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Abstract

Wegive formulas for theTutte polynomials of parallel and series connections of weightedmatroids,
generalizing and unifying formulas of Oxley and Welsh (Discrete Math. 109 (1992) 185), Bollobás
and Riordan (Comb. Probab. Comput. 8 (1999) 45) andWoodall (Discrete Math. 247 (2002) 201).
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1. Introduction

The Tutte polynomialis one of the most-studied invariants of graphs and matroids. It
may be defined in several equivalent ways, including adeletion–contraction recursion: if
M is a matroid on a finite setE = E(M) thenT (M) is an element of the polynomial ring
Z[X, Y ] such thatT (M)=XT (M/e) for any coloopeofM, T (M)= YT (M − e) for any
loopeofM, andT (M)= T (M − e)+ T (M/e) for any othere ∈ E. The empty matroid∅
hasT (∅)=1. (A related invariant of graphs, thedichromatic polynomial, follows the same
recursion but has amore complicated initial condition: an edgeless graphGhas dichromatic
polynomial(X − 1)|V (G)|.) The Tutte polynomial may also be defined bybasis activities,
which we will not use in this note, or thesubset expansion

T (M) =
∑
S⊆E

(X − 1)r(E)−r(S)(Y − 1)|S|−r(S).
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We refer the reader to[1,12,13,15]for detailed discussions, and to[6,14] for the theory of
matroids.
The Tutte polynomial gives information about many aspects of the structure of a graph

or matroid, including vertex colourings, flows, network reliability, polynomial invariants
of knots, and quantities of interest in statistical mechanics. Some of these involve graphs
and matroids which have been weighted in various ways; for instance, in statistical me-
chanics the edges of a lattice might represent hydrogen bonds between nearby water
molecules, weighted to indicate the probabilities (as functions of temperature) that these
bonds hold. Many authors have considered many different weighted versions of the Tutte
polynomial[2,4,5,8–10,16,17]. (We use the general termweightedto include thecoloured,
parametrized, uncolouredandlabeledinvariants discussed in the references.) The two pri-
mary references, in which such weighted Tutte polynomials have been not only defined but
characterized (under different hypotheses) are[2] and[17].
Recall that ifM1 andM2 are matroids on setsE1 andE2 with E1 ∩ E2 = {e0} ande0

is neither a loop nor a coloop in either then theparallel connectionof M1 andM2 is the
matroidM onE=E1∪E2 with circuit-setC(M)=C(M1)∪C(M2)∪{C1∪C2−{e0} | e0 ∈
C1 ∈ C(M1) ande0 ∈ C2 ∈ C(M2)};M − e0 is the 2-sumofM1 andM2.We use the same
terminology for the corresponding constructions on graphs: the union of two graphs which
share only a single non-loop, non-isthmus edgee0 (and its end-vertices) is their parallel
connection and the 2-sum of the two graphs is obtained from their parallel connection by
removinge0. In [7] Oxley andWelshmake use of a formula relating the Tutte polynomial of
a 2-sum of matroids to those of its summands, derived from earlier work of Brylawski[3].
Woodall [16] gives 2-sum formulas for several weighted polynomial invariants of graphs.
In [2,9,10] it is observed that a set of parallel edges in a graphG may be replaced by a
single edge without changing the values of certain weighted Tutte polynomials, as long as
the new edge is weighted appropriately. Our central result is a common generalization of
all of these.
Despite the title of the note, we prove our result for theuncolouredversion of the

Bollobás–Riordan matroid invariantW [2], which we denoteWu. All the other weighted
Tutte polynomials in the literature are multiples of evaluations of this one, so formulas
appropriate to them can be obtained directly from formulas involvingWu. Before stating
the result we must defineWu.
For a finite setE letZ[{xe, ye,Xe, Ye | e ∈ E}] be the polynomial ring with four distinct

indeterminates for each element ofE, and letIu0 (E) be the ideal generated by the various
elements

Xe1ye2 − ye1Xe2 − xe1Ye2 + Ye1xe2,

Ye3(xe1Ye2 − Ye1xe2 − xe1ye2 + ye1xe2)

and

Xe3(xe1Ye2 − Ye1xe2 − xe1ye2 + ye1xe2)

with e1, e2, e3 ∈ E pairwise distinct. We denote the quotient ringZ[{xe, ye,Xe, Ye|e ∈
E}]/Iu0 (E) by Zu

E . The elements of this quotient ring are cosets and the quotient ring is a
module over the polynomial ring, so (for instance)xe1Ye2 does not denote an element of
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Zu
E while xe1Ye2 + Iu0 (E), xe1(Ye2 + Iu0 (E)), (xe1 + Iu0 (E))Ye2, and(Ye2 + Iu0 (E))(xe1 +

Iu0 (E)) all denote the same element ofZu
E . To avoid unduly cluttered notation, ifE

′ ⊆ E

we do not explicitly indicate the ring homomorphismZu
E′ → Zu

E naturally induced by
inclusion.

