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Abstract

A generalized die is a list (x1; :::; xn) of integers. A die X is stronger than a die Y if there are fewer
pairs (i; j) with xi < yj than pairs (i; j) with xi > yj ; if neither of X;Y is stronger than the other then
X and Y are tied. We survey known results and open problems regarding these notions.

1. Introduction

In the simplest standard dice game, two players roll identical dice; if the results are di¤erent then the winner
is the player whose die has rolled the higher value. Presuming the dice are truly identical, the winner is
determined by simple chance � or �luck� � and in the long run, the two players will tend to have equal
numbers of wins and losses. This paper is about generalized dice games, in which the two players roll non-
identical dice. In the long run two generalized dice need not tend to have equal numbers of wins and losses,
even if their rolls have the same expected value.

We represent a generalized die by a list X = (x1; :::; xn) of integers with x1 � x2 � ::: � xn; x1; :::; xn
are the labels of X. If a, b, n, and s are integers with a � b and n > 0 then D(n; a; b; s) is the dice
family containing all generalized dice (x1; :::; xn) with a � x1 � x2 � ::: � xn � b and

P
xi = s. If

X;Y 2 D(n; a; b; s) then X is stronger than Y if jf(i; j) j xi > yjgj > jf(i; j) j xi < yjgj; if neither of X;Y
is stronger than the other then X and Y are tied. A die is balanced in D(n; a; b; s) if it ties every element of
D(n; a; b; s).

Generalized dice games have many interesting properties, some of which are counterintuitive or even
�paradoxical.�

� The stronger relation is not transitive in general [1, 3, 4].

� If n � 2 then every element of D(n; a; b; s) is balanced, but if n � 3 then balanced dice are rare [5].

� More generally, ties are less �typical�than one might expect [2].

� The structure of D(n; a; b; s) varies signi�cantly with n, a, b, and s.

Generalized dice games seem very natural, and one might well imagine that sometime during the thou-
sands of years people have played with dice, someone might have investigated them. Instead they have been
studied very little, and much remains to be discovered about them.

2. Characteristic vectors and balanced dice

It can happen that a or b is not actually a label of any element of D(n; a; b; s); for instance no element
of D(5; 1; 8; 10) has 8 as a label. Let p = p(n; a; b; s) = minfx1 j (x1; :::; xn) 2 D(n; a; b; s)g and q =
q(n; a; b; s) = maxfxn j (x1; :::; xn) 2 D(n; a; b; s)g; then D(n; a; b; s) = D(n; p; q; s) and both p and q appear



Figure 3.1: The directed dice graphs �(4; 1; 4; s), 6 � s � 10

on some element of D(n; a; b; s). A die X = (x1; :::; xn) 2 D(n; a; b; s) is determined by its characteristic
vector vX = (vXp ; :::; v

X
q ), with v

X
i = jfj j xj = igj. If n � 3 then X is balanced if and only if vX is of

the form (v; w; v; w; :::) [5]; for instance (2; 3; 4) is balanced in D(3; 2; 4; 9), where its characteristic vector is
(1; 1; 1), but not in D(3; 1; 4; 9), where its characteristic vector is (0; 1; 1; 1). It follows that balanced dice
are rather rare; for instance there are only three balanced dice among the 458 elements of the dice families
D(6; 1; 6; s) with 8 � s � 34 [5].

3. Transitivity and non-transitivity

Generalized dice �rst attracted attention because of the non-transitivity of stronger [1, 3, 4]; for example,
consider (3; 3; 4), (2; 2; 6), (1; 4; 5) 2 D(3; 1; 5; 10). The relation tied is also non-transitive in general; for
example (1; 4; 5), (2; 3; 5), and (2; 4; 4). There is a directed dice graph �(n; a; b; s) naturally associated with
D(n; a; b; s); it has a vertex for each X 2 D(n; a; b; s), and an edge directed from X to Y if X is stronger
than Y . Non-transitivity of stronger can create directed cycles in �(n; a; b; s).

A special feature of the dice families with q � p � 2 is that they have a numerical measure of strength:
there is a function str : D(n; a; b; s) ! Q such that X is stronger than Y if and only if str(X) > str(Y ).
Moreover, str is either injective or identically 0 [6, 7]. Consequently, if q � p � 2 then stronger is either
linear or trivial; in any case it is transitive, and �(n; a; b; s) is acyclic. The interested reader might like to
try to �nd the de�nition of str as an exercise �it is not the mean label value.

