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Abstract

We generalize and unify results on parametrized and coloured Tutte polynomials of graphs and ma-
troids due to Zaslavsky [Trans. Amer. Math. Soc. 334 (1992), 317-347] and Bollobás and Riordan
[Combin. Prob. Comput. 8 (1999), 45-93]. We give a generalized Zaslavsky-Bollobás-Riordan theorem
that characterizes parametrized contraction-deletion functions on minor-closed classes of matroids, as
well as the modi�cations necessary to apply the discussion to classes of graphs. In general, these para-
metrized Tutte polynomials do not satisfy analogues of all the familiar properties of the classical Tutte
polynomial. We give conditions under which they do satisfy corank-nullity formulas, and also conditions
under which they re�ect the structure of series-parallel connections.

1. Introduction

The Tutte polynomial is a well known invariant of graphs and matroids, associated with many di¤erent

properties including �ows, vertex colorings and reliability; it has found applications in the theory of electrical

circuits, in knot theory, and in physics. (We refer the reader to [1, 7, 14, 15, 16, 17] for background on graphs,

matroids and the Tutte polynomial.) Several of these applications involve graphs whose edges have been

weighted to represent quantities of interest; for instance, when calculating the reliability of a graph the

weight of an edge might indicate the probability that the edge successfully transmits information from one

of its end-vertices to the other.

It is an irony that the Tutte polynomial �a single invariant which unites what might seem to be unrelated

ideas like colorings, �ows and reliability �has several di¤erent, seemingly incompatible weighted versions

[2, 4, 5, 9, 10, 18, 19]. While di¤erent versions may reveal desirable properties in di¤erent contexts, it turns out

that most of them are essentially equivalent through evaluations and changes of variables. These equivalent
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formulations are determined by the more general weighted versions of the Tutte polynomial introduced in

[2] and [19]. Our purpose is to reconcile these two important papers.

The discussions in [2] and [19] di¤er in several signi�cant ways. The invariants considered in [2] lie in

commutative rings, for instance, while those of [19] are restricted to �elds; also the invariants of [19] are

strong (see the de�nition below) while those of [2] need not be. On the other hand, the discussion of [2] is

focused on invariants de�ned for all graphs (or all matroids) while the invariants considered in [19] need only

be de�ned on minor-closed classes of matroids. Moreover, the matroid invariants of [2] and [19] must be 0

or 1 for the empty matroid, though the graph invariants considered in [2] are not similarly limited. In order

to unify the two discussions we introduce de�nitions which are su¢ ciently general to include all the cases

considered in [2] and [19].

In Section 2 we state these de�nitions, prove several propositions and present our central result, the

generalized Zaslavsky-Bollobás-Riordan theorem for matroids. The modi�cations necessary to apply these

ideas to graphs rather than matroids are presented in Section 3. In Section 4 we present a proof of the

generalized Zaslavsky-Bollobás-Riordan theorem for matroids, modeled closely on that of Theorem 3.3 in

[19]. The reader who is familiar with the classical Tutte polynomial may be surprised to learn that even

though the invariants we consider have subset expansions, they need not have corank-nullity formulas; details

are provided in Section 5. In Section 6 we brie�y describe the classi�cation of parametrized Tutte polynomials

with values in �elds, à la [19], and in Section 7 we brie�y discuss the e¤ects of series/parallel connections on

parametrized Tutte polynomials.

2. De�nitions and results for matroids

De�nition 2.1. Let U be a class, and let R be a commutative ring. Then an R-parametrization of U

consists of four parameter functions x; y;X; Y : U ! R, denoted e 7! xe; ye; Xe and Ye.

When it is unnecessary to specify R we simply refer to U as parametrized.

De�nition 2.2. Let U be a class. Then a parametrization of U is a colouring if for every e1 2 U there are

e2; e3 2 U with e1 6= e2 6= e3 6= e1 such that xe1 = xe2 = xe3 , ye1 = ye2 = ye3 , Xe1 = Xe2 = Xe3 , and

Ye1 = Ye2 = Ye3 :
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De�nition 2.3. LetM be a minor-closed class of matroids de�ned on subsets of an R-parametrized class

U . Then a parametrized Tutte polynomial on M is a function T : M ! R which satis�es the following:

T (M) = XeT (M=e) for any coloop (or �isthmus�) e of M 2 M, T (M) = YeT (M � e) for any loop e of

M 2M, and T (M) = yeT (M � e) + xeT (M=e) for any other element e of M 2M.

Before proceeding we make several observations.

1. The name parametrized Tutte polynomial on M is technically incorrect because it is U that is para-

metrized, not T . We thank the careful reader for reading Tutte polynomial on the minor-closed class M of

matroids de�ned on subsets of the R-parametrized class U when we write parametrized Tutte polynomial on

M.

2. T (M) is not generally invariant under matroid isomorphisms which are not parameter-preserving.

3. The parameters Xe and Ye do not generally coincide with the values of T on the two matroids whose

sole element is e; for instance if the only element of M is a loop e then T (M) = YeT (;), not Ye. (Here ;

denotes both the empty set and the unique matroid on the empty set.)

4. A parametrized Tutte polynomial T is completely determined by the parameter functions x; y;X; Y

and the value of T (;). We call T (;) the initial value of T , and sometimes denote it �.

5. Suppose R is the polynomial ring Z[u; v] and every e 2 E has xe = 1, ye = 1, Xe = u+1 and Ye = v+1.

Then the classical Tutte polynomial (the dichromate of [14]) satis�es De�nition 2.3. (The indeterminates

u; v are often replaced by x� 1 and y � 1, respectively.)

6. The reader familiar with [19] will already have noted that our notation is closer to that of [2]: the

parameter-point-value quadruple denoted (ae; be;xe; ye) in [19] is (ye; xe;XeT (;); YeT (;)) here.

7. We focus on matroids rather than graphs in this section, and discuss graphs in Section 3.

If we are given a parametrized Tutte polynomial on M then we may use De�nition 2.3 to recursively

calculate T (M) for every M 2 M. Indeed, if M is a matroid on the set E(M) = E then there are jEj!

di¤erent calculations of T (M) corresponding to the di¤erent orders in which the elements of E may be

removed through contraction and deletion; there are even more calculations which do not consistently follow

linear orders on E. The well-de�nedness of T requires that these calculations all have the same result, for

every M . A simple consequence is the following.
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Proposition 2.4. Suppose a parametrized Tutte polynomial is de�ned onM. If e is an element of M 2M

then there are r; s 2 R with T (M) = (rXe + sYe) � T (;).

Proposition 2.4 is proven by observing that T (M) may be calculated by applying De�nition 2.3 to delete

and contract all the elements of E other than e; then e appears as a loop or coloop in every part of the

calculation. Note that the equality T (M) = rXeT (;)+ sYeT (;) is fundamentally di¤erent from the equality

T (M) = xeT (M=e)+ yeT (M � e) in that T (M � e) and T (M=e) are uniquely determined by M and e, while

rT (;) and sT (;) are not.

