Choose an orientation for Σ|C, which induces
an orientation on ∂(Σ|C). From this orientation on ∂(Σ|C), we obtain coherent
orientations for the circles C1, . . . , Cn.

Let S be a separating circle in Σ that is in general position with respect to
C. S “splits” Σ into a pair of compact, connected sub-surfaces ΣA and ΣB , with
ΣA ∪ ΣB = Σ and ΣA ∩ ΣB = S. Since S is separating, [S] = 0 ∈ H1(Σ), and so
〈[S], [Cj ]〉 = 0̄ for 1 ≤ j ≤ n. Thus |S ∩ Cj | is even for all j; let c(j) = 1

2 |S ∩ Cj |.
Choose an orientation for S, and select a basepoint ∗ ∈ S−C. For 1 ≤ j ≤ n, let ∗j

be the first successor of ∗ in S ∩Cj , as determined by the chosen orientation for S.
The points in S∩Cj split Cj into a union of 2c(j) closed arcs. Trace along Cj in the
positive direction starting at ∗j and label these arcs sequentially as you encounter
them, using the labels αj,1, . . . , αj,c(j) for the arcs in ΣA ∩ Cj , and βj,1, . . . , βj,c(j)

for the arcs in ΣB ∩ Cj . Note that S ∪
(⋃

j,k αj,k

)
and S ∪

( ⋃
j,k βj,k

)
are “chord

diagrams” embedded in ΣA and ΣB, respectively. See Figure 8, in which c(j) = 2,
S is represented by the radial arcs, and Cj is obtained from the depicted circle by
antipodal identification. Note that the region inside the circle in Figure 8 is not
part of the surface Σ.

Figure 8. The labelings on Cj .

We refer to the triple (Σ, C, S) as a splitting of the (marked) surface Σ. We
now consider the algebraic splitting that corresponds to this topological one. Since
(ΣA, ΣB) is an excisive couple, we have the commutative diagram in reduced ho-
mology shown in Figure 9, in which the rungs of the horizontal ladder are in-
duced by (ΣA, S) →֒ (Σ, ΣB) and the rungs of the vertical ladder are induced by
(ΣB, S) →֒ (Σ, ΣA).

As indicated in Figure 9, we have endomorphisms PA and PB of H1(Σ). Specifi-
cally, PA = ia ◦ (ja)−1

◦ (iA)−1
◦ jB, where jB : H1(Σ) → H1(Σ, ΣB), iA : H1(ΣA, S)

→ H1(Σ, ΣB), ja : H1(ΣA) → H1(ΣA, S) and ia : H1(ΣA) → H1(Σ) are the stan-
dard maps of homology theory. Analogously, PB = ib ◦ (jb)

−1
◦ (iB)−1

◦ jA, where
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Figure 9

jA : H1(Σ) → H1(Σ, ΣA), iB : H1(ΣB, S) → H1(Σ, ΣA), jb : H1(ΣB) → H1(ΣB , S)
and ib : H1(ΣB) → H1(Σ).

A direct analysis of this commutative diagram yields the following, whose proof
we omit.

Proposition 4.2. Let (Σ, C, S) be an arbitrary splitting. Then

(1) PA and PB are idempotent,
(2) kerPA = ib H1(ΣB) = imPB and kerPB = ia H1(ΣA) = imPA,
(3) PA + PB = I, the identity on H1(Σ),
(4) H1(Σ) = ia H1(ΣA) ⊕ ib H1(ΣB), and
(5) The splitting in (4) is orthogonal with respect to the intersection form 〈 , 〉,

and thus PA and PB are self-adjoint with respect to that form.

Remark 4.3. The orthogonality of ia H1(ΣA) and ib H1(ΣB) follows from that fact
that each class in ia H1(ΣA)

(
ib H1(ΣB)

)
can be represented by a cycle that lies in

the interior of ΣA (ΣB).

