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Abstract

We give formulas for the Tutte polynomials of parallel and series connections of weighted matroids,
generalizing and unifying formulas of Oxley and Welsh (Discrete Math. 109 (1992) 185), Bollobas
and Riordan (Comb. Probab. Comput. 8 (1999) 45) and Woodall (Discrete Math. 247 (2002) 201).
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1. Introduction

The Tutte polynomials one of the most-studied invariants of graphs and matroids. It
may be defined in several equivalent ways, includirdgketion—contraction recursiorif
M is a matroid on a finite sef = E(M) thenT (M) is an element of the polynomial ring
Z[X,Y]suchthafl (M) = XT (M/e) for any coloopeof M, T(M) = YT (M — ¢) for any
loopeof M, andT (M) =T (M — e) + T (M/e) for any othere € E. The empty matroid
hasT (¢) = 1. (A related invariant of graphs, thiéchromatic polynomialfollows the same
recursion but has a more complicated initial condition: an edgeless Graph dichromatic
polynomial(X — 1)!V()1) The Tutte polynomial may also be defined bgsis activities
which we will not use in this note, or treubset expansion

T(M) = Z (X — 1)V(E)*V(S)(Y _ 1)|S|*V(S)'
SCE
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We refer the reader fd,12,13,15Jfor detailed discussions, and [ 14] for the theory of
matroids.

The Tutte polynomial gives information about many aspects of the structure of a graph
or matroid, including vertex colourings, flows, network reliability, polynomial invariants
of knots, and quantities of interest in statistical mechanics. Some of these involve graphs
and matroids which have been weighted in various ways; for instance, in statistical me-
chanics the edges of a lattice might represent hydrogen bonds between nearby water
molecules, weighted to indicate the probabilities (as functions of temperature) that these
bonds hold. Many authors have considered many different weighted versions of the Tutte
polynomial[2,4,5,8-10,16,17We use the general terweightedo include thecoloured
parametrizeduncolouredandlabeledinvariants discussed in the references.) The two pri-
mary references, in which such weighted Tutte polynomials have been not only defined but
characterized (under different hypotheses)[aland[17].

Recall that if M1 and M» are matroids on setg; and E> with E1 N E> = {ep} andeg
is neither a loop nor a coloop in either then fhegrallel connectiorof M1 and M is the
matroidM on E = E1 U E5 with circuit-setC (M) =C (M1) UC(M2) U{C1UC2—{eg} | e €
C1 € C(M1) andeg € Co € C(M>)}; M — eg is the 2sumof M1 andM>. We use the same
terminology for the corresponding constructions on graphs: the union of two graphs which
share only a single non-loop, non-isthmus edgéand its end-vertices) is their parallel
connection and the 2-sum of the two graphs is obtained from their parallel connection by
removingeo. In[7] Oxley and Welsh make use of a formula relating the Tutte polynomial of
a 2-sum of matroids to those of its summands, derived from earlier work of Brylg8]ski
Woodall[16] gives 2-sum formulas for several weighted polynomial invariants of graphs.
In [2,9,10]it is observed that a set of parallel edges in a grépmay be replaced by a
single edge without changing the values of certain weighted Tutte polynomials, as long as
the new edge is weighted appropriately. Our central result is a common generalization of
all of these.

Despite the title of the note, we prove our result for tirecolouredversion of the
Bollobds—Riordan matroid invarial¥ [2], which we denoté¥V“. All the other weighted
Tutte polynomials in the literature are multiples of evaluations of this one, so formulas
appropriate to them can be obtained directly from formulas involWig Before stating
the result we must defing’“.