Proposition 2.5. Suppose a parametrized Tutte polynomial is de�ned on M. Then T (;)T (M1 �M2) =

T (M1)T (M2) for every direct sum M1 �M2 inM.

Proof. Certainly if M1 = ; then T (M1)T (M2) = T (;)T (; �M2) = T (;)T (M1 �M2). If M1 6= ; we

may choose any element e of M1, and assume inductively that T (;)T ((M1=e)�M2) = T (M1=e)T (M2) and

T (;)T ((M1�e)�M2) = T (M1�e)T (M2). Then De�nition 2.3 implies that T (;)T (M1�M2) = T (M1)T (M2).

�

Following [19], we call a parametrized Tutte polynomial a strong Tutte function if T (M1 � M2) =

T (M1)T (M2) for every direct sum M1 �M2 inM.

Corollary 2.6. A parametrized Tutte polynomial is a strong Tutte function if and only if T (;) is idempotent,

i.e., T (;) = T (;)2.

Proof. Certainly if T (; � ;) = T (;)T (;) then T (;) must be idempotent, because ; � ; = ;.

Suppose conversely that T (;) is idempotent, and suppose M1 �M2 is a direct sum in M. If e is an

element of M1 �M2 then by Proposition 2.4, T (M1 �M2) = (rXe + sYe) � T (;) for some r; s 2 R and hence

T (;)T (M1�M2) = (rXe+ sYe) � T (;)2 = (rXe+ sYe) � T (;) = T (M1�M2). It follows from Proposition 2.5

that T (M1 �M2) = T (M1)T (M2). �

As noted above, if we are given a parametrized Tutte polynomial T onM then well-de�nedness requires

that for every M 2 M, all the di¤erent calculations of T (M) using De�nition 2.3 have the same result.

Consequently the well-de�nedness of T is, in e¤ect, a large set of constraints on the various parameters

xe; ye; Xe and Ye. It turns out that three very simple matroid structures in M generate the entire set of
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constraints: the digons (which have two elements in parallel), triangles (which have three elements in a

circuit) and triads (which have three elements, all parallel).

De�nition 2.7. (a) Two elements of U are digonal inM if they constitute a circuit in some element ofM.

(b) Three elements of U are triangular inM if they constitute a circuit in some element ofM.

(c) Three elements of U are triadic inM if they are mutually parallel in some element ofM.

When we say two elements or three elements we mean that the elements must be pairwise distinct. As

M is minor-closed, e1; e2 2 U are digonal in M if and only if M contains the digon with elements e1 and

e2; similarly e1; e2; e3 2 U are triangular (or triadic) inM if and only ifM contains the triangle (or triad)

on fe1; e2; e3g. Note also that if e1; e2; e3 are triadic or triangular inM then they are pairwise digonal.

Our central theorem is the following generalization of results of [2] and [19]. It is clearly a synthesis,

rather than an original result; moreover its proof, discussed in Section 4 below, requires no new ideas.

Theorem 2.8 (The Generalized Zaslavsky-Bollobás-Riordan Theorem for Matroids). Let R be

a commutative ring, let M be a minor-closed class of matroids de�ned on subsets of an R-parametrized

class U , and let � 2 R. Then there is a parametrized Tutte polynomial onM with T (;) = � if and only if

the following identities are satis�ed.

(a) Whenever e1 and e2 are digonal inM,

� � (xe1Ye2 + ye1Xe2) = � � (xe2Ye1 + ye2Xe1):

(b) Whenever e1, e2 and e3 are triangular inM,

� �Xe3 � (xe1Ye2 + ye1xe2) = � �Xe3 � (Ye1xe2 + xe1ye2):

(c) Whenever e1, e2 and e3 are triadic inM,

� � Ye3 � (xe1Ye2 + ye1xe2) = � � Ye3 � (Ye1xe2 + xe1ye2):

Let M(3) = fM 2 M with no more than three elementsg. Because the identities (a), (b) and (c) are

necessary for a parametrized Tutte polynomial to be well de�ned onM(3), the following analogue of Theorem

3.3 of [19] is an immediate consequence of the generalized Zaslavsky-Bollobás-Riordan theorem for matroids.
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Corollary 2.9. Let R be a commutative ring and let M be a minor-closed class of matroids de�ned on

subsets of an R-parametrized class U . Then a parametrized Tutte polynomial onM(3) has a unique extension

to a parametrized Tutte polynomial onM.

Theorem 2 of [2] and Theorems 6.1 and 6.2 of [19] assume that every pair of elements of U is digonal

inM and every triple of elements of U is both triangular and triadic inM. Consequently the appropriate

special cases of the generalized Zaslavsky-Bollobás-Riordan theorem for matroids involve the identities (a),

(b) and (c) for all choices of pairwise distinct e1; e2; e3 2 U . Both [2] and [19] provide separate results

with the additional assumption that U is coloured. Adjusting the generalized Zaslavsky-Bollobás-Riordan

theorem for matroids involves only the observation that we have not required that the parameter functions

x; y;X; Y be injective; equivalently, if U is coloured and every triple of elements of U is both triangular and

triadic inM then the identities (a), (b) and (c) must hold for all choices of e1; e2; e3 2 U , distinct or not.

As in [2], the generalized Zaslavsky-Bollobás-Riordan theorem for matroids implies that there is a most

general example of a parametrized Tutte polynomial on a minor-closed class M. For an unparametrized

class U let ZU be the ring of polynomials with integer coe¢ cients which has four distinct indeterminates

xe; ye; Xe; Ye for each element of U , and also has a single separate indeterminate �. Let ~ZU be the subring

of ZU generated by the indeterminates, i.e., ~ZU = fpolynomials in ZU whose constant term is 0g. If M is

a minor-closed class of matroids de�ned on U then let IM be the ideal of ~ZU generated by the following

elements: whenever e1 and e2 are digonal inM

� � (xe1Ye2 + ye1Xe2 � xe2Ye1 � ye2Xe1) 2 IM;

whenever e1, e2 and e3 are triangular inM

� �Xe3 � (xe1Ye2 + ye1xe2 � Ye1xe2 � xe1ye2) 2 IM;

and whenever e1, e2 and e3 are triadic inM

� � Ye3 � (xe1Ye2 + ye1xe2 � Ye1xe2 � xe1ye2) 2 IM:

U has an obvious (~ZU=IM)-parametrization given by e 7! xe + I
M; ye + I

M; Xe + I
M; Ye + I

M. In analogy

with the discussion in [2], the generalized Zaslavsky-Bollobás-Riordan theorem for matroids immediately
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implies that there is a most general example of a parametrized Tutte polynomial onM, with values in the

quotient ring ~ZU=IM.

Corollary 2.10. LetM be a minor-closed class of matroids de�ned on subsets of a class U . Then there is

a (~ZU=IM)-valued parametrized Tutte polynomial TM onM which has TM(;) = �+ IM. Moreover, if T

is any R-parametrized Tutte polynomial on M then T is the composition of TM with the homomorphism

~ZU=IM ! R determined by the parameter functions and �+ IM 7! T (;).

