
IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 3, SEPTEMBER 2003 289

Preprocessing MinPaths for Sum of Disjoint Products
Alexandru O. Balan and Lorenzo Traldi, Member, IEEE

Abstract—Network reliability algorithms which produce sums
of disjoint products (SDP) are sensitive to the order in which the
minimal pathsets are analyzed. The minpaths arepreprocessedby
choosing this order in the hope that an SDP algorithm will then
provide a relatively efficient analysis. The most commonly used
preprocessing strategy is to list the minpaths in order of increasing
size. This paper gives examples for which this strategy is not op-
timal. A new preprocessing strategy which works well for SDP al-
gorithms with single-variable inversion (SVI) is introduced. It is
also observed that optimal preprocessing for SVI-SDP can be dif-
ferent from optimal preprocessing for SDP algorithms which use
multiple-variable inversion; one reason for this is that MVI-SDP
algorithms handle disjoint minpaths much more effectively than
SVI-SDP algorithms do. Both kinds of SDP algorithms profit from
prior reduction of elements and of subsystems which are in parallel
or in series.

Index Terms—Preprocessing, sum of disjoint products (SDP),
system reliability.

ACRONYMS1

i.i.d. -independent and identically distributed
MVI multiple-variable inversion
SDP sum of disjoint products
SVI single-variable inversion

statistical(ly)

NOTATION

variable representing the (operation of) i.i.d. ele-
ments of a system
variable representing the failure of an element
variable representing the operation of all elements
of a set
variable representing the failure of at least 1 element
of a set
disjunction: or
conjunction: and
number of elements in set
relative complements: and

I. INTRODUCTION

A coherent-binary-system on a finite set,, is given by its
minpaths, , which are subsets of, and none of

which contain any other. A (minpath-based) SDP algorithm cal-

Manuscript received December 21, 2001; revised April 18, 2003. Responsible
Editor: R. A. Evans.

The authors are with the Department of Mathematics, Lafayette
College, Easton, PA 18042 USA (e-mail: BalanA@lafayette.edu;
TraldiL@lafayette.edu).

Digital Object Identifier 10.1109/TR.2003.816403

1The singular and plural of an acronym are always spelled the same.

culates the system reliability by analyzing the disjoint events:
(is operational), (is operational, and fails), …,

(is operational and all fail)
separately, expressing each one as a union of disjoint events.

If are listed in a different order, then the disjoint
events are changed, and their
expressions as disjoint sums change too. [1] suggests that to
minimize the number of terms in the disjoint sums, smaller min-
paths should be listed before larger ones. The reasoning behind
the suggestion is simple and compelling: in general the smaller
the relative complements are, the less
complicated their intersections are, and the less difficult it is to
analyze the event . Listing smaller minpaths
before larger ones tends to make these relative complements

small, because is small and is large.
The preprocessing advice of [1] has been strongly endorsed

in many papers, including [2]–[4], [6]–[9], [11], [13]. [6] con-
jectures that an SDP algorithm which uses the suggestion of [1]
(together with other preprocessing for minpaths of the same size
and an effective negation-simplifying technique) always pro-
duces an SDP analysis which is so nearly minimal that it is
“probably not worth the effort” to refine the analysis further.
[2] states baldly: “It is well known that for getting short disjoint
sums the minimal path sets must be ordered in an increasing
sequence according to the number of their elements.” Some ex-
amples are discussed here, which indicate instead that the sug-
gestion of [1], though it might be relatively effective in gen-
eral, is often not optimal and sometimes quite far from optimal.
This paper introduces a different preprocessing strategy which
tends to follow the suggestion of [1] but is not absolutely bound
to. The new strategy seems to do a reasonable job of, detecting
situations in which the advice of [1] should be disregarded by
SDP algorithms which do not involve multiple-variable inver-
sion. Also mentioned here are some examples of systems for
which all SDP algorithms result in highly nonoptimal analyses,
regardless of preprocessing.

