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Abstract

Sum of disjoint products (SDP) algorithms analyze network reliability by
producing partitions, and S-partitions are certain partitions which generalize
shellings. Existing SDP algorithms without multiple-variable inversion produce
S-partitions, so S-partitions provide a theoretical framework in which these
SDP algorithms may be studied. We introduce MVI S-partitions which pro-
vide the same kind of theoretical framework for SDP algorithms with multiple-
variable inversion, and we present some elementary theory of ordinary and MVI
S-partitions. We also present examples which show that (MVI) S-partitions
are not generally very economical: for these examples there are (MVI) inter-
val partitions which require many fewer intervals than (MVI) S-partitions. We
conclude that existing SDP algorithms can be improved by modifying them to
allow the production of non-S-partitions, and we briefly discuss the structure of
such improved SDP algorithms.
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1. Introduction

A filter on a finite set E is a family F of subsets of E with the property that whenever

S ∈ F and S ⊆ T ⊆ E, T ∈ F too. Filters are natural combinatorial models of

network reliability problems: E represents the set of elements of a network, and F

represents the family of subsets of E whose successful operation is sufficient for the

successful operation of the network. The assumption that F is a filter reflects the

natural assumption that a successfully operating network cannot be made to cease



operation by enlarging the set of operational elements; this assumption is technically

called coherence. We are concerned here with SDP algorithms (network reliability

algorithms which produce partitions of filters), S-partitions (a special kind of ordered

partition of filters, generalizing shellings) and the relationship between them. We refer

to [8] for a survey of SDP algorithms, and to [5] for an introduction to S-partitions.

Our discussion is complicated by three facts. The first of these complicating facts is

that filters do not actually appear in the literature of combinatorial geometry, where

shellings and S-partitions are studied; this literature is concerned with complexes,

families which include all subsets of their elements rather than all supersets. This

complication is essentially notational, because complementation serves to translate

complexes into filters and vice versa. We use complexes in Section 3 when discussing

S-partitions because that seems most consistent with the combinatorial literature,

and we use filters in the rest of the paper because that seems most consistent with

the reliability literature. The second complicating fact is that there are two kinds

of SDP algorithms, ordinary ones which utilize only single-variable inversion and

MVI-SDP algorithms which also involve multiple-variable inversion. It is a simple

matter to observe that the partitions produced by existing simple SDP algorithms

are S-partitions; we introduce MVI S-partitions to provide a similar combinatorial

framework for the partitions produced by existing MVI-SDP algorithms. The third

complicating fact is that S-partitions have received little attention in the literature,

much less than shellings, and of course MVI S-partitions have received none before

this paper. We present some elementary theory of the two types of S-partitions,

including several generalizations of the Rearrangement Lemma of [4].
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The central purpose of this paper, however, is not to study the combinatorics of

the two types of S-partitions or merely to establish the relationship between them

and the two types of SDP algorithms; rather we use this relationship to study the

performance of SDP algorithms. A convenient measure of performance is the number

of terms the algorithms generate. If a reliability problem possesses a shelling, the

shelling provides an optimal SDP analysis [1, 2]; for instance this is the case for an

ordinary (all-terminal) reliability problem on a graph. S-partitions are generalized

shellings, and MVI S-partitions in turn are generalized S-partitions, so one might

expect the fact that existing (MVI-) SDP algorithms produce (MVI) S-partitions

to indicate that these algorithms perform efficiently. However we provide examples

for which existing (MVI-) SDP algorithm which produce (MVI) S-partitions must

produce highly non-optimal partitions, partitions which involve many more intervals

than are actually necessary. Moreover, it is not difficult to understand why existing

(MVI-) SDP algorithms are so ineffective for these examples. In the last section of the

paper we discuss this ineffectiveness and briefly introduce improved SDP algorithms

which can produce non-S-partitions, and hence can be more effective than existing

ones. We hope to provide a more detailed discussion of the implementation and

performance of such algorithms after further study.

2. SDP algorithms

Recall that a Boolean interval is [A,B] = {S | A ⊆ S ⊆ B}. Many SDP algorithms

produce a partition of a filter F into Boolean intervals by following this common

outline. If M1, ...,Mp are the minimal elements of F then F may be partitioned
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into the families Fj = {S ⊆ E |Mj ⊆ S but no i < j has Mi ⊆ S}, one for each

j ∈ {1, ..., p}. Each Fj may be partitioned into Boolean intervals by repeatedly using

the fact that if [A,B] is a Boolean interval and C is a set with C−A = {c1, ..., ck} 6= ∅

then {S ∈ [A,B] |C 6⊆ S} is either [A,B] (if C − A 6⊆ B) or else the union of the

pairwise disjoint intervals [A∪{c1, ..., ck−1}, B−{ck}], [A∪{c1, ..., ck−2}, B−{ck−1}],

..., [A∪ {c1}, B − {c2}], [A,B − {c1}]. First this fact is applied with A =Mj , B = E

and C = an Mii with i1 < j to find a partition of {S ∈ [Mj , E] |Mi1 6⊆ S}, then it is

applied to each resulting interval [A,B] using C = an Mi2 with i1 6= i2 < j, then it is

applied to each resulting interval using C = an Mi3 with i3 < j not equal to i1 or the

i2 used in obtaining that interval, and so on; after j − 1 sets of applications one has

partitioned Fj . Implementations of this common outline may differ in their choice

of the original order M1, ...,Mp, the orderings within the sets C − A = {c1, ..., ck},

or the orders Mi1 , ...,Mij−1 in which M1, ...,Mj−1 are considered in constructing the

various intervals [A,B]. These differences may significantly affect the resulting interval

partitions [3, 8, 9, 10]. However it is clear that if the algorithm proceeds in an

ordered manner, beginning with the list M1, ...,Mp and at each step inserting the

replacement intervals [A∪{c1, ..., ck−1}, B− {ck}], [A∪{c1, ..., ck−2}, B− {ck−1}], ...,

[A∪{c1}, B−{c2}], [A,B−{c1}] in order at the location of [A,B], then the resulting list

has these properties: if X1, ...,Xt are the minimal elements of the resulting Boolean

intervals (in order) then every superset of Xi appears in an interval [Xj , Yj ] with

j ≤ i, the minimal elements M1, ...,Mp of F appear in order in the list X1, ...,Xt, and

if Xi = Mj then [X1, Y1] ∪ ... ∪ [Xi, Yi] = F1 ∪ ... ∪ Fj . We will see later that this

means the algorithm produces a special kind of S-partition which we call compatibly
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ordered.