If T is a parametrized Tutte polynomial onM and M 2M then a natural way to calculate the value of

T (M) is to order E(M), say as e1; :::; em, and remove the elements one at a time, through contraction and/or

deletion, as speci�ed by De�nition 2.3. (We remove the elements in reverse order, em �rst, then em�1, and

so on.) The result is a formula for T (M) as a sum indexed by those B � E(M) which have the property

that no element of B is deleted as a coloop or contracted as a loop during the calculation. The summand

corresponding to such a B is a product involving one factor for each e 2 E(M): an e 2 B contributes a

factor of Xe or xe according to whether e is or is not contracted as a coloop in the calculation, and an e 62 B

contributes a factor of Ye or ye according to whether or not e is deleted as a loop. Every summand also has

a factor of T (;).

It turns out that every such computation of T (M) involves the same subsets B, namely the bases of

M [6]. (The fact that every such computation involves the same subsets B actually characterizes the basis

clutters of matroids [12].) If B is a basis and ei 2 B then there is a unique cocircuit cut(B; ei) of M with

cut(B; ei)\B = feig, and clearly ei is a coloop at the time of its contraction in the calculation if and only if

the rest of cut(B; ei) has already been deleted; that is, ei contributes a factor of Xei if and only if cut(B; ei)

contains no ej with j < i. Thus fei 2 B which contribute a factor of Xei to the summand corresponding to

Bg = IA(B), the set of internally active elements of B. Similarly, if B is a basis and ei 62 B then there is a

unique circuit cyc(B; ei) of M with cyc(B; ei) � B [ feig, and clearly ei is a loop at the time of its deletion

in the calculation if and only if the rest of cyc(B; ei) has already been contracted; that is, ei contributes a

factor of Yei if and only if cyc(B; ei) contains no ej with j < i. Thus fei 62 B which contribute a factor of

Yei to the summand corresponding to Bg = EA(B), the set of externally active elements of B. The result

is the following activities formula for T (M).
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Proposition 2.11. Let T be a parametrized Tutte polynomial onM, and let M 2M. Then

T (M) = T (;) �
X
B

0@ Y
e2IA(B)

Xe

1A0@ Y
e2B�IA(B)

xe

1A0@ Y
e2EA(B)

Ye

1A0@ Y
e 62B[EA(B)

ye

1A :
We de�ne parametrized Tutte polynomials as in De�nition 2.3, and then deduce Proposition 2.11. This

approach can be reversed, as in [2]: Proposition 2.11 may be taken as a de�nition, along with the requirement

that T (M) be independent of the order on E(M) used to de�ne the activities, and then De�nition 2.3 follows.

That is, a parametrized Tutte polynomial can be de�ned using either a deletion-contraction recursion or an

activities formula. This will not come as a surprise to the reader familiar with the classical Tutte polynomial;

what may be surprising is that the subset expansion of a parametrized Tutte polynomial is not generally a

corank-nullity expansion. See Section 5 for details.

3. De�nitions and results for graphs

In this section we discuss the modi�cations which are appropriate to apply the above discussion to graphs

rather than matroids. There is of course a close connection between graphs and matroids: if G is a graph

then it has an associated circuit matroid M on the edge-set E(G). The circuit matroid contains a great deal

of information about the structure of G; for instance M determines which sets of edges of G are circuits

and which are cutsets (�cocircuits� in matroid terminology). However the vertices of G are not present in

the circuit matroid and consequently some information about G � for instance its number of connected

components � cannot be determined by M .

Considering the three di¤erent portions of the recursion of De�nition 2.3, we give the following de�nition.

De�nition 3.1. A minor-closed class of graphs is closed under the deletion of loops, the contraction of

isthmuses (or �coloops�) , and the contraction and deletion of other edges.

This is a modi�cation of the usual terminology in that we do not require a minor-closed class of graphs

to be closed under the deletion of isthmuses. A consequence is the following.

Proposition 3.2. Let G be a class of graphs, and for k � 1 let Gk consist of those G 2 G with precisely k

connected components. Then G is minor-closed if and only if every Gk is minor-closed.
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De�nition 3.3. Let U be an R-parametrized class, and let G be a minor-closed class of graphs with E(G) �

U 8G 2 G. Then a parametrized Tutte polynomial on G is a function T : G ! R which satis�es the

following: T (G) = XeT (G=e) for any isthmus e of G 2 G, T (G) = YeT (G� e) for any loop e of G 2 G, and

T (G) = yeT (G� e) + xeT (G=e) for any other edge e of G 2 G.

Before proceeding we make several observations, analogous to the observations in Section 2.

1. When we write parametrized Tutte polynomial on G we actually mean Tutte polynomial on the minor-

closed class G of graphs whose edges are elements of the R-parametrized class U .

2. T (G) is not generally invariant under graph isomorphisms which are not parameter-preserving.

3. The parameters Xe and Ye need not coincide with the values of T on the two graphs whose only edge

is e.

4. If G has k = k(G) connected components then T (G) is completely determined by x; y;X; Y and the

value of T on the edgeless graph Ek with k vertices. We call T (Ek) an initial value of T , and denote it �k.

5. Both the classical Tutte and dichromatic polynomials satisfy De�nition 3.3.

Proposition 3.4 follows from the fact that every graph which appears in a calculation of T (G) has k(G)

connected components.

Proposition 3.4. Let U be an R-parametrized class, and let G be a minor-closed class of graphs with

E(G) � U 8G 2 G. Then a function T : G ! R is a parametrized Tutte polynomial on G if and only if for

every k � 1, the restriction of T to Gk is a parametrized Tutte polynomial on Gk.

The de�nition of the circuit matroid of a graph is compatible with the de�nitions of deletion and con-

traction for graphs and matroids, and an edge of a graph is a loop or isthmus if and only if it is a loop or

coloop (respectively) in the graph�s circuit matroid. We deduce the following proposition.

Proposition 3.5. Let U be an R-parametrized class, let G be a minor-closed class of graphs with E(G) � U

8G 2 G, and for each integer k � 1 let Mk be the class of circuit matroids of graphs which appear in Gk.

Then a function T : G ! R is a parametrized Tutte polynomial on G if and only if for every k � 1, T induces

a well-de�ned function Tk :Mk ! R which is a parametrized Tutte polynomial onMk.
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Combining Propositions 3.2, 3.4 and 3.5 we see that the theory of parametrized Tutte polynomials de�ned

on a minor-closed class of graphs G may be deduced from the theory of parametrized Tutte polynomials

de�ned on minor-closed classes of matroids, by applying the matroidal theory to the variousMk separately.

Corollary 3.6 (The Generalized Zaslavsky-Bollobás-Riordan Theorem for Graphs). Let R be a

commutative ring, let G be a minor-closed class of graphs whose edge-sets are contained in an R-parametrized

class U , and let �1; �2; ::: 2 R. Then there is a parametrized Tutte polynomial T on G with T (Ek) = �k

8kjEk 2 G if and only if the following identities are satis�ed.