In light of Proposition 4.2, we see that PA and PB are ortho-projections. We
now determine the matrices [PA] and [PB ] of these endomorphisms with respect to
the basis C = {[C1], . . . , [Cn]}. Let 1 ≤ j ≤ n be arbitrary, and focus on PA. By
definition, (iA)−1

(
jB([Cj ])

)
= [αj,1]+ · · ·+ [αj,c(j)] ∈ H1(ΣA, S). For 1 ≤ k ≤ c(j),

let Sj,k be the arc in S that begins at the terminus of the oriented arc αj,k and
follows S in the positive direction to the initial point of αj,k. Let α̃j,k = αj,k ∪Sj,k.
Then (ja)−1

(
[αj,1] + · · · + [αj,c(j)]

)
= [α̃j,1] + · · · + [α̃j,c(j)] ∈ H1(ΣA). Thus, by

definition, PA([Cj ]) = [α̃j,1] + · · · + [α̃j,c(j)], regarded as a class in H1(Σ).

Remark 4.4. There are two arcs in S that span the endpoints of αj,k. In fact, either
could serve as Sj,k, since [S] = 0 ∈ H1(ΣA).

Remark 4.5. Since (iA)−1
◦ jB is surjective, {[αj,k] : 1 ≤ j ≤ n, 1 ≤ k ≤ c(j)} spans

H1(ΣA, S). Similarly, {[βj,k] : 1 ≤ j ≤ n, 1 ≤ k ≤ c(j)} spans H1(ΣB , S); this
observation is used in the proof of Lemma 6.1.
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Now that we have calculated PA([Cj ]) ∈ H1(Σ), we need to express it as a linear
combination of [C1], . . . , [Cn]. This is easy, since the basis C is orthonormal relative
to 〈 , 〉. We have PA([Cj ]) = 〈PA([Cj ]), C1〉C1 + · · · + 〈PA([Cj ]), Cn〉Cn. Thus it
suffices to determine 〈[α̃j,k], [Ci]〉 for arbitrary i, j, k. But this is simply the parity
of the number of times that the cycle α̃j,k crosses the circle Ci. For i 6= j, this
is the parity of the number of times that Sj,k crosses Ci. For i = j there is a
complication—the cycle α̃j,k contains αj,k, and so is not transverse to Ci = Cj . In
this case, we simply modify α̃j,k by isotopy along αj,k. Specifically, we move the arc
αj,k ⊂ α̃j,k parallel to itself (in either direction) to eliminate its intersection with
Ci = Cj . Then, as above, 〈[α̃j,k], [Ci]〉 = 〈[α̃j,k], [Cj ]〉 is the parity of the number of
times that the modified cycle α̃j,k crosses the circle Ci = Cj . Note that this second
case only affects the diagonal of [PA].

We summarize this lengthy discussion with an illustrative example.

Example 4.6. Figure 10 shows a splitting of a closed, non-orientable surface Σ of
genus 6 into a pair of non-orientable sub-surfaces, ΣA and ΣB . The unshaded sur-
face ΣA has Euler characteristic χ = 4 − 7 = −3 and genus 4. The shaded surface
ΣB has χ = 6−7 = −1 and genus 2. Each geometric circle in the figure—including
the large one—carries an antipodal identification. The regions inside the small cir-
cles are not part of Σ, and the labels within those regions refer to the corresponding
one-sided circles obtained from the antipodal identifications. Similarly, the region
outside the large circle is not part of Σ.

We now determine [PA] for the splitting depicted in Figure 10. As noted above,
it is necessary to isotope each α̃j,k to make it transverse to Cj . We do this by
“pushing” each αj,k in the direction in which S departs from the terminus of the
arc, as indicated by the arrow along S near each αj,k. Following this convention
and the discussion above, we obtain:

PA([C1]) = [C2] + [C6],

PA([C2]) = ([C5] + [C1] + [C2]) + ([C3] + [C4]),

PA([C3]) = [C4] + [C2] + [C5] + [C1] + [C2] + [C6] + [C1] + [C2],

PA([C4]) = [C2] + [C5] + [C6] + [C3],

PA([C5]) = [C6] + [C3] + [C4] + [C2],

PA([C6]) = [C1] + [C2] + [C3] + [C4] + [C2] + [C5] + [C6].