Definition 1. Let M be a matroid on the finite setE. ThenWu(M) is the element of
Zu
E defined by the propertiesWu(∅) = 1+ Iu0 (E), W

u(N) = XeW
u(N/e) for a coloop

e of a matroidN, Wu(N) = YeW
u(N − e) for a loope of a matroidN , andWu(N) =

yeW
u(N − e) + xeW

u(N/e) for any other elemente of a matroidN.

We refer to[2] for the fact thatWu(M) is well-defined, i.e. that all recursive computations
using Definition 1 have the same result.

Theorem 1. SupposeM is the parallel connection ofM1 andM2with respect to an element
e0 which is neither a loop nor a coloop. Letf : Zu

E1
→ Zu

E be the ring homomorphism
given by

f (xe + Iu0 (E1)) = xe + Iu0 (E) f or e �= e0,

f (ye + Iu0 (E1)) = ye + Iu0 (E) f or e �= e0,

f (Xe + Iu0 (E1)) = Xe + Iu0 (E) f or e �= e0,

f (Ye + Iu0 (E1)) = Ye + Iu0 (E) f or e �= e0,

f (xe0 + Iu0 (E1)) = xe0(xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M2/e0)

+ xe0y
2
e0
Wu(M2 − e0),

f (ye0 + Iu0 (E1)) = y2e0xe0W
u(M2/e0) + y2e0(ye0 − Ye0)W

u(M2 − e0),

f (Xe0 + Iu0 (E1)) = (Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M2)

and

f (Ye0 + Iu0 (E1)) = Ye0(Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M2/e0).

Then

f (Wu(M1)) = (Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M).

If M∗ is the dual matroid ofM thenWu(M∗) can be obtained fromWu(M) by inter-
changingxe ↔ ye andXe ↔ Ye for everye, because deletion and contraction are dual
operations, and coloops and loops are dual elements. Hence Theorem 1 has a dual which
describesWu of a series connection; we leave its formulation to the reader.
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A simple induction proves thatWu(M ′⊕M ′′) = Wu(M ′)Wu(M ′′); see Remark 6 of
[2]. This property and Theorem 1 imply the following.

Theorem 2. SupposeM is the parallel connection ofM1 andM2with respect to an element
e0 which is neither a loop nor a coloop. Then for the2-sumM − e0 we have

ye0(Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M − e0)

= y2e0(ye0 − Ye0)W
u(M2 − e0)W

u(M1 − e0) + y2e0xe0W
u(M2/e0)W

u(M1 − e0)

+ xe0y
2
e0
Wu(M2 − e0)W

u(M1/e0)

+ xe0ye0(xe0 − Xe0)W
u(M1/e0)W

u(M2/e0).

Perhaps the most intuitively immediate weighted version of the Tutte polynomial is the
one associated to adoubly weightedmatroidM, i.e. a matroidM on a finite setE which
has been equipped with two functions, denotede �→ pe ande �→ qe, mappingE into some
commutative ringwith unityR. TheTutte polynomial of such anM is defined bymodifying
the subset expansion of the ordinary Tutte polynomial to take the weights into account

T (M) =
∑
S⊆E

(∏
e∈S

pe

)( ∏
e∈E−S

qe

)
(X − 1)r(E)−r(S)(Y − 1)|S|−r(S).