(a) Whenever e1 and e2 appear together in a circuit of a k-component graph G 2 G,

�k � (xe1Ye2 + ye1Xe2) = �k � (xe2Ye1 + ye2Xe1):

(b) Whenever e1, e2 and e3 appear together in a circuit of a k-component graph G 2 G,

�k �Xe3 � (xe1Ye2 + ye1xe2) = �k �Xe3 � (Ye1xe2 + xe1ye2):

(c) Whenever e1, e2 and e3 are parallel to each other in a k-component graph G 2 G,

�k � Ye3 � (xe1Ye2 + ye1xe2) = �k � Ye3 � (Ye1xe2 + xe1ye2):

If k 6= k0 there need not be any connection at all between the behavior of a parametrized Tutte polynomial

on Gk and its behavior on Gk0 . In particular, �k and �k0 may appear in di¤erent instances of the identities of

the generalized Zaslavsky-Bollobás-Riordan theorem for graphs, if di¤erent combinations of edges appear in

digons, triangles and triads in Gk and Gk0 . We leave it to the reader to formulate an appropriate version of

Corollary 2.10, generalizing Theorem 6 of [2], with attention to the fact that the generators of IG involving

�k arise only from the digons, triangles and triads in Gk.

On the other hand, it may happen that identical matroids appear in Mk and Mk0 . For instance, it

may happen that G contains both G and a graph G0 obtained from G by adjoining some isolated vertices,

or by taking one-point unions of some components of G. In such a circumstance the calculations of T (G)

and T (G0) are identical except for the fact that a computation of T (G) involves �k(G) and a computation of

T (G0) involves �k(G0). We deduce the following proposition.
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Proposition 3.7. Let U be an R-parametrized class, let G be a minor-closed class of graphs with E(G) � U

8G 2 G, and suppose G;G0 2 G have the same circuit matroid. Then there is an r 2 R with T (G) = �k(G) � r

and T (G0) = �k(G0) � r.

The following version of Proposition 2.4 holds.

Proposition 3.8. Suppose a parametrized Tutte polynomial is de�ned on G. If e is an edge of G 2 G then

there are r; s 2 R with T (G) = (rXe + sYe) � �k(G).

We use the notation G = G1 qG2 to indicate that G is the disjoint union of two subgraphs G1 and G2.

Proposition 3.9. Suppose a parametrized Tutte polynomial is de�ned on G. If G1; G2; G1 qG2 2 G then

there is an r 2 R with r � �k(G1)�k(G2) = T (G1)T (G2) and r � �k(G1)+k(G2) = T (G1 qG2):

Proof. Suppose we calculate T (G1 qG2) by �rst removing all the edges of G1 through contraction and

deletion, and then removing all the edges of G2. If we compare this to a calculation of T (G1), we see that at

the moment when the edges of G1 have all been removed we have obtained an element s 2 R with s�k(G1) =

T (G1). There is a t 2 R with T (G2) = �k(G2)t, and a calculation of such a t may be replicated repeatedly

within the calculation of T (G1qG2) to conclude that it is also true that T (G1qG2) = st�k(G1)+k(G2). Then

T (G1)T (G2) = s�k(G1) � �k(G2)t, so the proposition is satis�ed by r = st. �

We say a parametrized Tutte polynomial on a class G of graphs is multiplicative with respect to disjoint

unions if T (G1 qG2) = T (G1)T (G2) whenever G1; G2; G1 qG2 2 G.

Corollary 3.10. A parametrized Tutte polynomial is multiplicative with respect to disjoint unions if and

only if �k1�k2 = �k1+k2 for all k1; k2 such that Gk1 ;Gk2 and Gk1+k2 are nonempty.

Proof. Observe that because G is closed under minors, Gk is nonempty if and only if Ek 2 Gk.

Certainly if T is multiplicative with respect to disjoint unions and Ek1 ; Ek2 ; Ek1+k2 2 G then �k1+k2 =

T (Ek1+k2) = T (Ek1 q Ek2) = T (Ek1)T (Ek2) = �k1�k2 . Conversely, if �k1�k2 = �k1+k2 for all k1; k2 such

that Gk1 ;Gk2 and Gk1+k2 are nonempty then Proposition 3.9 implies that T (G1 q G2) = T (G1)T (G2) for

every disjoint union in G. �

11



Corollary 3.11. Suppose Gk is nonempty for all k � 1. Then a parametrized Tutte polynomial on G is

multiplicative with respect to disjoint unions if and only if �k = �k1 for all k � 1.

If G is the union of subgraphs G1 and G2 which share precisely one vertex and no edges then G is the

one-point union of G1 and G2. The proofs of the next three results are very similar to those of Proposition

3.9 and Corollaries 3.10 and 3.11.

Proposition 3.12. Suppose a parametrized Tutte polynomial is de�ned on G. If G1; G2; G 2 G and G

is the one-point union of G1 and G2 then there is an r 2 R with r � �k(G1)�k(G2) = T (G1)T (G2) and

r � �k(G1)+k(G2)�1 = T (G):

Corollary 3.13. A parametrized Tutte polynomial is multiplicative with respect to one-point unions if and

only if �k1�k2 = �k1+k2�1 for all k1; k2 such that Gk1 ;Gk2 and Gk1+k2�1 are nonempty.

Corollary 3.14. Suppose Gk is nonempty for all k � 1. Then a parametrized Tutte polynomial on G is

multiplicative with respect to one-point unions if and only if �1 = �21, �1�2 = �2, and �k = �k�12 for all

k � 2.

A parametrized Tutte polynomial T on G is a strong Tutte function if T (G1)T (G2) = T (G) whenever

G;G1; G2 2 G are graphs whose associated circuit matroids satisfy M = M1 �M2. Such a parametrized

Tutte polynomial must be multiplicative with respect to both disjoint unions and one-point unions. In

general the combination of these two multiplicative properties is not enough to guarantee that T is a strong

Tutte function, both because G need not contain disjoint or one-point unions of its elements and because

there are many ways for di¤erent graphs to have the same circuit matroid. (For instance, G might contain

G1, G2 and G1 qG2 q E2 but not contain G1 qG2 itself.) However we do have the following.

Corollary 3.15. Suppose T is a parametrized Tutte polynomial on a minor-closed class G of graphs. Sup-

pose further that Gk is nonempty for every k � 1 and that G is closed under one-point unions and the removal

of isolated vertices. Then the following are equivalent.

(a) T is a strong Tutte function.

(b) T is multiplicative with respect to both disjoint unions and one-point unions.

(c) The initial value �1 = T (E1) is idempotent, and �k = �1 8k � 1.

12



Proof. We have already observed that (a) implies (b), and Corollaries 3.11 and 3.14 indicate that (b)

implies (c).

Suppose now that (c) holds. Observe that if C is a connected component of G 2 G then contracting all

the edges of G not in C results in a graph C 0 = C qEk(G)�1 2 G; by hypothesis we may deduce that C 2 G1

by removing k(G) � 1 isolated vertices from C 0. It follows that every G 2 G has the same circuit matroid

as some G0 2 G1, obtained by taking a one-point union of the connected components of G. Proposition 3.7

shows that (c) implies T (G) = T (G0) under such circumstances.