For a finite seE let Z[{x., y., X, Y. | ¢ € E}] be the polynomial ring with four distinct
indeterminates for each element®fand let/; (E) be the ideal generated by the various
elements

XerYey — Yer Xep — Xe1 Yoy + YerXeps

Yes(xe1Yey, — YerXey — Xey Yoy + Yoy Xes)
and

Xeg(Xer Yey — YeyXey — XeyYey + YerXey)

with e1, e2, e3 € E pairwise distinct. We denote the quotient ridffx., y., X, Yele €
E}]/15(E) by Z%. The elements of this quotient ring are cosets and the quotient ring is a
module over the polynomial ring, so (for instanag)Y,, does not denote an element of
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Zlé‘ while Xey Ye, + IS(E), Xey (Yo, + Ig(E)): (xey + I(L){(E))Yeza and(Yez + Ig(E))(xel +
I3 (E)) all denote the same element8f.. To avoid unduly cluttered notation, B’ € E
we do not explicitly indicate the ring homomorphisftf, — Z% naturally induced by
inclusion.
Definition 1. Let M be a matroid on the finite sét. Then W*(M) is the element of
7% defined by the propertied" (%) = 1 + I§(E), W*(N) = X, W"(N /e) for a coloop
e of a matroidN, W*(N) = Y, W*(N — e) for a loope of a matroidN , and W*(N) =
Ye W (N — e) + x. W"(N /e) for any other element of a matroidN.

We refer td2] for the fact thatW* (M) is well-defined, i.e. that all recursive computations
using Definition 1 have the same result.

Theorem 1. Suppose M is the parallel connectiondf and M with respect to an element
eo Which is neither a loop nor a coloop. Let: 7%, — Z be the ring homomorphism
given by

fxe + 1g(E1) =x. + Ig(E) for e # eo,

f(ye + I(L)[(El)) =Y+ I(L)[(E) fOI‘ e # €0,

f(Xe+ Ig(E1) =X, + Ig(E)  for e # eo,

fYe+Ig(E1) =Y+ Ig(E)  for e # eo,

f(xeo + I(L)[(El)) = xeo(xeoyeo + xeoYeo - XeoYeo)Wu (MZ/EO)
+ eryEOW”(Mz — eo),

fOeo + I5(E1)) = yZ xeg W" (M2/€0) + Y2 (yeg — Yeg) W (M2 — €0).
fXeo + 15 (E1)) = (XegVeg + XegYeo — XegYeo) W (M2)
and
J Yoo + 15 (E1)) = Yoo (XegYeo + XegYeg — XegYeg) W (M2/e0).
Then
FWH(M1)) = (XegYeo + XeoYeg — XegYeg) W (M).
If M* is the dual matroid oM then W*(M*) can be obtained fronW* (M) by inter-
changingx, < y. and X, < Y, for everye, because deletion and contraction are dual

operations, and coloops and loops are dual elements. Hence Theorem 1 has a dual which
describeg¥* of a series connection; we leave its formulation to the reader.



294 L. Traldi / Discrete Mathematics 290 (2005) 291-299

A simple induction proves thav*(M' & M") = W*(M')W*(M"); see Remark 6 of
[2]. This property and Theorem 1 imply the following.

Theorem 2. Suppose M is the parallel connection¥f and M» with respect to an element
eo Which is neither a loop nor a coloop. Then for tAsumM — e¢g we have

Yeo(XegYeo + XegYeg — XeogYeg) W' (M — e)
= 2 (Veo — Yeg) W (Mp — e) W" (M1 — €0) + y2 xeo W" (M2/e0) W" (M1 — eg)
+ Xeoy2 W' (M2 — e) W" (M1/eo)
+ XegYeo (Xeg — Xeg) W (M1/e0) W (M2/e0).

Perhaps the most intuitively immediate weighted version of the Tutte polynomial is the
one associated to doubly weightednatroid M, i.e. a matroidV on a finite se which
has been equipped with two functions, denated p, ande — ¢., mappingE into some
commutative ring with unityr. The Tutte polynomial of such avf is defined by modifying
the subset expansion of the ordinary Tutte polynomial to take the weights into account

T(M)=) (]_[ pe> ( I qe) (X — 1By — 1)Sl=r),

SCE \e€S ecE—S

(XandY may be indeterminates, so tHa¢M) is an element of a polynomial ring[ X, Y],
or more generally, YandT (M) may all be elements d?.) To appreciate the significance
of T(M), supposeM is the cycle matroid of a connected grahwhose edges may fail
independently of each other. Suppose also that for eaeh E = E(G), p. gives the
probability thate successfully connects its end-vertices ang 1 — p, gives the probability
thatefails. If X andY are distinct indeterminates then the coefficient¢Xf— 1)*(Y — 1)”
in T(M) is the probability that a randomly chosen subSet E will have cardinality
b —a — 1+ |V(G)| and will induce a subgraph with+ 1 connected components.