II. SOME EXAMPLES FORSVI-SDP

The references, especially the survey article [9], show some
of the many SDP algorithms which have been discussed in the
literature. Differences among these algorithms include:

• the details of their preprocessing strategies (though all
follow [1]’s suggestion of listing smaller minpaths first),

• details of the strategies they use to analyze the conjunc-
tions of negations that appear in the disjoint events

,
• the fact that some SDP algorithms use multiple-variable

inversion and some don’t.

0018-9529/03$17.00 © 2003 IEEE

290 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 3, SEPTEMBER 2003

Fig. 1. Some networks for which smaller-minpaths-first preprocessing is not
optimal.

This paper emphasizes the last distinction by discussing
SVI-SDP algorithms first and MVI-SDP algorithms separately,
later in the paper.

Example 2.1:The system has minpaths , , , and
. An SVI-SDP analysis using this order of the minpaths

creates 6 disjoint terms: , , , , ,
.

If the minpaths are listed in the order , , ,
then only 5 disjoint terms are needed: , , , ,

.
This example illustrates that SVI-SDP algorithms do not

function efficiently when disjoint (or almost disjoint) min-
paths appear early in the minpath list. Other examples of this
inefficiency are easy to find,e.g., it is proven [12] that every
source-to-terminal network in Fig. 1 has the property that ‘all
of its optimal SVI-SDP analyses violate the preprocessing
suggestion of [1]’. (Here networks with perfect nodes are
considered; thus only the links appear in the minpaths.) This
nonoptimality of the advice of [1] is fairly common among
source-to-terminal networks. The first 12 examples in [11],
and the 3 networks obtained from these examples by series and
parallel reductions, were studied. Each of these 15 networks
has an optimal SVI-SDP analysis which disregards the advice
of [1] at least once; only the 7 networks not pictured in Fig. 1
may also have optimal SVI-SDP analyses which follow this
advice.

There are 9 terms required to negate : in each
negating term, one of is negated and one of is
negated. Only 8 of these terms are required to negate

, because does not negate . It might seem
that negating requires only 7 terms,
because and are removed from the original 9. However, 8
disjoint terms are actually required for this negation:

, for instance. See
[5], [10], and Section IV for a discussion of this kind of process.

Example 2.1:The system of example 2.1 is duplicated
times, using separate alphabets . Let

an SDP analysis be performed after the minpaths are listed
in the order , , , , ,

, . If , then the 4
minpaths involving , , , , , give rise to
disjoint terms, obtained by:

• choosing from the 8 negating terms of
for each ,

• also choosing from , , ,
, .

Five disjoint terms are required for , ,
, . Consequently the SDP analysis results in

disjoint terms, fewer than 6 disjoint terms.
Consider an SDP analysis performed after the minpaths are

preprocessed with the 3-element minpaths listed first.
disjoint terms are required for the last 3-element minpath; each
disjoint term involves choosing 1 variable from each of the pre-
ceding minpaths to be negated. Similarly, the next-to-last 3-ele-
ment minpath requires disjoint terms, and the one before
that requires disjoint terms. Let the first 4-element min-
path be ; it requires disjoint terms, obtained by
choosing one of the 9 negating terms of for
each . If the second 4-element minpath is , it too
requires disjoint terms. If, instead, the second 4-element
minpath is, say, , then it requires only 8 disjoint
terms because has only 8 negating
terms. Thus there must be at least

disjoint terms arising from these 5 minpaths.
Each of the remaining 4-element minpaths gives rise

to disjoint terms for some and with :
if the minpath uses alphabet , then its disjoint terms involve
choosing 1 out of 8 or 9 negating terms for each . Hence
these minpaths give rise to at least disjoint terms.
In total, there are more than disjoint
terms.

