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Preprocessing MinPaths for Sum of Disjoint Products

Alexandru O. Balan and Lorenzo Traldilember, IEEE

Abstract—Network reliability algorithms which produce sums culates the system reliability by analyzing the disjoint eveRs:

of disjoint products (SDP) are sensitive to the order in which the (P, is operational)Ps - P; (P, is operational, and; fails), ...,
minimal pathsets are analyzed. The minpaths arg@reprocessety P,-P,_, P, (P, is operational and, P,_; all fail)
Pty oo, » 1S operational and*, . . ., n—

choosing this order in the hope that an SDP algorithm will then | . h : /fd' .
provide a relatively efficient analysis. The most commonly used separately, expressing each one as a union of disjoint events.

preprocessing strategy is to list the minpaths in order of increasing  If P1, ..., P, are listed in a different order, then the disjoint
size. This paper gives examples for which this strategy is not op- eventsP;, P»-P;,...,P,-P,_1,..., P, are changed, and their
timal. A new preprocessing strategy which works well for SDP al- - gxpressions as disjoint sums change too. [1] suggests that to
gorithms with single-variable inversion (SVI) is introduced. It is minimize the number of terms in the disioint sums. smaller min-
also observed that optimal preprocessing for SVI-SDP can be dif- . | ! ! .
ferent from optimal preprocessing for SDP algorithms which use Paths should be listed before larger ones. The reasoning behind

multiple-variable inversion; one reason for this is that MVI-SDP  the suggestion is simple and compelling: in general the smaller

algorithms handle disjoint minpaths much more effectively than the relative complement8; ; — P;,..., P, — P; are, the less
SVI-SDP algorithms do. Both kinds of SDP algorithms profitfrom . hlicated their intersections are, and the less difficult it is to
prior reduction of elements and of subsystems which are in parallel — — .

or in series. analyze the even®; - P;_4,..., P. Listing smaller minpaths

before larger ones tends to make these relative complements
P; — P; small, becausé’; is small andP; is large.

The preprocessing advice of [1] has been strongly endorsed
in many papers, including [2]-[4], [6]-[9], [11], [13]. [6] con-

Index Terms—Preprocessing, sum of disjoint products (SDP),
system reliability.

ACRONYMS! jectures that an SDP algorithm which uses the suggestion of [1]
i.i.d. s-independent and identically distributed (together with other preprocessing for minpaths of the same size
MVI multiple-variable inversion and an effective negation-simplifying technique) always pro-
SDP sum of disjoint products duces an SDP analysis which is so nearly minimal that it is
SVI single-variable inversion “probably not worth the effort” to refine the analysis further.
s statistical(ly) [2] states baldly: “It is well known that for getting short disjoint
sums the minimal path sets must be ordered in an increasing
NOTATION sequence according to the number of their elements.” Some ex-
a,b,c,... variable representing the (operation of) i.i.d. ele@mp!es are discussed herg, which indigate insteaq th‘?‘t the sug-
T ments of a system gestlpn of [1], though it might be r'elatlvel)./ effective in gen-
a,b,¢,... variable representing the failure of an element erql, 'S ofteq not optimal a’?d sometimes quite far from Opt'mal'
Py, P, ... variable representing the operation of all eIemengéh'S paper introduces a d|fferent preprocessing strategy which
of a set tends to follow the suggestion of [1] but is not abgolutely bounq
Py, Ps, ... variable representing the failure of at least 1 elemef} The new strategy seems to do a reasonable job of, detecting
of a set situations in which the advice of [1] should be disregarded by
a+ P disjunction:a or P SDP algorithmslwhich do not involve multiple-variable inver-
0P conjunction:a and P sion. Also mentioned here are some examples of systems for
1P| number of elements in sét which all SDP algorithms.result in highly nonoptimal analyses,
P — relative complementsiz|z € P; andz ¢ P;} regardless of preprocessing.
b;
|. INTRODUCTION II. SOME EXAMPLES FORSVI-SDP

coherent-binary-system on a finite s, is given by its  The references, especially the survey article [9], show some
\ minpaths/y, ..., P,,, which are subsets df, and none of of the many SDP algorithms which have been discussed in the
which contain any other. A (minpath-based) SDP algorithm cajterature. Differences among these algorithms include:

« the details of their preprocessing strategies (though all
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There are 9 terms required to negafe: + def: in each
negating term, one of, b, ¢ is negated and one af, e, f is
negated. Only 8 of these terms are required to negéatet
def + abdf, becausee does not negatebds. It might seem
that negatingibc + def + abdf + acde requires only 7 terms,
becausee andb f are removed from the original 9. However, 8
disjoint terms are actually required for this negatioh:+ ade +
adef + abd + abde + abéd + abed f + abedef, for instance. See
[5], [10], and Section IV for a discussion of this kind of process.

Example 2.1:The system of example 2.1 is duplicated
n times, usingn separate alphabets;,b;,c;,d;,e;, f;. Let
an SDP analysis be performed after the minpaths are listed
in the order a1bycq, {llbldlfl, dlelfl, aicidier, asbocs,
asbadafo, ..., dnenfn, ancndpe,. If 2 < 5 < n, then the 4
minpaths involvinga;, b;, c;, d;, e;, f; give rise to8/~1 . 5
disjoint terms, obtained by:

» choosing from the 8 negating terms@b;c; + d;e; fi +
a;b;d; f; + a;c;d;e; for eachi < 7,
» also choosing fromajbjc;, a;b;c;d;f;, a;dje;f;,
ajbjdje;fi, ajbjcidje; f.
Five disjoint terms are required fomibici, aibiesfi,
dieq f1, bicidier. Consequently the SDP analysis results in
5-37_, 8/~ ! disjoint terms, fewer than &" " disjoint terms.

Consider an SDP analysis performed after the minpaths are
. preprocessed with the 3-element minpaths listed 3%t}
disjoint terms are required for the last 3-element minpath; each
disjoint term involves choosing 1 variable from each of the pre-
ceding minpaths to be negated. Similarly, the next-to-last 3-ele-
Fig. 1. Some networks for which smaller-minpaths-first preprocessing is nstent minpath require3*” 2 disjoint terms, and the one before
optimal. that requiress2"—3 disjoint terms. Let the first 4-element min-

path bea;bid;eq; it requires9™—! disjoint terms, obtained by

This paper emphasizes the last distinction by discussif§oosing one of the 9 negating termsagb;c; + dje; f; for
SVI-SDP algorithms first and MVI-SDP algorithms separatelgachj > 1. If the second 4-element minpathdsc d; ey, it too
later in the paper. requires9” ! disjoint terms. If, instead, the second 4-element

Example 2.1: The system has minpathsc, def, abdf, and minpathis, saygsbads fo, then it requires only 89"~ disjoint
acde. An SVI-SDP analysis using this order of the minpatht&rms because, bici + a1b1ds f1 +dieq f1 has only 8 negating
creates 6 disjoint termsibe, adef, abdef, abedef, abedef, terms. Thus there must be at lea8t—! + 32"~2 4 32773 4

a) s

b) s

c) s

d) s

b
SRR

abedef. 9n=148.972= 9 =2.(2749434+948) > 9"~2.54 = 9"~ 1.6

If the minpaths are listed in the ordebc, abdf, def, acde disjoint terms arising from these 5 minpaths. o
then only 5 disjoint terms are needed, abedf, adef, abdef, ~ Each of the2n — 2 remaining 4-element minpaths gives rise
abedef. <« 108% -9 disjoint terms for some andb witha + b = n — 1:

This example illustrates that SVI-SDP algorithms do ndtthe minpath uses alphab#tj, then its disjoint terms involve
function efficiently when disjoint (or almost disjoint) min-Cchoosing 1 out of 8 or 9 negating terms for eac# ;. Hence
paths appear early in the minpath list. Other examples of tifse minpaths give rise to at leg®t —2) -8"~" disjoint terms.
inefficiency are easy to fince.g, it is proven [12] that every In total, there are more thah 9"~" + (2n — 2) - 8"~ disjoint
source-to-terminal network in Fig. 1 has the property that ‘d¢rms.
of its optimal SVI-SDP analyses violate the preprocessing Thus conventional preprocessing, with smaller minpaths
suggestion of [1]. (Here networks with perfect nodes afisted first, leads to an SDP analysis which involves at least
considered; thus only the links appear in the minpaths.) This 6971 4+ (2n —2) . 8" <9>n—1 n—1

nonoptimality of the advice of [1] is fairly common among = 3

6- 81 8

source-to-terminal networks. The first 12 examples in [11],
and the 3 networks obtained from these examples by series &imks as many disjoint terms as are actually necessary, no matter
parallel reductions, were studied. Each of these 15 networkkich minpath-based SVI-SDP algorithm is used. For instance,
has an optimal SVI-SDP analysis which disregards the advisenn = 3, an implementation of the algorithm of [1] yields

of [1] at least once; only the 7 networks not pictured in Fig. 850 disjoint terms after smaller-minpaths-first preprocessing,
may also have optimal SVI-SDP analyses which follow thiand only 365 disjoint terms when the other order of the min-
advice. paths is used. <
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TABLE |
A 54-TERM ANALYSIS OF THE EXAMPLE IN [1]
7kl
bejl k
acfjl bk
dfhk 3 50
acdh fi fil flkb fkj fkjl
abdhk ef g cfjl
bedfh akj akjl
ghijk id ldfa ldfabe
acegh dj djkl djkibf | djkil
aceil Jh jhdg jbfkh | jbfkhdg
efghk dja d jac djila djilac
efikl jah jahdg jach jachdg
Fig. 2. Ladder network. abeghk | edfj | edfjil
beefgh | ad kj | ad kjl
dehijk fgla fglabe
Essentially, the number of disjoint terms in example 2.2  abeikl | &f jh | &f jhdg
grows with 9" when the preprocessing suggestion of [1] is  acdgil | &hj | ehjbfk
followed, and only withs® when the minpaths are listed in ~ cc¢/% | @ikh | djkhdg -
oflowed, an y _ paths a _ beghij | Klaf | Kafde | Klade
the mixed-size order. The same kind of disparity applies t0  afgiki ghja | ehjac
other similar example®.g, the system with minpaths; b1 ¢y, acfghij | bdekl
bicidien, d1€1f1, €1f1a2b2, asbacy, bacadaes, ... bucpdnen, dee}.”] C_Lfgﬁ.
p , o . ). . abdgikl céefhy
dnenfr Of the ‘ladder network’ witl2n ‘rungs’ in Fig. 2. bedfgil | achjk
[ll. ABRAHAM’S EXAMPLE being considered.) Thigore does not suggest a complete order

in which to list the minpaths of a given size, because different
The examples in Section Il strongly suggest that when prgrinpaths can beied with the samescore. For the example
processing a list of minpaths for an SVI-SDP algorithm, it igf [1], other choices of lists consistent with the preprocessing
desirable to avoid the appearance of minpaths which are larggfyategy of [3] can result in SVI-SDP analyses involving 54—60
disjoint from all their predecessors in the list. This suggestigjisjoint terms.
can also be considered in connection with the most-studied eXTwo observations about the list in [3] are:
ample in the references, a system with 12 elements and 24 min-
paths mentioned in [1], and pictured in Fig. 1(g). (Table | gives 1) [3, table 2] contains only 53 of the 55 disjoint terms. The
a complete list of the minpaths.) The algorithm of [1] provides  disjoint terms arising from the minpatiteil should in-
an SVI-SDP analysis of this example with 71 disjointterms. [6]  cludeacdeghijl (or 1-101-0110-1 in the notation of [3])
modifies the algorithm of [1] in 2 ways: and the disjoint terms arising frony:kl should include
aefhijkl (0- - -11-01011). There is also a 0 missing at
the end of the fourth disjoint term. (See Section IV.)
2) The number of disjoint terms can be reduced.df ;!
is placed either before or aftdfhk in the list, because
acfjl requires 2 disjoint terms in its current position but
requires only 1 if it is moved up in the list, and moving
it does not increase the number of disjoint terms required
for any other minpath. Movingcf ;I is suggested by the
principle in Section Il (disjointness should be avoided
early in the list of minpaths) becausef ;! intersects all
of the 3- and 4-element minpaths. It is striking that this
move improves the best published SVI-SDP analysis of
the example of [1] by disregarding the preprocessing ad-
vice of [1], placing a 5-element minpath ahead of some
of the 4-element minpaths.