Thus the matrix of PA with respect to the ordered basis C is

[PA] =




0̄ 1̄ 0̄ 0̄ 0̄ 1̄
1̄ 1̄ 1̄ 1̄ 1̄ 0̄
0̄ 1̄ 0̄ 1̄ 1̄ 1̄
0̄ 1̄ 1̄ 0̄ 1̄ 1̄
0̄ 1̄ 1̄ 1̄ 0̄ 1̄
1̄ 0̄ 1̄ 1̄ 1̄ 1̄




.

Note that [PA] is identical to the trip matrix in Example 3.4, so the splitting in this
example gives rise to the op-graph shown in Figure 5. The first four columns of [PA]
form a basis for the column space of the matrix; the corresponding classes [C2]+[C6],
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[C1]+ [C2]+ [C3]+ [C4]+ [C5], [C2]+ [C4]+ [C5]+ [C6] and [C2]+ [C3]+ [C5]+ [C6]
form a basis for ia H1(ΣA).

By (3) in Proposition 4.2, we obtain [PB] by adding the identity matrix to [PA].
The first two columns of [PB ] form a basis for the column space of that matrix; the
corresponding classes [C1] + [C2] + [C6] and [C1] + [C3] + [C4] + [C5] form a basis
for ib H1(ΣB).

Figure 10. A labeled splitting.

Remark 4.7. For any (Σ, C, S), the embedded chord diagram S ∪
( ⋃

j,k αj,k

)
splits

ΣA into “sectors,” each of which yields a relation in H1(ΣA, S). For example, in
Figure 10 there are four unshaded sectors, which yield the relations [α1,1]+ [α2,1]+
[α3,1] + [α4,1] + [α6,1] = 0, [α2,2] + [α3,1] + [α4,1] = 0, [α2,1] + [α5,1] + [α6,1] = 0 and
[α1,1] + [α2,2] + [α5,1] = 0.

In practice, these relations can be used to simplify (and check) the calculation
of [PA]. To illustrate, we calculate PA([C2]) in Example 4.6 without tracing the
arcs S2,1 and S2,2, as follows. From the final two relations above, [α2,1] + [α2,2] =
([α5,1] + [α6,1]) + ([α1,1] + [α5,1]) = [α1,1] + [α6,1]. Applying ia ◦ (ja)−1 to this
equation gives PA([C2]) = PA([C1]) + PA([C6]). Thus the second column of [PA] is
the sum of the first and last columns of that matrix.
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As noted earlier, the off-diagonal elements of [PA] are determined by the inter-
sections of various arcs Sj,k and circles Ci, with i 6= j. Consequently, we can use an
abstract chord diagram rather than the embedded chord diagram S ∪

( ⋃
j,k αj,k

)

to calculate these elements, as in the following example.

Example 4.8. Figure 11 depicts an abstract chord diagram that corresponds to
the embedded chord diagram for the splitting in Example 4.6. The oriented circle
represents the curve S, while the oriented “chords” correspond to the arcs αj,k

shown in Figure 10. The numerical labels at the endpoints of each chord indicate
which one-sided circle contains the corresponding arc αj,k—the label is the first
subscript of that αj,k. For each chord in Figure 11, the positively oriented circular
arc from the terminus of the chord to its origin represents the corresponding arc
Sj,k ⊂ S.

We can use the abstract chord diagram in Figure 11 to find the off-diagonal
elements of the matrix [PA] we determined earlier. For example, the sequence
of labels 2, 6 bounded by chord 1 indicates that [PA]2,1 = [PA]6,1 = 1̄, and that
all other off-diagonal elements in column 1 of [PA] are 0̄. Similarly, the sequence
1, 2, 3, 4, 2, 5 bounded by chord 6 gives [PA]1,6 = [PA]3,6 = [PA]4,6 = [PA]5,6 = 1̄
and [PA]2,6 = 0̄ (since we count appearances of labels mod 2). Since there are two
chords labeled 2, we “add” (via symmetric difference) the sequences 3, 4 and 5, 1
to obtain [PA]1,2 = [PA]3,2 = [PA]4,2 = [PA]5,2 = 1̄ and [PA]6,2 = 0̄. The reader is
invited to consider the remaining columns.