Thus conventional preprocessing, with smaller minpaths
listed first, leads to an SDP analysis which involves at least

times as many disjoint terms as are actually necessary, no matter
which minpath-based SVI-SDP algorithm is used. For instance,
when , an implementation of the algorithm of [1] yields
850 disjoint terms after smaller-minpaths-first preprocessing,
and only 365 disjoint terms when the other order of the min-
paths is used.

BALAN AND TRALDI: PREPROCESSING MINPATHS FOR SUM OF DISJOINT PRODUCTS 291

Fig. 2. Ladder network.

Essentially, the number of disjoint terms in example 2.2
grows with when the preprocessing suggestion of [1] is
followed, and only with when the minpaths are listed in
the mixed-size order. The same kind of disparity applies to
other similar examples,e.g., the system with minpaths ,

, , , , ,
or the ‘ladder network’ with ‘rungs’ in Fig. 2.

III. A BRAHAM’S EXAMPLE

The examples in Section II strongly suggest that when pre-
processing a list of minpaths for an SVI-SDP algorithm, it is
desirable to avoid the appearance of minpaths which are largely
disjoint from all their predecessors in the list. This suggestion
can also be considered in connection with the most-studied ex-
ample in the references, a system with 12 elements and 24 min-
paths mentioned in [1], and pictured in Fig. 1(g). (Table I gives
a complete list of the minpaths.) The algorithm of [1] provides
an SVI-SDP analysis of this example with 71 disjoint terms. [6]
modifies the algorithm of [1] in 2 ways:

1) listing the minpaths of a given size lexicographically,
2) improving the portion of the algorithm which generates

negating terms.
The result is a more efficient SVI-SDP analysis with 61 dis-

joint terms [7]. Both [1] and [6] list the disjoint minpaths and
at the beginning of the list. [13] introduces a preprocessing

scheme which is based (as observed in [11]) on Hamming dis-
tances, and produces an SVI-SDP analysis of the example of [1]
which involves only 59 disjoint terms [7]. As noted in [13], the
improvement arises from the re-ordering at the beginning of the
minpath list, which [13] starts as , , , avoiding the
consecutive appearance of disjoint minpaths.

Reference [3] gives a further improvement, reducing the
number of disjoint terms to 55 with a minpath list that starts

, , , , , .
That preprocessing-strategy lists the minpaths of a given

size in descending order of an : the average
number of elements a minpath shares with smaller minpaths.
(This is the same as listing first those that have the smallest
average relative complements within the smaller minpaths,
which is a sensible strategy because these relative complements
contribute to the disjoint terms that arise from the minpaths

TABLE I
A 54-TERM ANALYSIS OF THE EXAMPLE IN [1]

being considered.) This does not suggest a complete order
in which to list the minpaths of a given size, because different
minpaths can be with the same . For the example
of [1], other choices of lists consistent with the preprocessing
strategy of [3] can result in SVI-SDP analyses involving 54–60
disjoint terms.

Two observations about the list in [3] are:

1) [3, table 2] contains only 53 of the 55 disjoint terms. The
disjoint terms arising from the minpath should in-
clude (or 1-101-0110-1 in the notation of [3])
and the disjoint terms arising from should include

(0- - -11-01 011). There is also a 0 missing at
the end of the fourth disjoint term. (See Section IV.)

2) The number of disjoint terms can be reduced if
is placed either before or after in the list, because

requires 2 disjoint terms in its current position but
requires only 1 if it is moved up in the list, and moving
it does not increase the number of disjoint terms required
for any other minpath. Moving is suggested by the
principle in Section II (disjointness should be avoided
early in the list of minpaths) because intersects all
of the 3- and 4-element minpaths. It is striking that this
move improves the best published SVI-SDP analysis of
the example of [1] by disregarding the preprocessing ad-
vice of [1], placing a 5-element minpath ahead of some
of the 4-element minpaths.

Table I gives the complete SVI-SDP analysis of the example
in [1] that arises when the order of [3] is modified by listing

third instead of sixth. The minpaths are listed in column
#1, with the corresponding negating terms listed to their right.
The variables in the negating terms are not given alphabetically,
but in a way that suggests the pivoting method used to produce
the disjoint terms.