It follows that T is a strong Tutte function on G if and only if the restriction T jG1 is a strong Tutte

function on G1. To show that (c) implies that T jG1 is a strong Tutte function it remains only to observe that

according to Proposition 3.5, T jG1 must induce a well-de�ned parametrized Tutte polynomial on the class

M1 of circuit matroids of graphs in G1, and then Corollary 2.6 implies that this induced parametrized Tutte

polynomial is a strong Tutte function because E1 is the only graph in G1 with ; as its circuit matroid. �

4. Proof of the generalized Zaslavsky-Bollobás-Riordan theorem for matroids

Our proof of the generalized Zaslavsky-Bollobás-Riordan theorem for matroids is a straightforward adapta-

tion of the proof of Theorem 3.3 in [19]. The theorem could be proven using [2] as a model if the activities

expansion of Proposition 2.11 were used as a de�nition instead of De�nition 2.3. We choose to give a proof

modeled on [19] instead, because this proof seems to be shorter.

Let R be a commutative ring, let M be a minor-closed class of matroids de�ned on subsets of an R-

parametrized class U , and suppose we are given a parametrized Tutte polynomial T onM. We claim that

the identities given in the generalized Zaslavsky-Bollobás-Riordan theorem for matroids must hold, with

� = T (;).

If e1 and e2 are digonal in M then there is a matroid M 2 M whose only elements are e1 and e2,

in which fe1; e2g is the only circuit. Calculating T (M) by removing e1 through contraction and deletion

before removing e2 leads to the conclusion that T (M) = T (;) � (xe1Ye2 + ye1Xe2), while calculating T (M)

by removing e2 �rst leads to the conclusion that T (M) = T (;) � (xe2Ye1 + ye2Xe1). The identity of part (a)

of the generalized Zaslavsky-Bollobás-Riordan theorem for matroids follows.

If e1; e2 and e3 are triangular inM then there is a matroidM 2M whose only elements are e1; e2 and e3

13



and whose only circuit is fe1; e2; e3g. Calculating T (M) by removing e1 and then e2 leads to the conclusion

that

T (M) = T (;) � (xe1xe2Ye3 + xe1ye2Xe3 + ye1Xe2Xe3);

while calculating T (M) by removing e2 and then e1 leads to the conclusion that

T (M) = T (;) � (xe2xe1Ye3 + xe2ye1Xe3 + ye2Xe1Xe3);

comparing these we see that

T (;) �Xe3 � (xe1ye2 + ye1Xe2) = T (;) �Xe3 � (xe2ye1 + ye2Xe1):

The identity of part (a) of the generalized Zaslavsky-Bollobás-Riordan theorem for matroids holds, because

e1 and e2 are parallel in M=e3; hence

T (;) �Xe3 � (xe1Ye2 + ye1Xe2)� T (;) �Xe3 � (xe1ye2 + ye1Xe2)

= T (;) �Xe3 � (xe2Ye1 + ye2Xe1)� T (;) �Xe3 � (xe2ye1 + ye2Xe1):

The identity of part (b) of the generalized Zaslavsky-Bollobás-Riordan theorem for matroids follows.

If e1; e2 and e3 are triadic inM then there is a matroid M 2 M whose only elements are e1; e2 and e3

and whose circuits are fe1; e2g, fe1; e3g, and fe2; e3g. Calculating T (M) by removing e1 and then e2 leads

to the conclusion that

T (M) = T (;) � (xe1Ye2Ye3 + ye1xe2Ye3 + ye1ye2Xe3);

while calculating T (M) by removing e2 and then e1 leads to the conclusion that

T (M) = T (;) � (xe2Ye1Ye3 + ye2xe1Ye3 + ye2ye1Xe3):

Comparing these we see that

T (;) � Ye3 � (xe1Ye2 + ye1xe2) = T (;) � Ye3 � (xe2Ye1 + ye2xe1);

this is the identity of part (c) of the generalized Zaslavsky-Bollobás-Riordan theorem for matroids.

Now let R be a commutative ring and let M be a minor-closed class of matroids de�ned on subsets of

an R-parametrized class U . Suppose � 2 R and the identities of the generalized Zaslavsky-Bollobás-Riordan
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theorem for matroids all hold in R. We claim that there is a T :M! R which has T (;) = � and satis�es

De�nition 2.3.

Suppose instead that there is no such function T , and let M 2 M have as few elements as possible in

a matroid for which T (M) is not uniquely de�ned by De�nition 2.3. We may then refer unambiguously

to T (N) for any proper minor N of M . If e is a loop of M then e is also a loop of every minor of M

which contains it, so every possible computation using De�nition 2.3 has the same result Ye � T (M � e), a

contradiction. Similarly, if any element of M is a coloop then T (M) is uniquely de�ned by De�nition 2.3.

Consequently we may presume that no element ofM is a loop or coloop. CertainlyM must have at least

two elements, because De�nition 2.3 is unambiguous for matroids with fewer than two elements. If M has

exactly two elements then since neither is a loop or coloop they must be parallel, and the identity of part (a)

of the generalized Zaslavsky-Bollobás-Riordan theorem for matroids guarantees that T (M) is unambiguously

de�ned. If M has exactly three elements then since none is a loop or coloop, they are either triangular or

triadic and the identities of parts (a), (b) and (c) of the generalized Zaslavsky-Bollobás-Riordan theorem for

matroids guarantee that T (M) is unambiguously de�ned.

Hence M has at least four elements. Choose any element e0 2 E(M), and let D = fe 2 E(M) such that

yeT (M � e) + xeT (M=e) = ye0T (M � e0) + xe0T (M=e0)g. As T (M) is not uniquely de�ned by De�nition

2.3, M must have at least one element f 62 D.

We recall that according to Lemma 3.3 of [19], the fact that M has no loops or coloops implies that if e

and f are any two elements of M then e cannot be a loop in M � f , and e is a coloop in M � f if and only

if f is a coloop in M � e; if this occurs then e and f are in series. Dually, if e and f are any two elements of

M then e cannot be a coloop in M=f , and e is a loop in M=f if and only if f is a loop in M=e; if this occurs

then e and f are parallel.

Let e 2 D and f 62 D. If f is neither a loop nor a coloop in M=e or M � e then

yeT (M � e) + xeT (M=e)

= yeyfT (M � e� f) + yexfT ((M � e)=f) + xeyfT ((M=e)� f) + xexfT ((M=e)=f)

= yf � (yeT (M � f � e) + xeT ((M � f)=e)) + xf � (yeT ((M=f)� e) + xeT ((M=f)=e))

= yfT (M � f) + xfT (M=f);
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a contradiction.

Clearly it is not possible for a non-parallel series pair and a parallel pair to share exactly one element:

the minor obtained by deleting the rest of M would have rank 2 and contain a parallel pair, so the third

element would be a coloop; however an element in series with a coloop must be a coloop, an impossibility

for an element of a parallel pair. It follows that either every e 2 D is parallel to every f 62 D (in which case

the elements of M are all parallel to each other) or every e 2 D is in series with every f 62 D (in which case

M is a single circuit).