1) listing the minpaths of a given size lexicographically,

2) improving the portion of the algorithm which generates

negating terms.

The result is a more efficient SVI-SDP analysis with 61 dis-
jointterms [7]. Both [1] and [6] list the disjoint minpathi&! and
acdh at the beginning of the list. [13] introduces a preprocessing
scheme which is based (as observed in [11]) on Hamming dis-
tances, and produces an SVI-SDP analysis of the example of [1]
which involves only 59 disjoint terms [7]. As noted in [13], the
improvement arises from the re-ordering at the beginning of the
minpath list, which [13] starts agkl, bejl, acdh, avoiding the
consecutive appearance of disjoint minpaths.

Reference [3] gives a further improvement, reducing the
number of disjoint terms to 55 with a minpath list that starts
jkl, bejl, df hk, acdh, abdhj, acfjl.

That preprocessing-strategy lists the minpaths of a givenTable | gives the complete SVI-SDP analysis of the example
size in descending order of amtersection score: the average in [1] that arises when the order of [3] is modified by listing
number of elements a minpath shares with smaller minpaths, ;! third instead of sixth. The minpaths are listed in column
(This is the same as listing first those that have the smallésit, with the corresponding negating terms listed to their right.
average relative complements within the smaller minpathEhe variables in the negating terms are not given alphabetically,
which is a sensible strategy because these relative compleméuitsin a way that suggests the pivoting method used to produce
contribute to the disjoint terms that arise from the minpathke disjoint terms.
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IV. CHECKING SDP (QALCULATIONS The MVI-SDP analyses may be checked using similar steps;

3], [6], [8], [13] contain mistaken SDP analyses of the g0, a check of [8, table 2] indicates that disjoint terms #12

ample in [1]. For the convenience of those who might want ngd #13 are not aCtF‘a:'g d'sjo'gt' ((i()dr.rgcgrﬁ the ermthdoes pot
casionally to perform such calculations, this discussion of prreqqUIre an increase in the number of disjoint terms.) When using

processing is interrupted to discuss ways to check the accurggylJ 3 to check an MVI-SDP analysis, remember that a disjoint

(though not the minimality) of a set of disjoint terms suppos term which involves variable groupings of sizes ..., gs

to describe aprodudt; - P;_1, ..., P;. The focus is on the anal- c%vers2f" 'ﬂg% - 1b) | "f' ' (2_qu_ 1t)htr;1th valute asstl_gnmde_ntfr,] ¢
ysis of [3]: see [7] for a discussion of [6] and [13]. wherer is the number of variables that are not mentioned in tha

. . ... disjoint term.
1) Check to see if the disjoint terms are actually d|S]0|nt.I Jo!

This is enough to catch one of the errors in [3, table 2],
the missing 0 at the end of the fourth disjoint term.
2) Check to see iP; actually appears in one of the disjoint Reference [3] predicates its preprocessing on the advice of