In the late 1980s several authors introduced modified SDP algorithms which fol-

low the same common outline but allow multiple-variable inversion (MVI ); the first

published account seems to appear in [7], and [8] provides a survey. An MVI-SDP

algorithm generates a partition of a filter F using families of sets which need not

be Boolean intervals. Rather they are MVI intervals, logically represented by ex-

pressions x1...xry11...y1s1 y21...y2s2 ...yu1...yusu in which the sets X = {x1, ..., xr},

Y1 = {y11, ..., y1s1}, ..., Yu = {yu1, ..., yusu} are pairwise disjoint and Y1, ..., Yu are

nonempty. Here yv1...yvsv represents the negation of the conjunction yv1...yvsv , so

the word x1...xry11...y1s1 y21...y2s2 ...yu1...yusu represents {S ⊆ E |X ⊆ S and Yv 6⊆ S

for every v ∈ {1, ..., u}}. We denote an MVI interval [X; {Y1, ..., Yu}]; it has a sin-

gle minimal element X and
Qu
v=1 sv maximal elements E − {y1, ..., yu}, given by

different choices of yv ∈ Yv. Observe that [X; ∅] = [X,E] and if every sv = 1 then

[X; {Y1, ..., Yu}] is the Boolean interval [X,E−{y11, ..., yu1}]. Clearly SDP algorithms

which follow the outline given above, except for allowing MVI intervals, partition a

filter F into an ordered list of MVI intervals in such a way that if the minimal elements

of the intervals are X1, ...,Xt (in order) then every superset of Xi appears in an inter-

val [Xj ;E(Xj)] with j ≤ i, the minimal elements M1, ...,Mp of F appear in order in

the listX1, ...,Xt, and ifXi =Mj then [X1;E(X1)]∪...∪[Xi;E(Xi)] = F1∪...∪Fj . We

will see later that this means the partition is a compatibly ordered MVI S-partition.
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3. S-partitions of complexes

A complex ∆ on a finite set E is a family of subsets of E which contains all singleton

subsets and has the property that whenever S ∈ ∆ and T ⊆ S ⊆ E, T ∈ ∆ too.

The elements of ∆ are faces, and the maximal elements are facets. An ordering

F1, ..., Ft of some faces of a complex ∆ is an S-partition [5] if there are subsets

R(F1) ⊆ F1, ...,R(Ft) ⊆ Ft such that the Boolean intervals [R(Fi), Fi] partition

∆ and R(Fi) * Fj for i > j; that is, every subset of Fj appears in exactly one

interval [R(Fi), Fi] with i ≤ j and in no interval [R(Fi), Fi] with i > j. The subsets

R(F1), ...,R(Ft) are the restrictions of F1, ..., Ft. Observe that there is no freedom in

choosing them: R(F1) must be ∅ and for i > 1, R(Fi) must be the intersection of the

subsets of Fi which are not contained in any Fj with j < i. For F1, ..., Ft to be an

S-partition it must be that for every i > 1, this intersection itself is not contained in

any Fj with j < i.

Complementation serves to translate complexes into filters, and vice versa. Con-

sequently an S-partition of a filter F may be defined to be a list X1, ...,Xt of some

elements of F, together with supersets E(X1) ⊇ X1, ...,E(Xt) ⊇ Xt (the extensions of

X1, ...,Xt) such that the Boolean intervals [Xi,E(Xi)] partition F and every superset

of Xj appears in some interval [Xi,E(Xi)] with i ≤ j. Clearly SDP algorithms which

follow the outline given above always produce S-partitions of filters. Although our

primary focus is on filters and network reliability, we use complexes in this section for

the sake of compatibility with the combinatorial literature.

Here is a useful alternative definition of S-partitions.
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Proposition 3.1. A list F1, ..., Ft is an S-partition of a complex if and only if

for every j > 1, the minimal elements of {Fj − F1, ..., Fj − Fj−1} are all singletons.

Moreover, if j > 1 then R(Fj) is precisely the union of these singletons.

Proof. Suppose first that F1, ..., Ft is an S-partition and Fj−Fi is minimal among

Fj − F1, ..., Fj − Fj−1 but not a singleton. If Fj − Fi = ∅ then R(Fj) ⊆ Fj ⊆ Fi, an

impossibility. If |Fj − Fi| > 1 then note that R(Fj) 6⊆ Fi implies that Fj−Fi contains

at least one element x of R(Fj). The minimality of Fj −Fi implies that {x} does not

contain any Fj−Fk with k < j, i.e., for every k < j there is a y 6= x ∈ Fj−Fk. Hence

Fj − {x} 6⊆ Fk for every k < j. This is impossible, though, for Fj − {x} 6∈ [R(Fj), Fj ]

and hence Fj − {x} ∈ [R(Fk), Fk] for some k < j.