292 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 3, SEPTEMBER 2003

IV. CHECKING SDP CALCULATIONS

[3], [6], [8], [13] contain mistaken SDP analyses of the ex-
ample in [1]. For the convenience of those who might want oc-
casionally to perform such calculations, this discussion of pre-
processing is interrupted to discuss ways to check the accuracy
(though not the minimality) of a set of disjoint terms supposed
to describe a product . The focus is on the anal-
ysis of [3]; see [7] for a discussion of [6] and [13].

1) Check to see if the disjoint terms are actually disjoint.
This is enough to catch one of the errors in [3, table 2],
the missing 0 at the end of the fourth disjoint term.

2) Check to see if actually appears in one of the disjoint
terms that are supposed to represent .
This is enough to catch another error, because none of the
disjoint terms contain the minpath .

3) Consider the minpath in the example of [1], which
appears tenth in the list suggested in [3]: ,

, , , , ,
, , , .

Following [5] and [10], calculate
by Boolean multiplication of the relative complements

, with absorption.

(4.1)

These equations give rise to 4 disjoint terms,, , ,
.

To check the accuracy of the calculation, also perform an SDP
analysis of the binary coherent system given by the relative com-
plements: , , , , , , , , ; thus the
minpaths are , , , , . An SDP analysis is , ,

, , , , . It is not difficult to check
that these terms are actually disjoint from each other and from
the 4 negating terms in the preceding paragraph.

If these calculations are correct, then

(4.2)

provides a disjoint analysis of the space of all possible assign-
ments of truth values to the 7 variables .
There are such assignments. Each disjoint term covers
assignments, whereis the number of variables that appear in
that disjoint term;e.g., covers assignments. Hence the
analysis of is checked by verifying:

(4.3)

The MVI-SDP analyses may be checked using similar steps;
e.g., a check of [8, table 2] indicates that disjoint terms #12
and #13 are not actually disjoint. (Correcting the error does not
require an increase in the number of disjoint terms.) When using
step 3 to check an MVI-SDP analysis, remember that a disjoint
MVI term which involves variable groupings of sizes
covers truth value assignments,
where is the number of variables that are not mentioned in that
disjoint term.

V. A NEW PREPROCESSINGSTRATEGY

Reference [3] predicates its preprocessing on the advice of
[1], as do all the other papers mentioned in the references. The
examples discussed in this paper suggest, instead, a prepro-
cessing strategy that allows violations of the advice of [1] on
occasion. One way to do this is to use dynamic-preprocessing:
begin with , and at each iteration choose the next minpath in
the list so that it will have the best possible according to
some formula which seems appropriate. A reasonable is
the average size of the relative complements with the minpaths
that have already been chosen: after have been
chosen, one might anticipate that the smaller the average size
of the relative complements , then
the smaller the number of disjoint terms required to analyze
the event will be. This strategy seems
successful initially, because it does a good job of choosing one
of the available minpaths which requires a small number of
disjoint terms. However, it does not attempt to choose one of
the available minpaths which will contribute to creating a small
number of disjoint terms for the remaining minpaths, so it tends
to produce SDP analyses with large numbers of disjoint terms
for minpaths near the end of the list.

To compensate for this failing, modify this to incor-
porate the advice of [1], though not as a binding requirement.
One way to do this is to weigh the relative complements which
come from smaller already-listed minpaths more heavily in
the average; another way is to give smaller candidate minpaths
an advantage. Both of these modifications are used if, with

already listed, is chosen so that

(5.1)

is as small as possible. This scoring system has performed better
than several other systems on a variety of examples.