V. A NEW PREPROCESSINGSTRATEGY

terms that are supposed to represBnt P;_1,..., 1. [1], as do all the other papers mentioned in the references. The
This is enough to catch another error, because none of ¢amples discussed in this paper suggest, instead, a prepro-
disjoint terms contain the minpattyikl. cessing strategy that allows violations of the advice of [1] on
3) Consider the minpathceil in the example of [1], which occasion. One way to do this is to use dynamic-preprocessing:
appearstenthinthe list suggestedin 3]t = P, bcjl = begin withjkl, and at each iteration choose the next minpath in
Py, dfhk = P, acdh = Py, abdhk = Ps, acfjl = Ps, the list so that it will have the best possiblerre according to
bedfh = Py, ghijk = Ps, acegh = Py, aceil = Pyg. some formula which seems appropriate. A reasonable: is
Following [5] and [10], calculateP, - Py,..., P, - P; the average size of the relative complements with the minpaths
by Boolean multiplication of the relative complementshat have already been chosen: afigs ..., P;_; have been
Py — Py, ..., Py — Py, with absorption. chosen, one might anticipate that the smaller the average size
of the relative complement® — P;,...,P;_1 — P;, then
(G+k)-(b+37)-(d+f+h+Fk) - (d+h) the smaller the number of disjoint terms required to analyze
b+d+h+Fk) the eventP; - P;_q - --- - Py will be. This strategy seems
F N T T FLIN = TS successful initially, because it does a good job of choosing one
(f +2) btd+frh)(F+htitE) of the available minpaths which requires a small number of
(g +h) disjoint terms. However, it does not attempt to choose one of
=G +k)-(b+5)-(d+h)-(f+7)-(g+h) the available minpaths which will contribute to creating a small
=(G+bE)-(f+7)-(d+h)-(g+h) number of disjoint terms for the remaining minpath;, so it tends
= (G + bFR) - (h + dg) to produce SDP analyses with large numbers of disjoint terms
,‘], L 9 for minpaths near the end of the list.
= hj +dgj +bfhk +bdfgk. (41)  To compensate for this failing, modify thigore to incor-

. o L -. - . --- _ porate the advice of [1], though not as a binding requirement.
These equations give rise to 4 disjoint tertg, dghj, bf hjk, one way to do this is to weigh the relative complements which

bdfghjk. come from smaller already-listed minpaths more heavily in

To check the accuracy of the calculation, also perform an SR, 4\ erage: another way is to give smaller candidate minpaths
analysis of the binary coherent system given by the relative cogk advantage. Both of these modifications are used if, with
plements;jk, bj, dfhk, dh, bdhk, fj, bdfh, ghjk, ghithusthe p b “Jieady listedP; is chosen so that
minpaths areik, bj, fj, dh, gh. An SDP analysis igk, bjk, e !
bfik, dhj, bdfhjk, dghj, bdfghjk. Itis not difficult to check i1
that these terms are actually disjoint from each other and from 215l ) Z <|Pk - Pj|> (5.1)
the 4 negating terms in the preceding paragraph. | P | P | '

If these calculations are correct, then

k=1

S - is as small as possible. This scoring system has performed better
hj + dghj + bfhjk + bd{«qh}kf gk + [jjk - than several other systems on a variety of examples.

+bfjk + dhj + bdfhjk + dghj + bdfghjk, (4.2)  The sum in (5.1) gives a weighted average of the relative

complements, favoring those which come from smaller already-

provides a disjoint analysis of the space of all possible assigigted minpaths; it is unnecessary to divideby 1 in this ‘av-
ments of truth valuesT’, F) to the 7 variables, d, f, g, h,j,k. erage’ becaus¢ — 1 is the same for all candidates. The factor
There are2” such assignments. Each disjoint term co&rs’ 21731/ |P;| gives an advantage to smaller candidate minpaths.
assignments, wheneis the number of variables that appear it might seem to be a complicated assessment of the advantage
that disjoint terme.g, bjk covers2* assignments. Hence thesmaller minpaths should have, but it is not impossible to ratio-

analysis ofPyg - P, ..., P, - Py is checked by verifying: nalize: the2!Ps! reflects the subsets of the candidate minpath
5 5 ) 0 5 4 which can serve as relative complements for later terms, and
P+ 2+ 4242 dividing by |P;| indicates an averaging of the numbers of ap-