Conversely, suppose F1, ..., Ft is a list with the property that for every j > 1

all the inclusion-minimal elements of {Fj − F1, ..., Fj − Fj−1} are singletons. Let

R(F1) = ∅ and for j > 1 let R(Fj) = { elements of the minimal Fj − Fi with

i < j }. Note that if i < j and S ∈ [R(Fj), Fj ] then S contains an element of

Fj − Fi, so S 6∈ [R(Fi), Fi]; hence [R(Fj), Fj ] ∩ [R(Fi), Fi] = ∅. Also, if S ⊆ Fj and

S 6∈ [R(Fj), Fj ] then R(Fj) 6⊆ S and hence there is an i < j with (Fj − Fi) ∩ S = ∅;

it follows that S ⊆ Fi. If S 6∈ [R(Fi), Fi] then the same argument shows that S ⊆ Fh

for some h < i. Continuing in this vein, we must eventually find a g < j with

S ∈ [R(Fg), Fg].

Corollary 3.2. Suppose F1, ..., Ft is an S-partition, j > 1 and x ∈ Fj−(∪i<jFi).

Then R(Fj) = {x}.

Proof. The hypothesis implies that {x} is a subset of Fj − Fi for every i < j.

Some such Fj − Fi is a singleton and hence is equal to {x}; then that Fj − Fi is the
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only minimal one.

An S-partition F1, ..., Ft of ∆ is called full [5] or a shelling [4] if only facets appear

in the list. We refer the reader to the references of these two papers for the beautiful

and deep theory of shellings of pure complexes (those whose facets are all of the

same cardinality), and to more recent papers citing these two for subsequent work on

shellings of non-pure complexes.

Every complex admits S-partitions; for instance there are always the trivial S-

partitions in which F1, ..., Ft are all the faces of ∆, listed in any order of nondecreasing

cardinality. These trivial examples may give the impression that S-partitions are

generally less interesting or less important than shellings. One reason we do not

agree with this impression is that every S-partition of a complex ∆ gives rise to a

shelling of a related complex ∆0 through the following simple construction. Given a

list F1, ..., Ft of subsets of E such that Fi * Fj for i > j, let e01, ..., e0t−1 6∈ E, and let

F 01 = F1 ∪ {e01, ..., e0t−1}, F 02 = F2 ∪ {e02, ..., e0t−1}, ..., F 0t−1 = Ft−1 ∪ {e0t−1}, F 0t = Ft.

Let ∆ be the complex of subsets of E which are contained in some Fi, and let ∆
0

be the complex of subsets of E0 = E ∪ {e01, ..., e0t−1} which are contained in some F 0i .

Then it is easily seen that F1, ..., Ft is an S-partition of ∆ if and only if F 01, ..., F 0t is

a shelling of ∆0. (The elements e01, ..., e0t−1 are adjoined to E to guarantee that no

F 0j contains another, so there is a more economical version of the construction which

introduces a new element e0j only if there is an i > j with Fj ⊆ Fi.)

Chari [5] observes that the unshellable complex with facets {1, 2}, {1, 3}, {2, 3},

and {4, 5}may be partitioned into the four intervals [∅, {4, 5}], [{1}, {1, 2}], [{3}, {1, 3}],

and [{2}, {2, 3}]. This shows that it is possible that no S-partition of a complex ∆
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is a minimum interval partition, i.e., a partition involving the smallest possible num-

ber of Boolean intervals. We proceed to present examples for which S-partitions are

arbitrarily far from being minimum interval partitions.

Let n > 1 be an integer, and let E = {a1, ..., an, b1, ..., bn, c1, ..., cn}. Let A =

{a1, ..., an}, B = {b1, ..., bn} and C = {c1, ..., cn}, and consider the complex ∆ on E

whose facets are A ∪ B, B ∪ C and A ∪ C. ∆ may be partitioned into the 3n + 1

Boolean intervals [{a1}, A∪B], [{a2}, (A∪B)−{a1}], ..., [{an}, (A∪B)−{a1, ..., an−1}],

[{b1}, B ∪C], [{b2}, (B ∪C)− {b1}], ..., [{bn}, (B ∪C)− {b1, ..., bn−1}], [{c1}, A ∪C],

[{c2}, (A ∪C)− {c1}], ..., [{cn}, (A ∪C)− {c1, ..., cn−1}] and [∅, ∅].

Suppose F1, ..., Ft is an S-partition of ∆; we may presume that A,B,C are named

in such a way that 0 = |F1 ∩ C| ≤ |F1 ∩B| ≤ |F1 ∩A| 6= 0. Suppose n2 ≤ |F1 ∩B| and

consider any ci ∈ C. Let j(i) be the least j with ci ∈ Fj ; then Corollary 3.2 implies

that {ci} = R(Fj(i)). Suppose Fj(i) ⊆ A ∪ C and consider any bk ∈ F1 ∩B. The set

{bk, ci} must appear in some interval [R(Fa), Fa]. It cannot happen that a = 1 or

a = j(i), because F1 ⊆ A∪B and Fj(i) ⊆ A∪C. It follows that {bk, ci} = R(Fa), for

∅, {bk} ∈ [R(F1), F1] and {ci} ∈ [R(Fj(i), Fj(i)] and hence no proper subset of {bk, ci}

can appear in [R(Fa), Fa]. Similarly, if Fj(i) ⊆ B ∪ C then every set {ak, ci} with

ak ∈ F1∩Amust beR(Fa) for some a. Whereas n2 ≤ |F1 ∩B| ≤ |F1 ∩A|, we conclude

that there are at least n(n2 ) values of a such that R(Fa) has two elements. Corollary

3.2 implies that there are at least n values of a such that R(Fa) is a singleton, one

for each ci ∈ C; considering F1, we conclude that t ≥ 1 + n+ n2

2 .