(X andYmay be indeterminates, so thatT (M) is an element of a polynomial ringR[X, Y ],
or more generallyX,YandT (M)may all be elements ofR.) To appreciate the significance
of T (M), supposeM is the cycle matroid of a connected graphG, whose edges may fail
independently of each other. Suppose also that for eache ∈ E = E(G), pe gives the
probability thatesuccessfully connects its end-vertices andqe=1−pe gives the probability
thate fails. If X andYare distinct indeterminates then the coefficient of(X − 1)a(Y − 1)b

in T (M) is the probability that a randomly chosen subsetS ⊆ E will have cardinality
b − a − 1+ |V (G)| and will induce a subgraph witha + 1 connected components.
It is a simpleexercise to verify thatT (M) satisfiesadoublyweighteddeletion–contraction

recursion:T (∅)=1,T (M)=((X−1)qe+pe)T (M/e) for any coloopeofM,T (M)=((Y−
1)pe + qe)T (M − e) for any loopeofM, andT (M)= qeT (M − e)+ peT (M/e) for any
othere ∈ E. (M − e andM/e inherit weights fromM by restriction.) It follows thatT (M)

is obtained fromWu(M) by evaluation:xe �→ pe, ye �→ qe, Xe �→ (X − 1)qe + pe and
Ye �→ (Y − 1)pe + qe. The image ofIu0 (E) under these evaluations is 0, and consequently
when we evaluate formulas involvingWu the resulting formulas involvingT do not require
coset notation.Also, it happensoften that formulas involvingWu yield factorizable formulas
involvingT. Like factors in these formulas can be cancelled even ifR is not assumed to be
an integral domain, because (a) the like factors appear in the formulas involving the doubly
weightedversionofT (M)with thenaturalweights in thepolynomial ringZ[{xe, ye|e ∈ E}],
where cancellation may be performed, and then (b) the simplified formula can be evaluated
in the ringR, mapping eachxe �→ pe and eachye �→ qe.
In this way Theorems 1 and 2 imply the following.

Corollary 1. Let M be a doubly weighted matroid which is the parallel connection ofM1
andM2 with respect to an elemente0 which is neither a loop nor a coloop. LetM ′

1 be the
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doubly weighted matroid onE1 whose underlying unweighted matroid isM1 and whose
weight functionsp′ andq ′ coincide with p and q(resp.) onE1 − {e0} and have

p′
e0

= ((1− X)qe0 + (X + Y − XY)pe0))T (M2/e0) + qe0T (M2 − e0)

and

q ′
e0

= qe0T (M2/e0) + qe0(1− Y )T (M2 − e0).

ThenT (M ′
1) = (X + Y − XY)T (M). Also, for the2-sumM − e0 we have

(X + Y − XY)T (M − e0)

= (1− Y )T (M2 − e0)T (M1 − e0) + T (M2/e0)T (M1 − e0)

+ T (M2 − e0)T (M1/e0) + (1− X)T (M1/e0)T (M2/e0).

The 2-sum formula of Corollary 1 is exactly the same as the formula for the unweighted
Tutte polynomial of a 2-sumused in[7], generalized to doublyweightedmatroids. It follows,
by the way, that the analysis in[7] of the complexity of unweighted Tutte polynomial calcu-
lations for certain classes of matroids generalizes directly to an analysis of the complexity
of weighted Tutte polynomial calculations for those classes of matroids.
In Section 3 we show that Corollary 1 implies the 2-sum formulas of Woodall[16].

2. Proof of Theorem 1

Theorem 1 is proven in two parts. First wemust prove that the functionf is well-defined,
i.e. if F : Z[{xe, ye,Xe, Ye|e ∈ E1}] → Zu

E is the ring homomorphism given by the
formulas of Theorem 1 (F(xe) = xe + Iu0 (E) for e �= e0, F(xe0) = xe0(xe0ye0 + xe0Ye0 −
Xe0Ye0)W

u(M2/e0) + xe0y
2
e0
Wu(M2 − e0), and so on) then whenevere1, e2, e3 ∈ E1 are

pairwise distinct

F(Xe1ye2 − ye1Xe2 − xe1Ye2 + Ye1xe2) = 0,

F (Ye3(xe1Ye2 − Ye1xe2 − xe1ye2 + ye1xe2)) = 0

and

F(Xe3(xe1Ye2 − Ye1xe2 − xe1ye2 + ye1xe2)) = 0. (2.1)

If e0 /∈ {e1, e2, e3} then (2.1) is obviously true, as the listed values ofF are among the
defining generators ofIu0 (E). Moreover, if e0 = e3 then (2.1) follows readily from the
definition ofIu0 (E). The first value ofF listed in (2.1) is one of the defining generators of
Iu0 (E). Also, F(Xe0) andF(Ye0) are both elements of the ideal ofZu