Figure 11. An abstract chord diagram.

Remark 4.9. In fact, the off-diagonal elements of [PA] are completely determined by
the circular sequence of numbers in Figure 11; the chords themselves are irrelevant.
As an illustration of this, suppose we modify the chords labeled 2 in Figure 11 to
obtain the diagram shown in Figure 12. When we add the sequences 5, 6, 3, 4 and 6, 1
bounded by these new chords, we find that [PA]1,2 = [PA]3,2 = [PA]4,2 = [PA]5,2 = 1̄
and [PA]6,2 = 0̄, just as before. (We can even use a diagram in which the chords
labeled 2 cross, in which case we might add 5,6,3,4,2,5,1 and 5,1,2,6,1 to obtain
1,3,4,5, which yields the same second column of [PA] as above.) We leave a further
discussion of this “independence of chording” for a future article.



12 LORENZO TRALDI AND LOUIS ZULLI

Figure 12. A modified chord diagram.

5. Orthogonalization Over F = Z/2Z

In this section, we discuss the “orthogonalization” of a finite-dimensional vector
space V over F with respect to an arbitrary non-degenerate, symmetric bilinear
form 〈 , 〉 : V ×V → F . (Recall that 〈 , 〉 is non-degenerate if 〈v, v′〉 = 0̄ for all v′ ∈
V only if v = 0, i.e., rad (V ) = V ∩V ⊥ = {0}.) Specifically, we address the existence
of an “orthonormal” basis for V relative to 〈 , 〉. As we show in Proposition 5.6,
such a basis exists if (and only if) V possesses a non-self-orthogonal vector. Since
the lack of such a vector implies that V is even-dimensional (Proposition 5.1), an
orthonormal basis surely exists if V has odd dimension, as is noted in Corollary 5.7.

Although the results in this section are standard (for example, see [7]), we include
them here as a service to the reader.

Proposition 5.1. Let dim(V ) = n ≥ 1. If 〈v, v〉 = 0̄ for all v ∈ V then n = 2m
for an integer m ≥ 1, and there exists a basis B = {f1, g1, . . . , fm, gm} for V with
〈fj , fk〉 = 〈gj , gk〉 = 0̄ and 〈fj, gk〉 = δj,k.

Remark 5.2. A basis like B is a symplectic basis relative to 〈 , 〉.

Proof. The proof is by induction on n. For n = 1, V = {0, v}. Since 〈 , 〉 is
non-degenerate, 〈v, v〉 = 1̄. Thus the antecedent in the implication is false, so the
statement is true. For n = 2, let {f1, g1} be an arbitrary basis for V , and assume
〈f1, f1〉 = 〈g1, g1〉 = 0̄. Since 〈 , 〉 is non-degenerate, 〈f1, g1〉 = 1̄, and thus the
statement holds. For n ≥ 3, let {v1, . . . , vn} be an arbitrary basis for V , and
assume 〈vj , vj〉 = 0̄ for 1 ≤ j ≤ n. Since 〈 , 〉 is non-degenerate, 〈v1, vj〉 = 1̄ for
some j > 1. Without loss of generality, assume j = 2. Let f1 = v1 and g1 = v2.
For each k > 2, let v′k = vk + 〈g1, vk〉f1 + 〈f1, vk〉g1. Then 〈f1, v

′

k〉 = 〈g1, v
′

k〉 = 0̄
for k > 2. Let H = span{f1, g1} and V ′ = span{v′3, . . . , v

′

n}, so that V is the
orthogonal direct sum of H and V ′. Note that dim(V ′) = n − 2 ≥ 1, that the
restriction of 〈 , 〉 to V ′ is non-degenerate, and that 〈v′, v′〉 = 0̄ for all v′ ∈ V ′ .
Thus, by induction, n−2 = 2(m−1) for some integer m ≥ 2, and there exists a basis
B′ = {f2, g2, . . . , fm, gm} for V ′ such that 〈fj , fk〉 = 〈gj , gk〉 = 0̄ and 〈fj , gk〉 = δj,k.
So n = 2m for some integer m ≥ 2, and there exists a basis B = {f1, g1} ∪ B′ for V
such that 〈fj , fk〉 = 〈gj , gk〉 = 0̄ and 〈fj , gk〉 = δj,k.