+23 42t 421 428 4+ 20 =27, (4.3) pearances of the elementsfin earlier minpaths.
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There are 3 important details of the implementation of this TABLE I
system: A 53-TERM ANALYSIS OF THE EXAMPLE IN [1]
1) Adjust the factor2!”s//|P;| to increase the advantage i’ ;
given to the smallest minpaths: acfil | B
« when|P;| = 1, replace the facto2!™s!/ |P;| with ~ acan | ] it JlbFR i
0 (to guarantee that 1-element minpaths are alwa, ¢/ (Z‘kh o ZJEI][ caj el
listed first), abdhk | efj | efjl o
+ when|P;| = 2, replace the factoz!”i! / | P;| with 'J;”Jh’z | ldja ldfabe
1.5 (to give 2-element minpaths anincreased adva qeegn, | ajf | disk | &k | diki | dikbF
tage). efikl | gh_ | ghdg | [P N R
2) Anelement ofZ which appears in all the minpaths notal- @< | "ki | hkjbf | hkfs | hgd if | hgd ik | hgdjofk

ready listed cannot be negated in the remaining portion iiﬁ;ﬁi gg}aj Z%Zc
the SDP analysis, and therefore will not affect the numbe ZZZ{L%L Z;fa’;f Zfa’;file tnds
of disjoint terms required. Such an element should be i¢ 4peiki Fih | &F 5hdg
nored in calculatingP?; |. beefil | ajkh | ajkhdg
3) The scoring system does not seem to apply to the choi o9 | 525 | sissi | ehsior
of the first minpath in the list, because (5.1) refers tc acfghij | bdekl
the already-listed minpathg;, ..., P; ;. To choose the ZEZ;ZZIJ Zigffc
first minpath,score each minpath according to the same abdgiki | zzfhj
formula, but using all the other minpaths in place of
Py, ..., Pj_q. (In the example of [1]j£l is the minpath
with the lowest suclcore.) of [1] has not been done, but it has been proven [12] that every
This strategy is similar to the preprocessing strategy of [3] ®V!-SDP analysis of the example of [1] which follows the pre-
several ways. Each strategy can hgi¢g, so neither completely processing advice of [1] involves at least 54 disjoint terms.
determines a list of the minpaths. However this new strategyVVhen applied to the 15 networks drawn from [10, figures
usually has many fewetes than the strategy of [3] (which in 1-12] which have been studied, this preprocessing system ap-
turn has many feweties than the strategy of [1]). In choosingPreciably outperforms the advice of [1]. For every one of the
which minpath should be listed next, each strategy has 2 goalg: Networks, this system proposes at least 1 minpath list which
1) keep the number of disjoint terms needed for the neg(a/es rise to an SVI-SDP qnaly5|s with as few_d|310|nt terms as
. . . y SVI-SDP analysis which follows the advice of [1]. For 7
minpath itself relatively low; of the 15 networks, this system proposes minpath lists which

2) "??P. the next minpath S contrlb_utlon to the numb?rs %Iive rise to SVI-SDP analyses with fewer disjoint terms than all
disjoint terms that later-listed minpaths will require reI—S

. VI-SDP analyses which follow the advice of [1]; these 7 are in
atively low.

) ] Fig. 1(a)—(g). Because of the small numbettiet this system
Each strategy considers a simple average to address goalgtdnsses only a few possible lists for each network, many fewer

and the advice of [1] to address goal #2. For each strategy, b, the advice of [1] allows. Do not get the impression that this

of these considerations are compromises between precision ﬁﬂébrocessing system is perfect; it is reg, it incorrectly rec-

computation-economy: ommends disregarding the advice of [1] for the system with min-
a) onthe one hand, a detailed analysis of the relative compjgthsab, bd, ce, acd, ade. Also, it fails to find optimal minpath
ments would generally give much more informatietrry, lists for at least 3 of the 15 networks, those shown in Fig. 1(c),
consider the difference between having 2 disjoint 3-e(e) and (h).
ement relative complements and having the same 3-ele-
ment relative complement occur twice),
b) on the other hand, a simpler preprocessing strategy (like V1. SOME ExAMPLES FORMVI-SDP

the *follow the advice of [1] and list minpaths of each size The preprocessing strategy suggested in [1] is usually used in
randomly’ strategy mentioned in [11]) would run mucthoth SVI-SDP and MVI-SDP algorithms. This section presents
more quickly. examples for which the optimal MVI-SDP preprocessing vio-