Itis asimple exercise to verify th@t(M) satisfies a doubly weighted deletion—contraction
recursionT (0)=1,T(M)=((X —1)g.+ p.)T (M /e) for any coloopeof M, T (M) =((Y —
Dp. + qg.)T (M — e) for any loopeof M, andT (M) = q. T (M — ¢e) + p.T (M /e) for any
othere € E. (M — e andM /e inherit weights fronM by restriction.) It follows thaf” (M)
is obtained fromW* (M) by evaluationx, — pe, ye + ¢, X — (X — 1)g. + p. and
Y, = (Y — 1)p. + q.. The image ofy (E) under these evaluations is 0, and consequently
when we evaluate formulas involviig“ the resulting formulas involving@ do not require
coset notation. Also, it happens often that formulas involWigyield factorizable formulas
involving T. Like factors in these formulas can be cancelled ev&isfnot assumed to be
an integral domain, because (a) the like factors appear in the formulas involving the doubly
weighted version df (M) with the natural weights in the polynomial ri#{x., y.|e € E}],
where cancellation may be performed, and then (b) the simplified formula can be evaluated
in the ringR, mapping each, — p, and eacly, — ¢..

In this way Theorems 1 and 2 imply the following.

Corollary 1. Let M be a doubly weighted matroid which is the parallel connectioM pf
and M> with respect to an elemeng which is neither a loop nor a coloop. Léf; be the
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doubly weighted matroid oft; whose underlying unweighted matroidig; and whose
weight functiong’ andq’ coincide with p and gresp) on E1 — {ep} and have

Poo = (L= X)qey + (X + Y — XY) peo)) T (M2/e0) + qeo T (M2 — e0)
and

Qoy = Geo T (M2/€0) 4 Goo(1 = Y)T (M2 — e0).
ThenT (M;) = (X +Y — XY)T(M). Also, for the2-sumM — ep we have

(X+Y —XY)T(M — eg)
=1-Y)T (M2 —eq)T (M1 — eg) + T (M2/eq)T (M1 — eo)
+ T (M2 — eq)T(Mz1/eg) + (1 — X)T (M1/eo)T (M2/eo).

The 2-sum formula of Corollary 1 is exactly the same as the formula for the unweighted
Tutte polynomial of a 2-sum used[in], generalized to doubly weighted matroids. It follows,
by the way, that the analysis|ii] of the complexity of unweighted Tutte polynomial calcu-
lations for certain classes of matroids generalizes directly to an analysis of the complexity
of weighted Tutte polynomial calculations for those classes of matroids.

In Section 3 we show that Corollary 1 implies the 2-sum formulas of Wo¢tia]!

2. Proof of Theorem 1

Theorem 1 is proven in two parts. First we must prove that the fungtiswell-defined,
ie. if F : Z[{xc, Ye, Xe, Yele € E1}] — ZY% is the ring homomorphism given by the
formulas of Theorem 1K (x.) = x. + I (E) for e # eq, F (xeq) = Xeo(XegVeg + XegYeq —
XeoYeo) W (M2 /e0) + xeonZOW“(Mz — ep), and so on) then whenevet, e, e3 € E; are
pairwise distinct

F(X61Ye2 - yelxeg - xelYez + Yelxez) =0,
F(Ye3(xelyez - Yelxez — XepVeo + yelxez)) =0

and
F(Xeg(xel Yez - Yelxez — Xey Ve, T ))elxeg)) =0. (2-1)

If e ¢ {e1, 2, ez} then (2.1) is obviously true, as the listed values-aire among the
defining generators ofj (E). Moreover, ifeg = e3 then (2.1) follows readily from the
definition of I§ (E). The first value of listed in (2.1) is one of the defining generators of
I§(E). Also, F(X,,) and F(Y,,) are both elements of the ideal 4f; generated by,
andY,,, so the second and third equalities of (2.1) follow directly from the formulas of the
second and third types of generatordpfE) corresponding tes, ez, e3.