Suppose now that n
2 > |F1 ∩B|. Given any ai, bj and ck such that bj 6∈ F1,

consider the three pairs {ai, bj}, {ai, ck}, and {bj , ck}. No two may appear together
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in any one interval [R(Fa), Fa], because no Fa may intersect all three sets A,B,C.

Also, none of the pairs may appear in the first interval [R(Fa), Fa] containing one of

{ai}, {bj}, {ck}, because Corollary 3.2 and the hypothesis bj 6∈ F1 together imply that

this first Fa only contains one of ai, bj , ck. It follows that at least one of these pairs

is R(Fa) for some a. There are more than n
2(n2 ) such triples, and no more than n of

them may give rise to the same pair R(Fa). We conclude that there are at least
n2

2

values of a with |R(Fa)| = 2. As before, this implies that t ≥ 1 + n+ n2

2 .

We conclude that for these examples, the ratio

minimum number of Boolean intervals in an S-partition of ∆
minimum number of Boolean intervals in an interval partition of ∆

≥
1 + n+

³
n2

2

´
3n+ 1

.

Of course, the filters complementary to these complexes satisfy a corresponding in-

equality.

Before proceeding we observe that not only S-partitions are subject to the lower

bound 1+n+ n2

2 ≤ t. The lower bound also applies to any Boolean interval partition

[X1, Y1], ..., [Xt, Yt] of ∆ which is compatibly ordered in the sense that the facets

F1 = A ∪B, F2 = A ∪ C and F3 = B ∪ C appear in order in the list Y1, ..., Yt and if

Yi = Fj then [X1, Y1] ∪ ... ∪ [Xi, Yi] = {elements of ∆ contained in one of F1, ..., Fj}.

To verify this, observe first that if Yi = A∪B then [X1, Y1]∪ ...∪ [Xi, Yi] = [∅, A∪B],

so we may as well assume that [X1, Y1] = [∅, A ∪ B]. Now if Yi = A ∪ C then

[X2, Y2] ∪ ... ∪ [Xi, Yi] = {subsets of A ∪ C which are not contained in A ∪ B} has

n minimal elements, namely the singletons {ck}, so there must be at least n such

intervals. Finally, the remaining intervals partition {subsets of B ∪ C which are not

contained in A∪B or A∪C}, and this set has n2 minimal elements, namely the pairs
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{bj, ck}; hence there must be at least n2 of these remaining intervals. Consequently

such a partition must actually satisfy 1 + n+ n2 ≤ t.

4. Rearrangements

In this section we present several generalizations of the Rearrangement Lemma for

Shellings [4]. These lemmas are not directly useful in our discussion of SDP algo-

rithms, but they provide some insight into the structure of the partitions the algo-

rithms produce.

First we generalize the definition of an S-partition of a filter F by defining a list

X1, ...,Xt of elements of F to be an MVI S-partition if for each i there is an extension

E(Xi) = {Yi1, ..., Yiui} such that Yi1, ..., Yiui are pairwise disjoint nonempty subsets

of E − Xi, the MVI intervals [Xi; {Yi1, ..., Yiui}] partition F, and for each j every

superset of Xj appears in an MVI interval [Xi; {Yi1, ..., Yiui}] with i ≤ j. As with

ordinary S-partitions, there is no freedom in choosing the extensions E(Xi).

Proposition 4.1. Let X1, ...,Xt be a sequence of subsets of a finite set E and

let F = {S ⊆ E | some Xi ⊆ S}. Then X1, ...,Xt is an MVI S-partition of F if and

only if for every j > 1 the inclusion-minimal elements of {X1 −Xj , ...,Xj−1 −Xj}

are nonempty and pairwise disjoint. Moreover, if j > 1 then E(Xj) is the set of

inclusion-minimal elements of {X1 −Xj , ...,Xj−1 −Xj}.

Proof. Suppose X1, ...,Xt is an MVI S-partition with extensions E(Xj). Suppose

i < j and Xi −Xj does not contain any Yjv. Then (Xi −Xj) ∪Xj = Xi ∪Xj also

does not contain any Yjv, so Xi ∪Xj ∈ [Xj ;E(Xj)]. This is impossible, though, for

Xi ∪Xj is a superset of Xi and hence must appear in some [Xk;E(Xk)] with k ≤ i;
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hence Xi −Xj contains some Yjv. If v ∈ {1, ..., uj} then Xj ∪ Yjv 6∈ [Xj ;E(Xj)], so

there is an i < j with Xj ∪ Yjv ∈ [Xi;E(Xi)]. It follows that Xi − Xj ⊆ Yjv. If

Xi −Xj is a proper subset of Yjv then Xi ∪Xj = (Xi −Xj) ∪Xi ∈ [Xj ;E(Xj)], an

impossibility because Xi ∪Xj is a superset of Xi and i > j; hence Xi −Xj = Yjv.

This shows that E(Xj) is the set of inclusion-minimal elements of {X1 − Xj , ...,

Xj−1−Xj}; the elements of E(Xj) are nonempty and pairwise disjoint by definition.

Conversely, suppose that for every j > 1 the inclusion-minimal elements of {X1−

Xj , ...,Xj−1 −Xj} are nonempty and pairwise disjoint. Let E(X1) = ∅ and for j > 1

let E(Xj) be the set of inclusion-minimal relative complements Xi −Xj with i < j.

If S is a superset of Xj which is not an element of [Xj ;E(Xj)] then S must contain

Xi−Xj for some i < j, and hence Xi ⊆ S. If S is not an element of [Xi;E(Xi)] then

the same argument shows that S must be a superset of an Xh with h < i; continuing

in this vein we must ultimately find a g < j with S ∈ [Xg;E(Xg)]. Also, if i < j

then [Xi;E(Xi)] and [Xj ;E(Xj)] must be disjoint, because Xi contains an element of

E(Xj). Consequently the intervals [Xj ;E(Xj)] partition F.