A difference between the 2 strategies is that this one finds tlages the advice of [1]. In each of these examples, the optimal
desirable mixed-size lists for the examples of Section Il, unliksreprocessing for SVI-SDP follows the suggestion of [1]; thus
any preprocessing strategy that does not allow any exceptiehsése examples also illustrate the fact that optimal preprocessing
to the advice of [1]. for SVI-SDP and MVI-SDP algorithms is different. This differ-

In the example of [1] this new strategy suggests only orence explains some of the results of [11], which observes that in
list—there are naies. This list gives rise to the SDP analysismany examples the preprocessing strategies devised in [6], [7],
in Table II, with only 53 disjoint terms, fewer than any othef13] are no more effective for an MVI-SDP algorithm than the
published SVI-SDP analysis of this example. The exhaustiaevice of [1] alone.

(and exhausting!) analysis required to determine whether or noExample 6.1: The system has minpathé& fg, abc, chi.
Table Il gives the best possible SVI-SDP analysis of the exam@la MVI-SDP analysis using this order of the minpaths is
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term for each minpath: which one abeh or cdf g comes after
the other, requires at least 2 disjoint terms. In this example, too,
a conventionally preprocessed list is optimal for SVI-SDR

s t It seems difficult to formulate a preprocessing system like that
of Section V that works well for MVI-SDP algorithms, because
it is difficult to know exactly what to count in a formula: the in-
dividual elements of a system are separate in some parts of an
MVI-SDP analysis, and together in others. It is clear, however,
that any possible series and parallel reductions should be per-

Fig. 3. A series-parallel network. formed before preprocessing.

defg, defgabe, abede f ghi. However if the minpaths are listed VI

‘ : e L IMITATIONS ON THE EFFECTIVENESS OFPREPROCESSING
abe, chi, defg, then the resulting MVI-SDP analysis involves

4 terms:abe, abehi, edefg, abedefghi. The listabe, chi, defg Not all examples of nonoptimal performance of SDP algo-
is optimal for SVI-SDP, because it avoids the appearance rithms result from preprocessing choices; there are systems for
disjoint minpaths at the beginning of the list. <« which there is no preprocessing that results in optimal SDP

For the purposes of MVI-SDP, the minpaths of Example 6dnalyses.
are ‘really’ justd, ac, ch, because every other variable is ‘really Example 7.1:Let n be a positive integer, and consider a
the same’ as one af, ¢, d, h. The optimal minpath list reflects system with 3 disjoint minpathst = a; ...a,, B = by ...b,,
the accuracy of the advice of [1] for these ‘real’ minpaths. C = ¢;...c¢,. Preprocessing does not affect the number of
Example 6.2:The system of Example 6.1 is duplicatedlisjoint terms produced by an SVI-SDP algorithmd,+ n + 1.
n times usingn separate alphabets. Observe th&t, defg, However the system has an SVI-SDP analysis with only
chi can be negated with 2 disjoint MVI termsdefg and 3n + 1 disjoint terms: ay B, aia2B,...,a1...a,_16,B,

abedefg hi. Also, negatingabe, chi requires 2 disjoint MVI b,C,... by ...by_1b,C, EA,...,c1...cn_1GnA, ABC.
terms: ¢ and abchi. If the minpaths are preprocessed corifhus all SVI-SDP algorithms analyze this system using)
ventionally, then the last minpaths in the list ardie; f191, times as many disjoint terms as are actually necessary. «
dses foge, \ldots |, dyen fngn. Eachdje;f;g; is represented  Similar examples can be given for which all SVI-SDP al-
by 2" disjoint terms, choosing 1 negating term from eachorithms give analyses with up t@(n'!) times the minimum
pair (crdier frgr, axbrerdrer frgr hiir) with & < j, and 1 number of disjoint terms. There are also systems for which all

negating term from each paffy, arbrcrhiix) with & > j.  MVI-SDP algorithms overestimate the required number of dis-