E generated byXe0

andYe0, so the second and third equalities of (2.1) follow directly from the formulas of the
second and third types of generators ofIu0 (E) corresponding toe1, e2, e3.
The indicese1 ande2 appear symmetrically in (2.1), so it suffices now to consider the

possibility thate0 = e1. The reader can easily supply the necessary computations by using
the definition ofF, replacingWu(M2) with xe0W

u(M2/e0)+ ye0W
u(M2 − e0), collecting
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terms and using the definition ofIu0 (E) to eliminate appearances ofXe2 andYe2. In using the
definition ofIu0 (E) it is useful to note that there is ane

′
3 ∈ E2 − {e0} and thatWu(M2/e0)

andWu(M2 − e0) are both elements of the ideal ofZu
E generated byXe′3 andYe′3, because

there are recursive computations ofWu(M2/e0) andWu(M2 − e0) in which e′
3 is the last

element ofE2 − {e0} to be eliminated; consequently,
Wu(M2/e0) · (xe0Ye2 − Ye0xe2 − xe0ye2 + ye0xe2)

= Wu(M2 − e0) · (xe0Ye2 − Ye0xe2 − xe0ye2 + ye0xe2) = 0.

We complete the proof of Theorem 1 by verifyingf (Wu(M1)) = (Xe0ye0 + xe0Ye0 −
Xe0Ye0)W

u(M) by induction on|E1|�2.
Suppose|E1|=2, and letE1={e0, e1}. Thene0 ande1 are parallel (and in series) inM1,

and hence

f (Wu(M1)) = f (xe1Ye0 + ye1Xe0 + Iu0 (E))

= (Xe0ye0 + xe0Ye0 − Xe0Ye0)(xe1W
u(M2) + ye1Ye0W

u(M2/e0)).

Aroutinecalculationusing thedeletion–contractionpropertyofWu shows thatxe1W
u(M2)+

ye1Ye0W
u(M2/e0) = Wu(M).

Supposenow that|E1|>2. If there is ane1 ∈ E1 such thatTheorem1holds for bothM/e1
andM − e1, then the validity of Theorem 1 forM follows using the deletion–contraction
formula.
If there is ane1 ∈ E1 which is neither parallel to nor in series withe0 then Theorem 1

may be inductively assumed to hold for bothM/e1 andM − e1.
If there is ane1 ∈ E1 which is parallel toe0 thenwemayassume inductively thatTheorem

1 holds forM−e1.M/e1 is the direct sum ofM2/e0, a loope0 and(M1/e1)−e0. It follows
that

(Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M/e1)

= (Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M2/e0)Ye0W

u((M1/e1) − e0)

= f (Ye0W
u((M1/e1) − e0)) = f (Wu(M1/e1))

so Theorem 1 holds forM/e1.
Finally, supposee0 is in series with everye1 ∈ E1, i.e.M1 is a circuit. Choose a particular

e1 �= e0 ∈ E1. We may assume inductively that Theorem 1 holds forM/e1.M − e1 is the
direct sum ofM2 andM1−e1−e0, soWu(M−e1)=Wu(M1−e1−e0)W

u(M2).M1−e1
is the direct sum of{e0} andM1 − e1 − e0, so

f (Wu(M1 − e1)) = f (Wu(M1 − e1 − e0)Xe0)

=Wu(M1 − e1 − e0)(Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M2)

= (Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M − e1)

and we see that Theorem 1 holds forM − e1. �
By the way, the reader who has worked through the proof will have no trouble showing

that Theorem 1 also applies to thecolouredBollobás–Riordan invariantW. One need only
verify that (2.1) also holds whene1, e2, e3 are not pairwise distinct, working modulo the
ideal I0(E) which has generators like those ofIu0 (E), except thate1, e2, e3 need not be
pairwise distinct.
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Theorem 2 follows readily from Theorem 1:

ye0(Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M − e0)

= f (Wu(M1)) − xe0(Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M1/e0)W

u(M2/e0)

= f (ye0)W
u(M1 − e0) + f (xe0)W

u(M1/e0)

− xe0(Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M1/e0)W

u(M2/e0)

= (y2e0xe0W
u(M2/e0) + y2e0(ye0 − Ye0)W

u(M2 − e0))W
u(M1 − e0)

+ xe0((xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M2/e0)

+ y2e0W
u(M2 − e0))W

u(M1/e0)

− xe0(Xe0ye0 + xe0Ye0 − Xe0Ye0)W
u(M1/e0)W

u(M2/e0).