There are two generalizations of the Rearrangement Lemma to MVI S-partitions.

The Transposition Lemma for MVI S-Partitions. Suppose X1, ...,Xt is an

MVI S-partition and a < t. Then X1, ...,Xa−1, Xa+1,Xa,Xa+2, ...,Xt is not an MVI

S-partition with the same extension function E if and only if Xa+1∪Xa ∈ [Xa;E(Xa)].

Moreover, if this is the case then Xa −Xa+1 ∈ E(Xa+1).

Proof. Let E(Xa+1) = {Y(a+1)1, ..., Y(a+1)ua+1}. If X1, ...,Xa−1,Xa+1,Xa,Xa+2,

...,Xt is not an MVI S-partition with the same extensions as X1, ...,Xt, there must

be a subset S of E which contains Xa+1 and appears in [Xa;E(Xa)]. S cannot
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also appear in [Xa+1;E(Xa+1)], for the intervals are disjoint; hence there must be a

v ∈ {1, ..., ua+1} such that Y(a+1)v ⊆ S.

ConsiderXa+1∪Y(a+1)v. It containsXa+1 and does not appear in [Xa+1;E(Xa+1)],

so Xa+1 ∪ Y(a+1)v ∈ [Xi;E(Xi)] for some i ≤ a. If i < a then S ⊇ Xi and hence

S appears in [Xj ;E(Xj)] for some j ≤ i, violating the disjointness of [Xj ;E(Xj)]

and [Xa;E(Xa)]. It follows that i = a, and hence that Y(a+1)v ⊇ Xa −Xa+1. Note

that Xa ⊆ Xa+1 ∪ Xa ⊆ Xa+1 ∪ Y(a+1)v and Xa,Xa+1 ∪ Y(a+1)v ∈ [Xa;E(Xa)],

so Xa+1 ∪ Xa ∈ [Xa;E(Xa)]. If Xa − Xa+1 were a proper subset of Y(a+1)v then

Xa+1∪Xa = Xa+1∪(Xa−Xa+1) would be an element of [Xa+1;E(Xa+1)]; this would

violate the disjointness of [Xa+1;E(Xa+1)] and [Xa;E(Xa)]. Hence Xa − Xa+1 =

Y(a+1)v.

Conversely, if Xa∪Xa+1 ∈ [Xa;E(Xa)] then clearly X1, ...,Xa−1,Xa+1,Xa,Xa+2,

...,Xt is not an MVI S-partition with the same extensions as X1, ...,Xt, because

Xa ∪ Xa+1 is a superset of Xa+1 which appears in an MVI interval listed after

[Xa+1;E(Xa+1)].

The Rearrangement Lemma for MVI S-Partitions. An MVI S-partition

X1, ...,Xt may be rearranged as an MVI S-partition X 0
1, ...,X

0
t with the same exten-

sion function, such that for each a either |X 0
a| ≤

¯̄
X 0
a+1

¯̄
or X 0

a∪X 0
a+1 ∈ [X 0

a;E(X
0
a)].

Proof. Let b = b(X1, ...,Xt) be the least a with |Xa| > |Xa+1| and Xa ∪Xa+1 6∈

[Xa;E(Xa)]. If there is no such a then let b(X1, ...,Xt) = t and observe that the

proposition is satisfied without any rearrangement.

Suppose b = t− 1. The Transposition Lemma implies that X1, ...,Xt−2,Xt,Xt−1

is an MVI S-partition with the same extensions as X1, ...,Xt. If |Xt−2| ≤ |Xt| or
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Xt∪Xt−2 ∈ [Xt−2;E(Xt−2)] then this rearrangement satisfies the proposition, because

|Xt−1| > |Xt|. Otherwise the Transposition Lemma implies that X1, ...,Xt−3,Xt,

Xt−2,Xt−1 is an MVI S-partition with the same extensions as X1, ...,Xt. Continuing

in this vein, if we do not find a rearrangement that satisfies the proposition we will

eventually conclude that X1,Xt,X2, ...,Xt−1 is an MVI S-partition with the same

extensions as X1, ...,Xt. This rearrangement satisfies the proposition because X1 ∪

Xt ∈ [X1;E(X1)] = [X1, E].

The proof proceeds by induction on t − b > 1. There must be a k < b such that

X1, ...,Xk,Xb+1,Xk+1, ...,Xb,Xb+2, ...,Xt is an MVI S-partition with the same exten-

sions as X1, ...,Xt and either |Xk| ≤ |Xb+1| or Xb+1∪Xk ∈ [Xk;E(Xk)], for k = 1 will

be such a k if there is no greater such k. Then b(X1, ...,Xk,Xb+1,Xk+1, ...,Xb,Xb+2,

...,Xt) > b and the inductive hypothesis applies.

Comparing Propositions 3.1 and 4.1, we see that S-partitions of filters are simply

MVI S-partitions for which the extensions E(Xj) contain only singletons. It follows

that the Transposition and Rearrangement Lemmas for MVI S-partitions apply di-

rectly to S-partitions, because they are concerned with rearrangements which do not

alter the extensions. We deduce the following results regarding rearrangements of

S-partitions of complexes.

The Transposition Lemma for S-Partitions. Suppose F1, ..., Ft is an S-

partition of a complex and a < t. Then F1, ..., Fa−1, Fa+1, Fa, Fa+2, ..., Ft is not an

S-partition with the same restriction function R if and only if Fa+1∩Fa ∈ [R(Fa), Fa].

Moreover if this is the case then Fa+1 − Fa ⊆ R(Fa+1) and |Fa+1 − Fa| = 1.