There are more tham - 2™ disjoint terms, in all. joint terms by factors up t@(n?). The exponents 11 and 9 are

On the other hand, let the minpaths be listed in theot absolute ceilings but reflect the authors’ limited ability to
order aibicy, asbaca, ..., anbpcn, dieifigi,. .., dnenfagn, analyze these examples; see [12] for details.
cihiiy, ..., chhni,. Then each of the firsen minpaths re-

quires only a single MVI term, and eaehh ;i; requires2/—*
disjoint terms, because there are 2 negating terms for each
1 < j. Consequently this list gives rise to an MVI-SDP analysis [1] J. A. Abraham, “An improved method for network reliabilit\EEE

with 2n " 2i—1 disjoint terms, fewer thag - 2. Trans. Rel.vol. R-28, pp. 58-61, 1979.
T .EJ:l ) . . [2] F.Beicheltand L. Spross, “Animproved abraham method for generating
Conventional preprocessing leads to an MVI-SDP analysis™ " gisjoint sums,"EEE Trans. Rel.vol. R-36, pp. 70-74.

which involves more than/2 times as many disjoint terms as [3] ——, “Comment on: An improved abraham method for generating dis-

_ ; - joint sums,”IEEE Trans. Rel.vol. 38, pp. 422—-424, 1989.
are actually necessary, no matter what MVI-SDP algorithm IS[4] K. D. Heidtmann, “Smaller sums of disjoint products by subproduct in-

used. ) ] ] < version,”|EEE Trans. Rel.vol. 38, pp. 303-311, 1989.
Example 6.3:For the network in Fig. 3, the advice of [1] [5] M. O. Locks, “Inverting and minimalizing path sets and cut seSEE

; ; ; ; _ ; Trans. Rel.vol. R-27, pp. 107-109, 1978.
.glves.the worst possible mlnpa.th list f.or MVI .SDP’ although it [6] ——, “A minimizing algorithm for sum of disjoint products,|JEEE
is optimal for SVI-SDP. The optimal minpath list for MVI-SDP Trans. Rel.vol. R-36, pp. 445-453, 1987.
is obtained by thinking of the 3 series elements as ‘really just 1[7] M. O. Locks and J. M. Wilson, “Note on disjoint product algorithms,”

) ot B ; ; IEEE Trans. Rel.vol. 41, pp. 81-84, 1992.
element’, and ||St|ng the 3-element mlnpath firat. [8] ——, “Nearly minimal disjoint forms of the abraham reliability

. , . [8l
Examples 6.1-6.3 illustrate the fact that all available series ~ problem,”Reiiab. Eng. Syst. Safiol. 46, pp. 283-286, 1994.
reductions should be performed before an MVI-SDP analysis.[9] S. Rai, M. Veeraraghavan, and K. S. Trivedi, “A survey of efficient re-

- - . liability computation using disjoint products approacNgtworks vol.
However not all examples of nonoptimality of the advice of 25, pp. 147-163, 1995.

[1] for MVI-SDP are associated with unperformed series reducf10] D. R. Shier and D. E. Whited, “Algorithms for generating minimal cut-
tions. sets by inversion,JEEE Trans. Re).vol. R-34, pp. 314-319, 1985.

i . . [11] S. Soh and S. Rai, “Experimental results on preprocessing of path/cut
Example 6.4:The system has minpathgeh, cdfg, aci, terms in sum of disjoint products techniquéEEE Trans. Rel.vol. 42,

abedef, abedgh, bdefghi. An MVI-SDP analysis using pp. 24-33, 1993.

this order of the minpaths isbeh, abehcdfy, a@c%i, [12] L. Traldi, Non-Minimal Sums of Disjoint Productkafayette College,
T o g . . . 2003.

abcde fgha, abede f ght, abede fghi. If the minpaths are listed [13] J. M. Wilson, “An improved minimizing algorithm for sum of disjoint

with aci first, however, it is not possible to have only 1 disjoint products,”IEEE Trans. Re|.vol. 39, pp. 42—45, 1990.
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