�
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Proposition 5.3. Let dim(V ) = n = l + 2m, for integers l ≥ 1 and m ≥ 0. If
there exists a basis B = {e1, . . . , el, f1, g1, . . . , fm, gm} for V such that 〈ej , fk〉 =

〈ej , gk〉 = 〈fj, fk〉 = 〈gj, gk〉 = 0̄ and 〈ej, ek〉 = 〈fj, gk〉 = δj,k then there exists a

basis B′ = {e′1, . . . , e
′

n} for V with 〈e′j , e
′

k〉 = δj,k.

Remark 5.4. A symmetric bilinear form 〈 , 〉 that satisfies the conditions in the an-
tecedent is necessarily non-degenerate, since its matrix relative to B is non-singular.

Remark 5.5. A basis like B′ is an orthonormal basis relative to 〈 , 〉.

Proof. The proof is by induction on m. The result is trivial for m = 0; simply let
e′j = ej for 1 ≤ j ≤ l = n. For m ≥ 1, let B = {e1, . . . , el, f1, g1, . . . , fm, gm} be

an arbitrary basis for V , and assume 〈ej , fk〉 = 〈ej , gk〉 = 〈fj , fk〉 = 〈gj, gk〉 = 0̄

and 〈ej , ek〉 = 〈fj , gk〉 = δj,k. Then 〈el, f1〉 = 〈el, g1〉 = 〈f1, f1〉 = 〈g1, g1〉 = 0̄ and
〈el, el〉 = 〈f1, g1〉 = 1̄. Let e′j = ej for j < l. Let e′l = el + f1 + g1, e′l+1 = f1 + el

and e′l+2 = g1 + el. It is easy to verify that {e′1, . . . , e
′

l, e
′

l+1, e
′

l+2, f2, g2, . . . , fm, gm}
is a basis for V such that 〈e′j , fk〉 = 〈e′j , gk〉 = 〈fj , fk〉 = 〈gj , gk〉 = 0̄ and 〈e′j , e

′

k〉 =

〈fj , gk〉 = δj,k. Thus, by induction, there exists a basis B′ = {e′1, . . . , e
′
n} for V with

〈e′j , e
′

k〉 = δj,k.
�

Proposition 5.6. Let dim(V ) = n ≥ 1. If 〈v, v〉 = 1̄ for some v ∈ V then there
exists a basis B′ = {e′1, . . . , e

′

n} for V with 〈e′j , e
′

k〉 = δj,k.

Proof. The proof is by induction on n. For n = 1, V = {0, v} with 〈v, v〉 = 1̄. Thus
the statement holds with e′1 = v. For n ≥ 2, let {v1, . . . , vn} be an arbitrary basis
for V , and assume 〈vj , vj〉 = 1̄ for some j. Without loss of generality, j = 1. Let
e1 = v1, and let v′k = vk + 〈e1, vk〉e1 for k > 1, so that 〈e1, v

′

k〉 = 0̄ for k > 1. Let
V ′ = span{v′2, . . . , v

′
n}. Note that the restriction of 〈 , 〉 to V ′ is non-degenerate.

There are two cases:

(1) If 〈v′, v′〉 = 1̄ for some v′ ∈ V ′, induction provides an orthonormal basis
{e′2, . . . , e

′

n} for V ′. With e′1 = e1, B
′ = {e′1, . . . , e

′

n} is then an orthonormal
basis for V .