The Rearrangement Lemma for S-Partitions. An S-partition F1, ..., Ft of
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a complex may be rearranged as an S-partition F 01, ..., F 0t with the same restriction

function, such that for each a either |F 0a| ≥
¯̄
F 0a+1

¯̄
or F 0a = F 0a+1 − {x} for some

x ∈ F 0a+1.

Proof. The Rearrangement Lemma for MVI S-partitions provides a rearrange-

ment F 01, ..., F
0
t with the same restriction function, such that for each a either |F 0a| ≥¯̄

F 0a+1
¯̄
or F 0a ∩ F 0a+1 ∈ [R(F 0a), F 0a]. If |F 0a| <

¯̄
F 0a+1

¯̄
then F 0a ∩ F 0a+1 ∈ [R(F 0a), F 0a]

and the Transposition Lemma for S-partitions tells us that F 0a+1−F 0a ⊆ R(F 0a+1) and¯̄
F 0a+1 − F 0a

¯̄
= 1. Together, |F 0a| <

¯̄
F 0a+1

¯̄
and

¯̄
F 0a+1 − F 0a

¯̄
= 1 imply F 0a = F 0a+1−{x}

for some x ∈ F 0a+1.

The Rearrangement Lemma for S-Partitions is a direct generalization of the Rear-

rangement Lemma for Shellings [4]: if F1, ..., Ft are all facets then no Fj may contain

another and hence F 0a = F 0a+1 − {x} is impossible.

5. Some examples of MVI partitions

Let n ≥ 1, and let bn be the number of partitions of an n-element set into subsets of

cardinality ≤ 2. The first few of these numbers are b1 = 1, b2 = 2, b3 = 4, b4 = 10,

b5 = 26, b6 = 76, and b7 = 232; in general bn+2 = bn+1 + (n+ 1)bn.

Lemma 5.1.

bn+2 > n
nX
i=1

bi.

Proof. The inequality is clearly true for the listed values of bn. If n ≥ 6 then

bn+2 = bn+1 + (n+ 1)bn = bn + nbn−1 + (n+ 1)bn = nbn + nbn−1 + 2bn
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and hence by induction

bn+2 > nbn + nbn−1 + 2(n− 2)
n−2X
i=1

bi > nbn + nbn−1 + n
n−2X
i=1

bi.

Let E = {e{i,j} | 1 ≤ i 6= j ≤ n}, and let F be the filter on E with minimal

elements M1, ...,Mn given by Mj = {e{i,j} | i 6= j}. We claim that if 2 ≤ p ≤ n − 1

then it is possible to partition Fp = {S ⊆ E |S contains Mp but does not contain

any of M1, ...,Mp−1} into bp−1 MVI intervals; the partition we present is actually

part of the output of an MVI-SDP algorithm of the type described in Section 2.

We order the subsets of {1, ..., p − 1} of cardinality ≤ 2 lexicographically, i.e., if

1 ≤ a < b < c ≤ p−1 then {a} < {a, b} < {a, c} < {b} < {b, c} < {c}. Then we order

the partitions of {1, ..., p−1} into sets of cardinality ≤ 2 lexicographically, i.e., if π and

π0 are partitions of {1, ..., p−1} into sets of cardinality ≤ 2 and a is the smallest index

which appears in different sets in π and π0 then π < π0 or π > π0 according to the sets

in π and π0 which contain a. For instance, if p = 8 then {{1, 3}, {2, 5}, {4}, {6, 7}} >

{{1, 3}, {2, 4}, {5, 6}, {7}} because the smallest index which appears in different sets

in the two partitions is a = 2, and {2, 5} > {2, 4} lexicographically.

Suppose π is a partition of {1, ..., p− 1} into sets of cardinality ≤ 2, and let Pπ be

the set of all pairs {a, b} for which there is a partition π0 of {1, ..., p− 1} into sets of

cardinality ≤ 2 such that π < π0, a is the smallest index which appears in different

sets in π and π0, and {a, b} ∈ π0. That is, if we regard π as the result of a sequence

of choices made in lexicographic order then Pπ is the set of pairs {a, b} which could

have been chosen but were not, and would have resulted in a lexicographically greater
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partition. Let Xπ = Mp ∪ {e{a,b} | {a, b} ∈ Pπ} and E(Xπ) = {{e{a,b}} | {a, b} ∈

π}∪ {Ma−Xπ | {a} ∈ π}; obviously the MVI interval [Xπ;E(Xπ)] is contained in Fp.

If S ⊆ E contains Mp but does not contain any of M1, ...,Mp−1 then there are

certainly partitions π of {1, ..., p−1} into sets of cardinality≤ 2 such that e{a,b} 6∈ S for

all {a, b} ∈ π, for instance {{1}, {2}, {3}, ..., {p−1}}. Let π(S) be the lexicographically

greatest partition of {1, ..., p− 1} into sets of cardinality ≤ 2 such that e{a,b} 6∈ S for

all {a, b} ∈ π(S), and suppose there is an {a, b} ∈ Pπ(S) with e{a,b} 6∈ S. According to

the definition of Pπ(S), there is a partition π0 of {1, ..., p− 1} into sets of cardinality

≤ 2 such that π(S) < π0, a is the smallest index which appears in different sets in

π(S) and π0, and {a, b} ∈ π0. If π00 is obtained from π0 by replacing every pair {c, d} ∈

π0−π−{{a, b}} with the two singletons {c} and {d} then π00 is lexicographically greater

than π(S) and {a, b} is the only pair in π00 which is not also an element of π(S). Hence

e{c,d} 6∈ S for all {c, d} ∈ π00, contradicting the choice of π(S). This contradiction

shows that there is no {a, b} ∈ Pπ(S) with e{a,b} 6∈ S, and hence Xπ(S) ⊆ S. Recalling

that e{a,b} 6∈ S for all {a, b} ∈ π(S) and that S does not contain any of M1, ...,Mp−1,

we conclude that S ∈ [Xπ(S);E(Xπ(S))].