Suppose the elements of M are all parallel. Let f 62 D. Then

yfT (M � f) + xfT (M=f)

= yf � (ye0T (M � f � e0) + xe0T ((M � f)=e0)) + xf � T (;) �

0@Y
e6=f

Ye

1A
= yfye0T (M � f � e0) + yfxe0 � T (;) �

0@ Y
e0 6=e 6=f

Ye

1A+ xfYe0 � T (;) �
0@ Y
e0 6=e 6=f

Ye

1A
= ye0yfT (M � e0 � f) + (yfxe0 + xfYe0) � T (;) �

0@ Y
e0 6=e 6=f

Ye

1A :
The identity of part (c) of the generalized Zaslavsky-Bollobás-Riordan theorem for matroids then implies

that

yfT (M � f) + xfT (M=f)

= ye0yfT (M � e0 � f) + (ye0xf + xe0Yf ) � T (;) �

0@ Y
e0 6=e 6=f

Ye

1A
= ye0yfT (M � e0 � f) + ye0xf � T (;) �

0@ Y
e0 6=e 6=f

Ye

1A+ xe0 � T (;) �
0@Y
e 6=e0

Ye

1A
= ye0T (M � e0) + xe0T (M=e0);

contradicting the assumption that f 62 D.

A similar contradiction is obtained from the identity of part (b) of the generalized Zaslavsky-Bollobás-

Riordan theorem for matroids if M is a single circuit. �
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5. Generalized activities

If we adopt the convention thatM�e =M=e whenever e is a loop or coloop ofM , then a parametrized Tutte

polynomial may be calculated using the following modi�cation of De�nition 2.3: T (M) = (Xe�a)T (M=e)+

aT (M � e) for any coloop e of M 2M and any a 2 R, T (M) = aT (M � e)+ (Ye� a)T (M=e) for any loop e

of M 2M and any a 2 R, and T (M) = yeT (M � e) + xeT (M=e) for any other element e of M 2M. (N.b.

The use of the single letter a is not meant to imply that a single value of a must be used in all instances of the

de�nition; rather each individual equation involving a must be true for all values of a in R.) Di¤erent sets

of choices of a in this de�nition result in di¤erent generalized activities expansions of T (M). For instance,

taking a = 0 for every coloop e and a = Ye for every loop e leads to the activities formula of Proposition

2.11. Several such expansions of the ordinary Tutte polynomial were introduced in [6], and the notion was

extended to the coloured Tutte polynomial of [2] in [11].

In particular, suppose we calculate T (M) using the modi�ed version of De�nition 2.3, with a = Xe � xe

for every coloop e and a = ye for every loop e. The calculation may follow a linear order of E = E(M),

like the calculation in the discussion of Proposition 2.11, but it need not. We associate each term of the

resulting sum with the set S of elements of M which were contracted in obtaining that term, and we let

EI(S) = fe 2 E � S which are deleted as isthmuses in obtaining this termg and IL(S) = fe 2 S which are

contracted as loops in obtaining this termg. The calculation results in the subset expansion of T (M):

T (M) = � �
X
S�E

0@ Y
e2EI(S)

(Xe � xe)

1A0@ Y
e2E�S�EI(S)

ye

1A0@ Y
e2IL(S)

(Ye � ye)

1A0@ Y
e2S�IL(S)

xe

1A :
In general this formula cannot be simpli�ed. However, if it happens that the summands can be rewritten

to allow the multiplication of like factors in the products over EI(S) and IL(S), rather than the given

factors (which vary with e), then the subset expansion can be considerably simpli�ed using the fact that

jIL(S)j = jSj � r(S) and jEI(S)j = r(M) � r(S) are the nullity and corank of S, respectively. Such a

rewriting is sometimes possible for an appropriate multiple of T (M).

Proposition 5.1. Suppose e0 2 U , M 2 M and for every e 2 E = E(M) there is a triangle or a triad of

M which contains both e and e0. Then there is an element Z 2 R, which is a product of some parameters
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Xf and Yf , such that

ZxjEje0 y
jEj
e0 � T (M)

= Z� �
X
S�E

xjEj�jSj+r(S)e0

 Y
e2S

xe

!
(Xe0 � xe0)r(M)�r(S) � yjEj�r(M)+r(S)

e0

 Y
e2E�S

ye

!
(Ye0 � ye0)jSj�r(S):

Proof. If e 2 E then e appears in a triangle or triad ofM with e0 and some other f 2 U . According to

the generalized Zaslavsky-Bollobás-Riordan theorem for matroids,

� � (xeYe0 + yeXe0) = � � (xe0Ye + ye0Xe)

and

�Zf � (xeYe0 + yexe0) = �Zf � (Yexe0 + xeye0)

for at least one Zf 2 fXf ; Yfg. These two equations imply that

�Zfxe0 � (Ye � ye) = �Zfxe � (Ye0 � ye0)

and

�Zfye0 � (Xe � xe) = �Zfye � (Xe0 � xe0):

Let Z be a product which includes at least one Zf for each e 2 E. Then using the subset expansion of

T (M), we see that

ZxjEje0 y
jEj
e0 � T (M)

= � �
X
S�E

ZyjEje0 �

0@ Y
e2EI(S)

(Xe � xe)

1A0@ Y
e2E�S�EI(S)

ye

1AxjEje0

0@ Y
e2IL(S)

(Ye � ye)

1A0@ Y
e2S�IL(S)

xe

1A
= � �

X
S�E

Z �

0@ Y
e2EI(S)

(Xe0 � xe0)

1A Y
e2E�S

ye

!
yjEj�jEI(S)je0 � xjEje0

0@ Y
e2IL(S)

(Ye � ye)

1A0@ Y
e2S�IL(S)

xe

1A
= � �

X
S�E

(Xe0 � xe0)jEI(S)j � yjEj�jEI(S)je0

 Y
e2E�S

ye

!
� ZxjEje0

0@ Y
e2IL(S)

(Ye � ye)

1A0@ Y
e2S�IL(S)

xe

1A
= � �

X
S�E

(Xe0 � xe0)jEI(S)j � yjEj�jEI(S)je0

 Y
e2E�S

ye

!
� Z �

0@ Y
e2IL(S)

(Ye0 � ye0)

1AxjEj�jIL(S)je0

 Y
e2S

xe

!

= � �
X
S�E

(Xe0 � xe0)jEI(S)j � yjEj�jEI(S)je0

 Y
e2E�S

ye

!
� Z � (Ye0 � ye0)jIL(S)j � xjEj�jIL(S)je0

 Y
e2S

xe

!
:

The result follows from the equalities jIL(S)j = jSj � r(S) and jEI(S)j = r(M)� r(S). �
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If xe0 ; ye0 or Z is a zero divisor in R then a corank-nullity formula for T (M) itself cannot be derived

from Proposition 5.1. However if it happens that there is a Z as described in the proof which is not a

zero divisor in R, then of course Z may be cancelled. Moreover, if xe0 and ye0 are not zero divisors in R

then R may be enlarged by adjoining multiplicative inverses for them through localization, so we may as

well assume that these multiplicative inverses are present in R. Under these circumstances Proposition 5.1

yields a corank-nullity formula for T (M) which generalizes the corresponding formula for the classical Tutte

polynomial.