The sum in (5.1) gives a weighted average of the relative
complements, favoring those which come from smaller already-
listed minpaths; it is unnecessary to divide by in this ‘av-
erage’ because is the same for all candidates. The factor

gives an advantage to smaller candidate minpaths.
It might seem to be a complicated assessment of the advantage
smaller minpaths should have, but it is not impossible to ratio-
nalize: the reflects the subsets of the candidate minpath
which can serve as relative complements for later terms, and
dividing by indicates an averaging of the numbers of ap-
pearances of the elements of in earlier minpaths.

BALAN AND TRALDI: PREPROCESSING MINPATHS FOR SUM OF DISJOINT PRODUCTS 293

There are 3 important details of the implementation of this
system:

1) Adjust the factor to increase the advantage
given to the smallest minpaths:

• when , replace the factor with
0 (to guarantee that 1-element minpaths are always
listed first),

• when , replace the factor with
1.5 (to give 2-element minpaths an increased advan-
tage).

2) An element of which appears in all the minpaths not al-
ready listed cannot be negated in the remaining portion of
the SDP analysis, and therefore will not affect the number
of disjoint terms required. Such an element should be ig-
nored in calculating .

3) The scoring system does not seem to apply to the choice
of the first minpath in the list, because (5.1) refers to
the already-listed minpaths . To choose the
first minpath, each minpath according to the same
formula, but using all the other minpaths in place of

. (In the example of [1], is the minpath
with the lowest such .)

This strategy is similar to the preprocessing strategy of [3] in
several ways. Each strategy can have, so neither completely
determines a list of the minpaths. However this new strategy
usually has many fewer than the strategy of [3] (which in
turn has many fewer than the strategy of [1]). In choosing
which minpath should be listed next, each strategy has 2 goals:

1) keep the number of disjoint terms needed for the next
minpath itself relatively low;

2) keep the next minpath’s contribution to ‘the numbers of
disjoint terms that later-listed minpaths will require’ rel-
atively low.

Each strategy considers a simple average to address goal #1,
and the advice of [1] to address goal #2. For each strategy, both
of these considerations are compromises between precision and
computation-economy:

a) on the one hand, a detailed analysis of the relative comple-
ments would generally give much more information (e.g.,
consider the difference between having 2 disjoint 3-el-
ement relative complements and having the same 3-ele-
ment relative complement occur twice),

b) on the other hand, a simpler preprocessing strategy (like
the ‘follow the advice of [1] and list minpaths of each size
randomly’ strategy mentioned in [11]) would run much
more quickly.

A difference between the 2 strategies is that this one finds the
desirable mixed-size lists for the examples of Section II, unlike
any preprocessing strategy that does not allow any exceptions
to the advice of [1].

In the example of [1] this new strategy suggests only one
list—there are no . This list gives rise to the SDP analysis
in Table II, with only 53 disjoint terms, fewer than any other
published SVI-SDP analysis of this example. The exhaustive
(and exhausting!) analysis required to determine whether or not
Table II gives the best possible SVI-SDP analysis of the example

TABLE II
A 53-TERM ANALYSIS OF THE EXAMPLE IN [1]

of [1] has not been done, but it has been proven [12] that every
SVI-SDP analysis of the example of [1] which follows the pre-
processing advice of [1] involves at least 54 disjoint terms.

When applied to the 15 networks drawn from [10, figures
1–12] which have been studied, this preprocessing system ap-
preciably outperforms the advice of [1]. For every one of the
15 networks, this system proposes at least 1 minpath list which
gives rise to an SVI-SDP analysis with as few disjoint terms as
any SVI-SDP analysis which follows the advice of [1]. For 7
of the 15 networks, this system proposes minpath lists which
give rise to SVI-SDP analyses with fewer disjoint terms than all
SVI-SDP analyses which follow the advice of [1]; these 7 are in
Fig. 1(a)–(g). Because of the small number of this system
proposes only a few possible lists for each network, many fewer
than the advice of [1] allows. Do not get the impression that this
preprocessing system is perfect; it is not;e.g., it incorrectly rec-
ommends disregarding the advice of [1] for the system with min-
paths , , , , . Also, it fails to find optimal minpath
lists for at least 3 of the 15 networks, those shown in Fig. 1(c),
(e) and (h).