3. The tension and flow polynomials

In this section we show that Corollary 1 implies the crucial formulas (3.31) and (3.32)
of [16].
If M is a matroid onE then itstension polynomialis

N(M) =
∑
S⊆E

qr(E)−r(S)

(∏
e∈S

(�e − 1)

)
,

whereq is an indeterminate and� = (�e) is a vector of indeterminates indexed byE. (We
use� rather than they of [16] to avoid confusion.) Formulas (2.3) and (3.7) of[16] imply
that this is a direct generalization of the definition given there: ifG is a graph with no loops
or coloops andM is its circuit matroid, then the tension polynomialN(G, q,�) defined in
[16] coincides withN(M). If we considerM as a doubly weighted matroid with the natural
weights in the polynomial ringZ[{X, Y } ∪ {xe, ye}], then clearlyN(M) is obtained from
T (M)by evaluating everyxe �→ �e−1, everyye �→ 1,X �→ q+1andY �→ 2. (By theway,
this implies that the tension polynomial is closely related to the sheaf polynomial[8,11]:
(−1)n−1N(G, q,�) isSh(G) after the changes of variablesq=1−� and�e =a.) Observe
that if e is neither a loop nor a coloop ofM thenN(M) = N(M − e) + (�e − 1)N(M/e).
We proceed to derive formula (3.31) of[16] from Corollary 1. SupposeM1 andM2

are matroids which share an elemente0 which is neither a loop nor a coloop in either,
andM is their parallel connection. The deletion–contraction property ofN implies that
N(M1) = N(M1 − e0) + (�e0 − 1)N(M1/e0). Consequently if we evaluate

�e0 �→ (1− q)N(M2/e0)

N(M2/e0) − N(M2 − e0)

then the image ofN(M1) is

N(M1 − e0) +
(−qN(M2/e0) + N(M2 − e0)

N(M2/e0) − N(M2 − e0)

)
N(M1/e0).
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Corollary 1 directly implies that

(1− q)N(M − e0) = N(M1 − e0)(N(M2/e0) − N(M2 − e0))

+ N(M1/e0)(N(M2 − e0) − qN(M2/e0))

and hence the image of(N(M2/e0) − N(M2 − e0))N(M1) is (1− q)N(M − e0). Aside
from changes of notation (�e0 for y(G, e

′), etc.), this is precisely the matroid generalization
of formula (3.31) of[16].
We turn now to formula (3.32) of[16]. If M is a matroid onE then itsflow polynomialis

F(M) =
∑
S⊆E

q |S|−r(S)

(∏
e/∈S

(�e − 1)

)
,

whereq is an indeterminate and� = (�e) is a vector of indeterminates indexed byE.
Formulas (2.4) and (3.8) of[16] imply that ifG is a graph with no loops or coloops andM
is its circuit matroid thenF(M) coincides with the flow polynomialF(G, q, �) as defined
in [16]. Observe that if we considerM as a doubly weighted matroid with weights in the
polynomial ringZ[{X, Y } ∪ {xe, ye}], thenF(M) is obtained fromT (M) by evaluating
everyxe �→ 1, everyye �→ �e − 1, X �→ 2 andY �→ q + 1. This implies also that
F(G, q, �) is equal to the Read–Whitehead chain polynomial[8,11] after the changes of
variablesq = 1− �, �e = a.
Theorem 3.1 of[16] relates the tension and flow polynomials

F(M) =
(∏
e∈E

(�e − 1)

)
q−r(E)N(M).

It may be deduced from the above descriptions ofF(M) andN(M) as sums indexed by the
subsets ofE, using the fact that(�e − 1)(�e − 1) ≡ q. Formula (3.32) of[16] follows from
formula (3.31) and this relationship betweenF(M) andN(M).
Theorem3.1 of[16] is an interesting duality connecting the tension and flowpolynomials,

but it is not the only type of duality that connects them. Recall that thedual of M is the
matroidM∗ onEwith rank functionr∗(S) = |S| − r(E) + r(E − S). A direct calculation
shows thatN(M∗) = F(M) except for the appearance of� in N(M∗) and� in F(M). In
[16] the tension polynomial of a graphG is defined in terms ofq-tensions, which are related
to the circuits ofG, and the flow polynomial is defined in terms ofq-flows, which are related
to the cocircuits ofG. The equationN(M∗) = F(M) reflects the duality between circuits
and cocircuits.
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