If q � p > 2 then just about every question one might ask about the structure of �(n; a; b; s) is open; we
do not know of any results more substantial than the observation that these digraphs contain more directed
cycles if s=n is close to (p+ q) =2 rather than p or q. A very simple illustration of this observation is given
in Figure 3.1, where the �ve directed dice graphs �(4; 1; 4; s), 6 � s � 10 are pictured. Each is more
complicated than the one before: �(4; 1; 4; 6) and �(4; 1; 4; 7) are linear, �(4; 1; 4; 8) is transitive but not
linear, �(4; 1; 4; 9) is acyclic but not transitive, and �(4; 1; 4; 10) has directed cycles.
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� Which �(n; a; b; s) are linear, or transitive, or acyclic?

� Which �(n; a; b; s) are covered by cycles?

� Which �(n; a; b; s) are covered by 3-cycles?

� Which �(n; a; b; s) contain vertices whose in- and out-degrees are nonzero and equal?

� Which �(n; a; b; s) contain sources or sinks?

Proposition 3.1 tells us that some sources and sinks in directed dice graphs are associated with balanced
dice; the sources have characteristic vectors (v, w; :::, v or w, 0; :::, 0) and the sinks have characteristic vectors
(0; :::, 0, v, w; :::, v or w). But these are not the only sources and sinks; for instance �(6; 1; 6; 13) has the
sink (1; 1; 1; 1; 3; 6) and the source (1; 1; 2; 3; 3; 3).

Proposition 3.1. If X is balanced in D(n; a; b; s) then X is not weaker than any element of D(n; p; �; s)
for any � � q, and X is not stronger than any element of D(n; �; q; s) for any � � p.

Proof. As X is balanced, vX = (v; w; v; w; :::) [5]; equivalently vXi + vXi+1 = vXj + vXj+1 for i; j 2
fp; :::; q � 1g. Suppose Y = (y1; :::; yn) 2 D(n; p; �; s), where � � q. If y1 = q then s � nq, so s = nq = np
and consequently Y = X and X ties Y ; hence we may presume y1 < q. If yn � b then Y 2 D(n; a; b; s) so X
ties Y . If yn > b then let Y 0 = (y1 + 1; y2; :::; yn�1; yn � 1); the labels of Y 0 may not appear in the indicated
order, but this technicality does not a¤ect the argument. We may presume inductively that X is not weaker
than Y 0. If we compare the performance of Y against X with that of Y 0 against X, we see that the label
y1+1 of Y 0 has vXy1 more winning rolls and v

X
y1+1 fewer losing rolls than the corresponding label y1 of Y , and

the label yn � 1 of Y 0 has vXyn�1 fewer winning rolls and v
X
yn = 0 more losing rolls than the corresponding

label yn of Y . As y1 < q, vXy1 + v
X
y1+1 = v

X
q�1 + v

X
q � vXyn�1 + v

X
yn = v

X
yn�1, so Y cannot do better against X

than Y 0 does.

The argument that X is not stronger than any element of D(n; �; q; s) is essentially the same. �

4. Ties

There are many interesting questions suggested by the observation that in general, there are fewer ties among
generalized dice than one might expect.

� Are there any dice families D(n; a; b; s) in which most pairs of distinct, non-balanced dice are tied?

� What can be said about asymptotic behavior of the relative proportion of ties in D(n; a; b; s)?

There are many limits to which �asymptotic�might refer. For instance one might consider D(n; a�x; b+
x; s) as x!1, D(n; a; b; s) as n!1, D(n; a� n; b+ n; s) as n!1, etc.

� How common are non-balanced dice most of whose results are ties?

Such dice seem to be relatively rare, but one dice family may contain several. For instance, among the
151 elements of D(6; 1; 9; 30) there are �ve which tie more than 75 of their companions. None of these �ve
has more than 81 ties, though; this suggests a more precise question.

� For various values of " > 0, how common are non-balanced dice whose proportions of ties lie in the
interval (:5 + "; 1)?

� How are ties (or non-ties) distributed? Do they tend to �clump,�or are they �spread out�?

A natural way to think about �clumping� is to consider the structure of the undirected dice graph
G(n; a; b; s) obtained from �(n; a; b; s) by ignoring edge-directions.

� What can be said about the vertex- or edge-connectivity of G(n; a; b; s)?
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A recent result implies that up to isomorphism, G(3; 1; 9; 15) is the only dice graph whose diameter is
more than 2.

The Tied Dice Theorem. [2] Suppose X 6= Y 2 D(n; a; b; s) are tied, non-balanced dice. Unless X and
Y are the dice (a; a+ 4; a+ 8) and (a+ 2; a+ 4; a+ 6) in D(3; a; a+ 8; 3a+ 12), there is a Z 2 D(n; a; b; s)
which ties neither X nor Y .

Figure 4.1: Up to isomorphism, G(3; 1; 9; 15) is the only dice graph of diameter > 2. (Vertices are labeled
lexicographically �a represents (1; 5; 9), b represents (1; 6; 8), etc.)

In conclusion, we hope the reader will agree that generalized dice are interesting objects that merit more
attention than they have received.
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