Suppose S ∈ Fp and π0 6= π(S). If π0 < π(S) then there must be a pair {a, b} ∈

π(S) ∩ Pπ0 . Then e{a,b} 6∈ S, so Xπ0 6⊆ S. If π0 > π(S) then there must be a

pair {a, b} ∈ π0 such that e{a,b} ∈ S; then {{a, b}} ∈ E(Xπ0). Either way, S 6∈

[Xπ0 ;E(Xπ0)]. We conclude that the MVI intervals [Xπ;E(Xπ)] partition Fp, verifying

our claim.

It follows directly from our claim that if 2 ≤ p ≤ n − 1 and j1, ..., jp ∈ {1, ..., n}

are pairwise distinct then it is possible to partition {S ⊆ E |S contains Mjp but
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does not contain any of Mj1 , ...,Mjp−1} into bp−1 MVI intervals. More generally, if

2 ≤ p ≤ q ≤ n− 1 and j1, ..., jq ∈ {1, ..., n} then it is possible to partition {S ⊆ E |S

contains all of Mjp , ...,Mjq but does not contain any of Mj1 , ...,Mjp−1} into at most

bp−1 MVI intervals: simply partition {S ⊆ E |S contains Mjp but does not contain

any ofMj1 , ...,Mjp−1} into bp−1 MVI intervals, replace eachXπ byX
0
π = Xπ∪Mjp+1∪

...∪Mjq , replace eachMa−Xπ in E(Xπ) byMa−X 0
π, and remove any of the resulting

intervals that are empty.

To use this analysis in constructing an MVI partition of F we will require the

following lemma, whose proof we leave to the reader.

Lemma 5.2. The disjunction E1∨E2∨E3∨E4∨E5∨E6∨E7 of seven statements

is logically equivalent to the disjunction

(E1 ∧E2 ∧E3 ∧E4 ∧E5 ∧E6 ∧E7)_Ã
7_
a=1

(Ea ∧Ea+1 ∧Ea+2 ∧Ea+3 ∧Ea+5 ∧ Ēa+6)
!

_Ã
7_
a=1

(Ea ∧ Ēa+1 ∧Ea+3 ∧ Ēa+4 ∧Ea+5)
!

_Ã
7_
a=1

(Ea ∧ Ēa+1 ∧ Ēa+2 ∧Ea+3 ∧Ea+4)
!

_Ã
7_
a=1

(Ea ∧ Ēa+1 ∧ Ēa+2 ∧ Ēa+3)
!

of 29 disjoint statements, where all indices involving a are considered modulo 7. That

is, every assignment of truth values to E1, ..., E7 which involves at least one “true”

will satisfy exactly one of the 29 given statements.

If n > 7 then Lemma 5.2 may be used to construct n+22 disjoint statements whose

disjunction is logically equivalent to E1∨ ...∨En. Twenty-nine of these statements are
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the conjunctions of the terms from Lemma 5.2 with Ē8 ∧ ... ∧ Ēn, and the remaining

n− 7 are E8 ∧ Ē9 ∧ ... ∧ Ēn, E9 ∧ Ē10 ∧ ... ∧ Ēn, ..., En−2 ∧ Ēn−1 ∧ Ēn, En−1 ∧ Ēn,

and En. It follows that if n ≥ 7 then F may be partitioned into the following families

of sets, with indices involving a considered modulo 7.

(i) the family of subsets of E which contain no Mj with j > 7 and contain

M1 ∪M2 ∪M3 ∪M4 ∪M5 ∪M6 ∪M7

(ii) for each a ∈ {1, 2, 3, 4, 5, 6, 7}, the family of subsets of E which contain no

Mj with j > 7, contain Ma,Ma+1,Ma+2,Ma+3 and Ma+5 but do not contain Ma+6

(iii) for each a ∈ {1, 2, 3, 4, 5, 6, 7}, the family of subsets of E which contain

no Mj with j > 7, contain Ma,Ma+3 and Ma+5 but do not contain Ma+1 or Ma+4

(iv) for each a ∈ {1, 2, 3, 4, 5, 6, 7}, the family of subsets of E which contain

no Mj with j > 7, contain Ma,Ma+3 and Ma+4 but do not contain Ma+1 or Ma+2

(v) for each a ∈ {1, 2, 3, 4, 5, 6, 7}, the family of subsets of E which contain

no Mj with j > 7, contain Ma but do not contain Ma+1,Ma+2 or Ma+3

(vi) the family of subsets of E which contain M8 but no Mj with j > 8,

(vii) the family of subsets of E which contain M9 but no Mj with j > 9,...,

(n-4 ) the family of subsets of E which contain Mn−2 but not Mn−1 or Mn,

(n-3 ) the family of subsets of E which contain Mn−1 but not Mn,

and (n-2 ) the family of subsets of E which contain Mn.

Applying our earlier analysis to this partition of F, we conclude that F may be parti-

tioned as a union of bn−7+7bn−6+7bn−5+7bn−5+7bn−4+bn−8+bn−9+...+b2+b1+1

MVI intervals. According to Lemma 5.1, this is fewer than 14 bn−2
(n−4) MVI intervals.