(2) If 〈v′, v′〉 = 0̄ for all v′ ∈ V ′, dim(V ′) = 2m with m ≥ 1 and V ′ has
a symplectic basis {f1, g1, . . . , fm, gm}, by Proposition 5.1. Thus B =
{e1, f1, g1, . . . , fm, gm} satisfies the hypotheses of Proposition 5.3, and so
there is an orthonormal basis B′ = {e′1, . . . , e

′

n} for V .

�

Corollary 5.7. If dim(V ) = n is odd then there exists a basis B′ = {e′1, . . . , e
′

n}
for V with 〈e′j , e

′

k〉 = δj,k.

Remark 5.8. The constructions from the proofs above can be assembled to give
an orthogonalization (with respect to a non-degenerate, symmetric bilinear form)
algorithm for finite-dimensional vector spaces V over F , akin to the standard Gram-
Schmidt process for finite-dimensional inner product spaces over R. This algorithm
converts an arbitrary basis for V into a basis that is either symplectic or orthonor-
mal with respect to the given form.
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6. Realization via surface-splitting

In this section we prove our main result, that each op-graph arises from a splitting
of a closed, non-orientable surface. For those graphs that come from alternating
knot diagrams, the construction of one such surface-splitting is simple—just trade
the crossings in the diagram for cross-caps. This is suggested in Figure 13, which
depicts a splitting that generates the op-graph in Figure 5. (The unshaded surface
in Figure 13 is compactified by a point at infinity.) A proof of the correctness of
this construction is essentially contained in the proof of Theorem 3 in [10].

Figure 13. A splitting from a knot diagram.

However, as we showed in Section 3, not all op-graphs arise from knot diagrams.
Thus we prove Theorem 6.2, which describes the construction of a surface-splitting
realizing an arbitrary op-graph. The construction relies on Proposition 5.6 and
Lemma 6.1 below. As before, we use F -coefficients in our homological arguments,
except for a single application of integral homology in Remark 6.4.

Lemma 6.1. Let (Σ, C, S) be an arbitrary splitting of a closed, non-orientable sur-
face. Then each class in H1(ΣB , S) can be represented by an arc properly embedded
in (ΣB , S).

Proof. By Remark 4.5, an arbitrary class b ∈ H1(ΣB, S) can be represented by a
disjoint union of properly-embedded arcs. Label these arcs β1, . . . , βm and let E
be the set of their endpoints. If m ≥ 2, focus on one endpoint of βm and its two
neighbors (along S) in E . At least one of these neighbors is an endpoint of an arc
βi, with i 6= m. Modify the arcs βm and βi near S, as indicated in Figure 14. The
result is a disjoint union of m−1 arcs properly embedded in (ΣB, S) that represents
the same class b. Iterate this reduction process until b is represented by a single
properly-embedded arc.

�

Figure 14. Arc reduction.
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Theorem 6.2. Let G be an arbitrary op-graph with n ≥ 1 labeled vertices. Then
there exists a splitting (Σ, C, S) of a (marked) closed, non-orientable surface Σ of
genus n such that [PA] = AG, where [PA] is the ortho-projection matrix discussed
following Proposition 4.2 and AG is the adjacency matrix of G over F .

Remark 6.3. An arbitrary subspace is the image of an ortho-projection Fn → Fn

if and only if its radical is trivial. What Theorem 6.2 asserts is that such subspaces
are precisely those that correspond to (the homologies of) embedded sub-surfaces
of Σ that have a single boundary component.

Proof. Since G is an op-graph, Fn is the orthogonal direct sum of NG and CG,
where NG is the nullspace and CG is the column (and row) space of AG. At least
one of these subspaces contains a non-self-orthogonal vector, since Fn does. Assume
for the moment that CG contains such a vector. Then, by Proposition 5.6, CG has
an orthonormal basis B′ = {e′1, . . . , e

′

l}.
Let (Σ, C) be a marked, closed, non-orientable surface of genus n. Identify

H1(Σ) with Fn by having [Cj ] correspond to the standard basis vector ej . Note
that the intersection product corresponds to the mod-2 dot product under this
identification. For 1 ≤ j ≤ l, let b′j ∈ H1(Σ) be the class that corresponds to
e′j ∈ CG, so that {b′1, . . . , b