VI. SOME EXAMPLES FORMVI-SDP

The preprocessing strategy suggested in [1] is usually used in
both SVI-SDP and MVI-SDP algorithms. This section presents
examples for which the optimal MVI-SDP preprocessing vio-
lates the advice of [1]. In each of these examples, the optimal
preprocessing for SVI-SDP follows the suggestion of [1]; thus
these examples also illustrate the fact that optimal preprocessing
for SVI-SDP and MVI-SDP algorithms is different. This differ-
ence explains some of the results of [11], which observes that in
many examples the preprocessing strategies devised in [6], [7],
[13] are no more effective for an MVI-SDP algorithm than the
advice of [1] alone.

Example 6.1:The system has minpaths , , .
An MVI-SDP analysis using this order of the minpaths is

294 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 3, SEPTEMBER 2003

Fig. 3. A series-parallel network.

, , . However if the minpaths are listed
, , , then the resulting MVI-SDP analysis involves

4 terms: , , , . The list , ,
is optimal for SVI-SDP, because it avoids the appearance of
disjoint minpaths at the beginning of the list.

For the purposes of MVI-SDP, the minpaths of Example 6.1
are ‘really’ just , , , because every other variable is ‘really
the same’ as one of . The optimal minpath list reflects
the accuracy of the advice of [1] for these ‘real’ minpaths.

Example 6.2:The system of Example 6.1 is duplicated
times using separate alphabets. Observe that, ,

can be negated with 2 disjoint MVI terms: and
. Also, negating , requires 2 disjoint MVI

terms: and . If the minpaths are preprocessed con-
ventionally, then the last minpaths in the list are ,

, \ldots , . Each is represented
by disjoint terms, choosing 1 negating term from each
pair , with , and 1
negating term from each pair , with .
There are more than disjoint terms, in all.

On the other hand, let the minpaths be listed in the
order , , ,

. Then each of the first minpaths re-
quires only a single MVI term, and each requires
disjoint terms, because there are 2 negating terms for each

. Consequently this list gives rise to an MVI-SDP analysis
with disjoint terms, fewer than .

Conventional preprocessing leads to an MVI-SDP analysis
which involves more than times as many disjoint terms as
are actually necessary, no matter what MVI-SDP algorithm is
used.

Example 6.3:For the network in Fig. 3, the advice of [1]
gives the worst possible minpath list for MVI-SDP, although it
is optimal for SVI-SDP. The optimal minpath list for MVI-SDP
is obtained by thinking of the 3 series elements as ‘really just 1
element’, and listing the 3-element minpath first.

Examples 6.1–6.3 illustrate the fact that all available series
reductions should be performed before an MVI-SDP analysis.
However not all examples of nonoptimality of the advice of
[1] for MVI-SDP are associated with unperformed series reduc-
tions.

Example 6.4:The system has minpaths , , ,
, , . An MVI-SDP analysis using

this order of the minpaths is , , ,
, , . If the minpaths are listed

with first, however, it is not possible to have only 1 disjoint

term for each minpath: which one of or comes after
the other, requires at least 2 disjoint terms. In this example, too,
a conventionally preprocessed list is optimal for SVI-SDP.

It seems difficult to formulate a preprocessing system like that
of Section V that works well for MVI-SDP algorithms, because
it is difficult to know exactly what to count in a formula: the in-
dividual elements of a system are separate in some parts of an
MVI-SDP analysis, and together in others. It is clear, however,
that any possible series and parallel reductions should be per-
formed before preprocessing.

VII. L IMITATIONS ON THE EFFECTIVENESS OFPREPROCESSING

Not all examples of nonoptimal performance of SDP algo-
rithms result from preprocessing choices; there are systems for
which there is no preprocessing that results in optimal SDP
analyses.