Suppose now that [X1;E(X1)], ..., [Xt;E(Xt)] is a compatibly ordered MVI interval
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partition of F, i.e., a partition of F into MVI intervals such that M1, ...,Mn appear

in order in the list X1, ...,Xt and if Xi = Mj then [X1;E(X1)] ∪ ... ∪ [Xi;E(Xi)] =

F1 ∪ ... ∪ Fj . (X1, ...,Xt may be an MVI S-partition, but it need not be.) Let π be a

partition of {1, ..., n−2} into sets of cardinality ≤ 2, and let Sπ = E−{e{i,j} | {i, j} ∈

π} − {e{i,n} | {i} ∈ π}. Then Sπ contains Mn−1 but not any other Mj with j < n,

so Sπ appears in an MVI interval [Xk;E(Xk)] with Xk appearing between Mn−2 and

Mn−1 in the list X1, ...,Xt. If {i, j} ∈ π then e{i,j} is the only element of Mi − Sπ

or Mj − Sπ. No element of [Xk;E(Xk)] may contain Mi or Mj , for by hypothesis

every element of F which contains Mi or Mj appears in an interval [Xa;E(Xa)] with

Xa preceding Mn−2 in the list X1, ...,Xt. Hence there are Yv, Yw ∈ E(Xk) such that

Yv ⊆Mi−Xk and Yw ⊆Mj −Xk. Sπ ∈ [Xk;E(Xk)], so Sπ cannot contain Yv or Yw;

e{i,j} is the only element of E − Sπ which could lie in either Yv or Yw. The elements

of E(Xk) are pairwise disjoint, and Yv and Yw are not disjoint, so it must be that

Yv = Yw; then Yv = Yw ⊆Mi ∩Mj = {e{i,j}}, so Yv = Yw = {e{i,j}}.

This shows that if {i, j} ∈ π and Sπ ∈ [Xk;E(Xk)] then {e{i,j}} ∈ E(Xk). Con-

versely, if Sπ ∈ [Xk;E(Xk)], i, j < n − 1 and {e{i,j}} ∈ E(Xk) then e{i,j} 6∈ Sπ, so

it must be that {i, j} ∈ π; consequently [Xk;E(Xk)] cannot contain any Sπ0 6= Sπ.

It follows that there must be at least bn−2 different Xk in X1, ...,Xt which appear

between Mn−2 and Mn−1, so certainly t ≥ bn−2. We conclude that the ratio

minimum number of MVI intervals in a compatibly ordered MVI partition of F

minimum number of MVI intervals in an MVI interval partition of F

>
n− 4
14

.

We would guess that also every MVI S-partition of F involves at least bn−2 in-
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tervals, but we have been able to verify the lower bound only for compatibly ordered

MVI partitions. Existing MVI-SDP algorithms always produce compatibly ordered

MVI partitions, so despite our inability to extend the lower bound to arbitrary MVI

S-partitions we may conclude that existing MVI-SDP algorithms always create highly

non-optimal partitions of these examples.

6. Conclusion: improving SDP algorithms

SDP algorithms which follow the outline discussed in Section 2 are based on a simple

premise: if a filter F has minimal elements M1, ...,Mp then a partition of F may be

constructed by partitioning the families Fj = { sets which contain Mj but not any

of M1, ...,Mj−1} individually. In logical symbolism, the algorithms are based on the

premise that a disjunction E1 ∨ ... ∨ Ep is equivalent to the disjunction of disjoint

statements E1 ∨ (E2 ∧ Ē1)∨ (E3 ∧ Ē2 ∧ Ē1)∨ ...∨ (Ep ∧ Ēp−1 ∧ Ēp−2 ∧ ...∧ Ē2 ∧ Ē1).

It is precisely the choice of this standard disjoint disjunction as the basis for existing

(MVI-) SDP algorithms that causes these algorithms to produce compatibly ordered

(MVI) S-partitions. There are other disjoint disjunctions equivalent to E1 ∨ ... ∨Ep,

and SDP algorithms using them would not produce compatibly ordered (MVI) S-

partitions.

Consider the examples of Section 3. When translated by complementation, they

are simply filters whose minimum Boolean interval partitions follow the disjoint dis-

junction (E1 ∧E2 ∧E3)∨ (E1 ∧ Ē2)∨ (E2 ∧ Ē3)∨ (E3 ∧ Ē1) rather than the standard

disjoint disjunction E1 ∨ (E2 ∧ Ē1) ∨ (E3 ∧ Ē2 ∧ Ē1). It may seem strange that the

former disjunction, which has four terms, can produce smaller interval partitions than
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the standard disjoint disjunction, which has only three terms, but that disjunction is

more compatible with the structure of these examples because it is symmetric.

The examples of Section 5 are also symmetric. The disjoint disjunction of Lemma

5.2 gives rise to a disjoint disjunction of n statements as outlined in the discussion

following the lemma; this resulting disjoint disjunction is symmetric with respect to

cyclic permutations of the first seven statements and has no term involving more than

n − 4 negations. It is this upper bound on the maximum number of negations per

term which produces MVI interval partitions with fewer intervals than compatibly

ordered MVI S-partitions based on the standard disjoint disjunction. The reader

might guess that disjoint disjunctions which are more highly symmetric may have

still fewer negations per term, and hence produce partitions with even fewer intervals

than the one presented in Section 5. After much work we have been able to partially

verify this guess, using the following generalization of Lemma 5.2.

Proposition 6.1. For every odd prime p ≤ 23 there is a disjoint disjunction

which is equivalent to E1 ∨... ∨Ep, symmetric with respect to cyclic permutations of

E1, ..., Ep, and has no term involving more than p−1
2 negations.

These cyclically symmetric disjoint disjunctions are quite large: the one mentioned

in Lemma 5.2 involves only 29 terms, but the other examples we have found involve

hundreds of terms (p = 11 or 13), thousands of terms (p = 17 or 19), even hundreds

of thousands of terms (p = 23).

In sum, the performance of existing SDP and MVI-SDP algorithms can be bettered

by algorithms which construct (MVI) interval partitions using a variety of disjoint

disjunctions, not just the standard one, and then compare the results. We do not
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know whether these disjunctions have been studied systematically, and the details of

such algorithms remain to be developed.
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