′

l} is an orthonormal basis for the l-dimensional subspace

of H1(Σ) corresponding to CG.
To begin the construction, let ΣA,0 be a closed disk embedded in Σ−C, with S0 =

∂(ΣA,0) and ΣB,0 = Σ − ΣA,0. Thus, by Proposition 4.2, H1(Σ) = ia H1(ΣA,0) ⊕
ib H1(ΣB,0) = 0⊕H1(Σ). Let b1 denote the class in H1(ΣB,0, S0) that corresponds
to b′1 under the standard isomorphism jb. By Lemma 6.1, b1 = [γ1] for some arc γ1

properly embedded in (ΣB,0, S0) and transverse to C.
Create ΣA,1 by attaching to ΣA,0 a 1-handle whose core is γ1. Because 〈b′1, b

′

1〉 =
1̄, this 1-handle includes an odd number of half-twists, which ensures that ∂(ΣA,1)

is a single circle S1 transverse to C. With ΣB,1 = Σ − ΣA,1, we now have H1(Σ) =

ia H1(ΣA,1) ⊕ ib H1(ΣB,1) = W1 ⊕ W1
⊥, where W1 = span{b′1}. Let b2 denote the

class in H1(ΣB,1, S1) that corresponds to b′2 under the standard isomorphism jb.
By Lemma 6.1, b2 = [γ2] for some arc γ2 properly embedded in (ΣB,1, S1) and
transverse to C.

Create ΣA,2 by attaching to ΣA,1 a 1-handle whose core is γ2. Again, ∂(ΣA,2) is

a single circle S2 transverse to C. With ΣB,2 = Σ − ΣA,2, we now have H1(Σ) =

ia H1(ΣA,2)⊕ ib H1(ΣB,2) = W2⊕W2
⊥, where W2 = span{b′1, b

′

2}. Continue in this
fashion until l 1-handles have been attached, giving a sub-surface ΣA = ΣA,l for
which ia H1(ΣA) = Wl = span{b′1, . . . , b

′

l}. Then ia H1(ΣA) ⊆ H1(Σ) corresponds
to CG ⊆ Fn, and so [PA] = AG and we are done.

(If CG contains only self-orthogonal vectors, carry out the construction above
using an orthonormal basis B′ for NG. Then simply swap the labels “ΣA” and
“ΣB” at the end of the process.) �

Remark 6.4. In light of the freedom present in the choice of the arcs γj , it should
not be surprising that a given op-graph can be realized by inequivalent splittings.
(In order to make this statement precise, let us say that splittings (Σ, C, S) and
(Σ, C, S′) are equivalent if there exists a self-homeomorphism h of Σ, isotopic to
the identity, with h(S) = S′.) For example, the reader is invited to check that the
splitting depicted in Figure 15 yields the op-graph from Figure 5. However, this
splitting is not equivalent to the splitting in Figure 10. One way to see this is to
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compute the classes in integral homology represented by the splitting curves S and
S′ in the two figures. Since a homeomorphism isotopic to the identity induces the
identity map on homology, if the splittings were equivalent then we would have
[S] = ±[S′] ∈ H1(Σ; Z). But with the given orientations, direct calculation gives
[S] = 2

(
[C1]−[C3]−[C4]+[C5]

)
and [S′] = 2

(
[C1]+[C3]+[C4]+[C5]

)
. Since H1(Σ; Z)

is generated by [C1], . . . , [C6] subject to the single relation 2
(
[C1] + · · ·+ [C6]

)
= 0,

[S] 6= ±[S′] ∈ H1(Σ; Z).

Figure 15. A “different” splitting realizing the op-graph in Figure 5.

We conclude with the following example, which involves the 9-vertex op-graph
Γ introduced in Section 3.

Example 6.5. As noted earlier, the op-graph Γ in Figure 6 does not arise from
a classical alternating knot diagram. The interested reader can check that the
splitting depicted in Figure 16 realizes Γ.
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