Corollary 5.2. Suppose e0 2 U and both xe0 and ye0 have multiplicative inverses in R; let u = (Xe0 �

xe0)y
�1
e0 and v = (Ye0 � ye0)x�1e0 . Suppose further that M 2 M and for every e 2 E = E(M) there is either

a triangle fe; e0; fg ofM such that Xf is not a zero divisor in R or a triad fe; e0; fg such that Yf is not a

zero divisor in R. Then

T (M) = � �
X
S�E

(
Y
e2S

xe)(
Y

e2E�S
ye)u

r(M)�r(S)vjSj�r(S):

Proof. The equality is obtained by cancelling Z from the equality of Proposition 5.1 and replacing

(Xe0 � xe0) by uye0 and (Ye0 � ye0) by vxe0 . �

6. When R is a �eld

In [19] Zaslavsky classi�es the �eld-valued strong Tutte functions which are de�ned on domains in which all

triples of elements are triadic and triangular, and all pairs of elements are digonal; there are seven possible

types. If the domain is coloured �that is, for every e1 2 U there are e2; e3 2 U with e1 6= e2 6= e3 6= e1 such

that xei , yei , Xei , and Yei do not vary with i �then there are only four types. In this section we brie�y

describe the derivation of these classi�cations from the generalized Zaslavsky-Bollobás-Riordan theorem.

The subset expansion of Section 5 gives formulas for the various types.

Suppose then thatM is a minor-closed class of matroids in which all triples are triangular and triadic,

and all pairs of elements are digonal. Suppose we are given a parametrized Tutte polynomial on M with

values in a �eld R. As in Corollary 5.2 these hypotheses could be weakened to assumptions that M has

su¢ ciently many triangles and triads (rather than all possible triangles and triads) and that su¢ ciently

many elements of R are not zero divisors, but to keep the discussion simple we leave such sharpening to the
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interested reader. Moreover we could assume that T is a strong Tutte function with no loss of generality, for

if T is not identically 0 then ��1 � T is strong, according to Proposition 2.5 and Corollary 2.6; however this

would not simplify our discussion, so we do not assume T is strong.

If T (;) = 0 then of course T is identically 0. If Xe = 0 = Ye for all e 2 U then T (M) = 0 for all M 6= ;

by Proposition 2.4. These are the nil parametrized Tutte polynomials.

Assume that T is not nil and there are e1; e2 2 U such that Xe = Ye = 0 for all e 62 fe1; e2g. (This

is impossible if M is coloured.) The generalized Zaslavsky-Bollobás-Riordan theorem for matroids implies

that for every e 62 fe1; e2g;

xe1Ye + ye1Xe = 0 = xeYe1 + yeXe1 ;

consequently the vectors (xe; ye) and (Ye1 ; Xe1) are perpendicular. Similarly, the vectors (xe; ye) and

(Ye2 ; Xe2) are perpendicular for every e 62 fe1; e2g. These parametrized Tutte polynomials are pointlike

if e1 = e2 and pairlike if e1 6= e2; there are two types of the latter, according to whether or not (Ye1 ; Xe1)

and (Ye2 ; Xe2) are collinear.

Assume that T is not nil and there are at least three di¤erent e 2 U such that at least one of Xe; Ye is

nonzero. If xe = 0 = ye for all e 2 U then clearly T (M) 6= 0 only if every element of M is either a loop or a

coloop. These parametrized Tutte polynomials are paranil.

Assume that T is not nil or paranil, there are at least three di¤erent e 2 U such that at least one of Xe; Ye

is nonzero, and it is not true that xe = 0 = ye for all e 2 U . The generalized Zaslavsky-Bollobás-Riordan

theorem for matroids then implies that for all e1 6= e2 2 U

xe1Ye2 + ye1Xe2 = xe2Ye1 + ye2Xe1

and xe1Ye2 + ye1xe2 = Ye1xe2 + xe1ye2 ;

and consequently

ye1(Xe2 � xe2) = ye2(Xe1 � xe1):

If xe = 0 for all e 2 U then it follows that ye1Xe2 = ye2Xe1 for all e1 6= e2 2 U , and hence there is a single

element u 2 R such that Xe = uye for every e 2 U . Similarly, if ye = 0 for all e 2 U then there is a single

element v 2 R such that Ye = vxe for every e 2 U . These parametrized Tutte polynomials are elementary.
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If xe = 0 for all e 2 U then the subset expansion of Section 5 implies

T (M) = � �
X
S�E

0@ Y
e2EI(S)

(Xe � xe)

1A0@ Y
e2E�S�EI(S)

ye

1A0@ Y
e2IL(S)

(Ye � ye)

1A0@ Y
e2S�IL(S)

xe

1A
= � �

X
S=IL(S)�E

ujEI(S)j

 Y
e2E�S

ye

! Y
e2S
(Ye � ye)

!
:

If we use E0 to denote the set of loops of M , then the subsets S � E with S = IL(S) are simply the

subsets of E0; such a subset has r(S) = 0 and hence jEI(S)j = r(M)� r(S) = r(M). Consequently

T (M) = � �
X
S�E0

ujEI(S)j

 Y
e2E�S

ye

! Y
e2S
(Ye � ye)

!

= �ur(M) �
 Y
e2E�E0

ye

!
�
X
S�E0

 Y
e2E0�S

ye

! Y
e2S
(Ye � ye)

!

= �ur(M) �
 Y
e2E�E0

ye

!
�
 Y
e2E0

(Ye � ye + ye)
!

= �ur(M) �
 Y
e2E�E0

ye

!
�
 Y
e2E0

Ye

!
:

Similarly, if ye = 0 for all e 2 U then the subset expansion of Section 5 implies

T (M) = �vjEj�r(M) �
 Y
e2E�E1

xe

!
�
 Y
e2E1

Xe

!
where E1 denotes the set of coloops of M .

If it is not true that xe = 0 for all e 2 U or that ye = 0 for all e 2 U then it follows that there are

u; v 2 R with Xe � xe = uye and Ye � ye = vxe for all e 2 U . These parametrized Tutte polynomials are

normal ; they are given by the corank-nullity formula of Corollary 5.2.

7. Parallel and series connections

Suppose M1 and M2 are matroids on sets S1 and S2, with S1\S2 = fe0g. Suppose further that e0 is neither

a loop nor a coloop in either M1 or M2. Then the parallel connection of M1 and M2 is the matroid M on

E = S1[S2 whose circuits are the elements of C(M) = C(M1)[C(M2)[fC1[C2�fe0g j e0 2 C1 2 C(M1)

and e0 2 C2 2 C(M2)g; M � e0 is the 2-sum of M1 and M2. It is a useful fact that the classical Tutte

polynomials of M and M � e0 are related to those of M1 and M2; for instance in [8] the formula
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(1�uv)T (M�e0) = T (M2=e0)T (M1�e0)+T (M2�e0)T (M1=e0)�uT (M1=e0)T (M2=e0)�vT (M2�e0)T (M1�e0)

(derived from [3]) is used to show that the classical Tutte polynomial can be computed in polynomial time

on certain classes of matroids of bounded width. In this section we observe that these relationships do not

generalize fully to parametrized Tutte polynomials. We consider only parallel connections, leaving the dual

case of series connections to the reader.