Example 7.1:Let be a positive integer, and consider a
system with 3 disjoint minpaths: , ,

. Preprocessing does not affect the number of
disjoint terms produced by an SVI-SDP algorithm, .
However the system has an SVI-SDP analysis with only

disjoint terms: , ,
, , .

Thus all SVI-SDP algorithms analyze this system using
times as many disjoint terms as are actually necessary.

Similar examples can be given for which all SVI-SDP al-
gorithms give analyses with up to times the minimum
number of disjoint terms. There are also systems for which all
MVI-SDP algorithms overestimate the required number of dis-
joint terms by factors up to . The exponents 11 and 9 are
not absolute ceilings but reflect the authors’ limited ability to
analyze these examples; see [12] for details.

REFERENCES

[1] J. A. Abraham, “An improved method for network reliability,”IEEE
Trans. Rel., vol. R-28, pp. 58–61, 1979.

[2] F. Beichelt and L. Spross, “An improved abraham method for generating
disjoint sums,”IEEE Trans. Rel., vol. R-36, pp. 70–74.

[3] , “Comment on: An improved abraham method for generating dis-
joint sums,”IEEE Trans. Rel., vol. 38, pp. 422–424, 1989.

[4] K. D. Heidtmann, “Smaller sums of disjoint products by subproduct in-
version,”IEEE Trans. Rel., vol. 38, pp. 303–311, 1989.

[5] M. O. Locks, “Inverting and minimalizing path sets and cut sets,”IEEE
Trans. Rel., vol. R-27, pp. 107–109, 1978.

[6] , “A minimizing algorithm for sum of disjoint products,”IEEE
Trans. Rel., vol. R-36, pp. 445–453, 1987.

[7] M. O. Locks and J. M. Wilson, “Note on disjoint product algorithms,”
IEEE Trans. Rel., vol. 41, pp. 81–84, 1992.

[8] , “Nearly minimal disjoint forms of the abraham reliability
problem,”Reliab. Eng. Syst. Saf., vol. 46, pp. 283–286, 1994.

[9] S. Rai, M. Veeraraghavan, and K. S. Trivedi, “A survey of efficient re-
liability computation using disjoint products approach,”Networks, vol.
25, pp. 147–163, 1995.

[10] D. R. Shier and D. E. Whited, “Algorithms for generating minimal cut-
sets by inversion,”IEEE Trans. Rel., vol. R-34, pp. 314–319, 1985.

[11] S. Soh and S. Rai, “Experimental results on preprocessing of path/cut
terms in sum of disjoint products technique,”IEEE Trans. Rel., vol. 42,
pp. 24–33, 1993.

[12] L. Traldi, Non-Minimal Sums of Disjoint Products: Lafayette College,
2003.

[13] J. M. Wilson, “An improved minimizing algorithm for sum of disjoint
products,”IEEE Trans. Rel., vol. 39, pp. 42–45, 1990.

BALAN AND TRALDI: PREPROCESSING MINPATHS FOR SUM OF DISJOINT PRODUCTS 295

Alexandru O. Balan graduated from the Tudor Vianu High School for
Computer Science in Bucharest, Romania in July 1999, after winning Special
Awards in the Romanian National Competition of Computer Programming
in 1996 and 1998. He is studying Computer Science, Mathematics, and
Economics at Lafayette College in Easton, Pennsylvania, where he is a member
of the student chapter of the Association for Computing Machinery (ACM)
in addition to Phi Beta Kappa and the honor societies for Computer Science,
Economics, and Mathematics. He plans to attend graduate school in Computer
Science at Brown University after finishing his Bachelor’s degrees.

Lorenzo Traldi is a Professor of Mathematics at Lafayette College. He received
the AB in 1976 in Mathematics from Queens College of the City University of
New York, and the Ph.D. in 1980 in Mathematics from Yale University. His
research interests include knots, graphs, and matroids in addition to network
reliability. He is a member of the American Mathematical Society and the IEEE
Reliability Society.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