Proposition 7.1. Suppose a parametrized Tutte polynomial is de�ned on M and M 2 M is the parallel

connection of M1 and M2. Then there are r; s 2 R with

T (M2) = (rXe0 + sYe0) � T (;)

and

T (M) = (rxe0 + sYe0) � T (M1=e0) + rye0 � T (M1 � e0):

Proof. Let E = fe0; :::; emg with S1 = fe0; :::; eig and S2 = fe0; ei+1; :::; emg. As in the proof of Propo-

sition 2.4 we may calculate T (M2) using De�nition 2.3, �rst removing em through deletion and contraction,

then removing em�1, and so on. We conclude that T (M2) = (rXe0 + sYe0) � T (;), with rXe0T (;) resulting

from the portions of the calculation in which e0 is not a loop at the time of its removal and sYe0T (;) resulting

from the portions of the calculation in which e0 is a loop at the time of its removal.

If we compare this calculation of T (M2) to a corresponding partial calculation of T (M) we see that the

portions of the calculations in which e0 is or is not a loop at the time of its removal coincide. The portions

of the partial calculation in which e0 is not a loop at the time of its removal produce rT (M1) rather than

rXe0T (;), and the portions of the partial calculation in which e0 is a loop at the time of its removal produce

sT ((M1=e0)�L) rather than sYe0T (;), where L is the matroid on fe0g in which e0 is a loop. Consequently

T (M) = rT (M1) + sYe0T (M1=e0). �

Suppose M contains a matroid M 0
1 which is de�ned on S

0
1 = fe00; e1; :::; eig, is isomorphic to M1 under

the obvious bijection between S1 and S01, and has xe00 = rxe0 + sYe0 and ye00 = rye0 with r and s as in

Proposition 7.1. Then T (M) = T (M 0
1). As S1 may be considerably smaller than E, calculating T (M

0
1) may
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be considerably easier than calculating T (M) directly. HoweverM might not contain such an M 0
1, and the

fact that r and s are not uniquely determined makes it di¢ cult to ascertain whether or notM does contain

such an M 0
1. This leads us to consider the following extension of the discussion of [13].

Suppose M 2M is the parallel connection of M1 and M2 with respect to an element e0 which is neither

a loop nor a coloop in either M1 or M2. Let e000 62 U , and let U 00 = (S1 � fe0g) [ fe000g. For each minor N of

M1 let N 00 be an isomorphic copy of N which di¤ers from N only in that if e0 2 N then e0 is replaced by

e000 in N
00; letM00 = fN 00 j N is a minor of M1g. Parametrize U 00 by restricting the parameter functions of

U to S1 � fe0g and de�ning

xe000 = xe0(xe0ye0 + xe0Ye0 �Xe0Ye0)T (M2=e0) + xe0y
2
e0T (M2 � e0);

ye000 = y2e0xe0T (M2=e0) + y
2
e0(ye0 � Ye0)T (M2 � e0);

Xe000 = (Xe0ye0 + xe0Ye0 �Xe0Ye0)T (M2); and

Ye000 = Ye0(Xe0ye0 + xe0Ye0 �Xe0Ye0)T (M2=e0):

Proposition 7.2. Suppose that (i) whenever e0; e1; e2 2 S1 are triadic or triangular in M they are both

triadic and triangular inM and (ii) whenever e0; e1 2 S1 are digonal inM there is an e2 2 S2 � fe0g such

that e0; e1 and e2 are both triangular and triadic in M. Then the identities of the generalized Zaslavsky-

Bollobás-Riordan theorem for matroids hold in M00, using � = T (;). The resulting parametrized Tutte

polynomial T 00 has T 00(;) = T (;) and

T 00(M 00
1 ) = (Xe0ye0 + xe0Ye0 �Xe0Ye0)T (;)T (M):

Proof. The proof follows the same outline as the argument of [13]. The most di¢ cult step is the derivation

of the digon identities of the generalized Zaslavsky-Bollobás-Riordan theorem for matroids inM00; the key

to this derivation is the fact that hypothesis (ii) and Proposition 2.4 imply that if e0; e1 2 S1 are digonal in

M00 then T (M2� e0) � (xe1Ye2 + ye1xe2) = T (M2� e0) � (Ye1xe2 +xe1ye2) and T (M2=e0) � (xe1Ye2 + ye1xe2) =

T (M2=e0) � (Ye1xe2 +xe1ye2). We do not include the details here; the interested reader may �nd them posted

on the authors�web pages. �
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Corollary 7.3. In the circumstances of Proposition 7.2, the 2-sum M � e0 has

ye0(Xe0ye0 + xe0Ye0 �Xe0Ye0)T (;)T (M � e0)

= xe0y
2
e0T (M2 � e0)T (M1=e0) + xe0y

2
e0T (M2=e0)T (M1 � e0)

+y2e0(ye0 � Ye0)T (M2 � e0)T (M1 � e0) + xe0ye0(xe0 �Xe0)T (M1=e0)T (M2=e0):

Proof. Observe that M=e0 = (M1=e0)� (M2=e0) and hence

ye0(Xe0ye0 + xe0Ye0 �Xe0Ye0)T (;)T (M � e0)

= (Xe0ye0 + xe0Ye0 �Xe0Ye0)T (;)(T (M)� xe0T (M=e0))

= T 00(M 00
1 )� xe0(Xe0ye0 + xe0Ye0 �Xe0Ye0)T (M1=e0)T (M2=e0)

= xe000 T
00(M 00

1 =e
00
0) + ye000 T

00(M 00
1 � e000)� xe0(Xe0ye0 + xe0Ye0 �Xe0Ye0)T (M1=e0)T (M2=e0)

= xe000 T (M1=e0) + ye000 T (M1 � e0)� xe0(Xe0ye0 + xe0Ye0 �Xe0Ye0)T (M1=e0)T (M2=e0)

= xe0y
2
e0T (M2 � e0)T (M1=e0) + y

2
e0xe0T (M2=e0)T (M1 � e0) + y2e0(ye0 � Ye0)T (M2 � e0)T (M1 � e0)

+xe0((xe0ye0 + xe0Ye0 �Xe0Ye0)� (Xe0ye0 + xe0Ye0 �Xe0Ye0))T (M1=e0)T (M2=e0): �

The somewhat unnatural hypotheses of Proposition 7.2 and Corollary 7.3 re�ect the fact that triangle

and triad identities ofM are used to verify the digon identities ofM00. We hope that an ingenious reader

will improve these results by �nding more convenient re-parametrizations of e000 .
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