The indicese; andey appear symmetrically in (2.1), so it suffices now to consider the
possibility thateg = e1. The reader can easily supply the necessary computations by using
the definition off, replacingW* (M) with x,, W"(M2/eq) + yeu W (M2 — eg), collecting
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terms and using the definition & (E) to eliminate appearancesX®f, andY,,. Inusing the
definition of I (E) it is useful to note that there is @§ € E2 — {eo} and thatW" (M2/eo)
andW" (M — ep) are both elements of the ideal 4}, generated by(e/3 and Ye/s, because
there are recursive computationsWgf (Mz/eg) and W* (M2 — eg) in which e} is the last
element ofE, — {eg} to be eliminated; consequently,

wh (MZ/EO) ' (xeoYez - Yeoxez — XegYen + yeoxez)
=w (MZ - 60) . (erYez - Yeoxez — XegYen + Yonez) =0.

We complete the proof of Theorem 1 by verifyifd W" (M1)) = (XegYeq + XegYeo —
XeoYeo) W (M) by induction onEq| > 2.

SupposeE1| =2, and letE; = {eg, e1}. Theneg ande; are parallel (and in series) i1,
and hence

FWH(M1)) = f(xeyYeq + Yey Xeg + 1o (E))
= (Xeoyeo + erYeo - XeOYeo)(xel wH (M>) + yelyeo wH (M2/eq)).

Aroutine calculation using the deletion—contraction property tshows that,, W* (M2)+
Yer Yoo W (M2/e0) = W"(M).

Suppose nowthak1| > 2. Ifthereisare; € E1suchthat Theorem 1 holds for baiy e
andM — ej, then the validity of Theorem 1 favl follows using the deletion—contraction
formula.

If there is ane; € E1 which is neither parallel to nor in series wigh then Theorem 1
may be inductively assumed to hold for bditye; andM — e;.

Ifthereisare; € E1whichis parallel teg then we may assume inductively that Theorem
1 holds forM — e1. M /e1 is the direct sum oMz /eq, a loopeg and(M1/e1) — ep. It follows
that

(Xeoyeo + xeoYeo - Xeoyeo)Wu (M/e1)
= (Xeoyeo + xeoYeo - XeoYeo)Wu(MZ/EO)YeOWM((Ml/el) — ep)
= f (Yoo W"((M1/e1) — e0)) = f(W"(M1/e1))

so Theorem 1 holds fa¥ /e;.

Finally, supposey is in series with every; € E1,i.e. M1 is a circuit. Choose a particular
e1 # eg € E1. We may assume inductively that Theorem 1 holdsMote;. M — eq is the
direct sum ofM> andMy —e1 —eg, SOW*(M —e1) = W' (M1 —e1 —eq) W*(M2). M1 —eq
is the direct sum ofeg} andMy — e1 — e, SO

FW (M1 —e1)) = f(W* (M1 — e1 — e0) X¢g)
=W (M —e1— 30)(Xeoyeo + xeoYeo - XeoYeo)Wu(MZ)
= (XegYeg + XegYeq — XeoYeo)Wu (M — e1)

and we see that Theorem 1 holds Mr— e;. O

By the way, the reader who has worked through the proof will have no trouble showing
that Theorem 1 also applies to tbelouredBollobas—Riordan invariatw.. One need only
verify that (2.1) also holds whes, e, e3 are not pairwise distinct, working modulo the
ideal I(E) which has generators like those Bf(E), except thak;, ez, ez need not be
pairwise distinct.
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Theorem 2 follows readily from Theorem 1:

)’eo(xeo)’eo + xeoYeo - XeoYeo)Wu (M — eo)
= fF(W*(M1)) — Xeq(XegYeo + XegYeg — XegYeg) W (M1/e0) W" (M2/e0)
= [ (Ve W (M1 — €0) + [ (xe) W*(M1/e0)
— Xeg (Xeoyeo + Xeg Yeo - Xeo Yeo)Wu(Ml/eO) WM(MZ/eO)

= (V5 xegW" (M2/e0) + ¥ (Yeo — Yeo) W" (M2 — €0)) W* (M1 — e0)
+ Yoo ((XepYeq + XegYeo — XegYeo) W (M2/e0)
+ y2 W (Ma — e0)) W" (M1/e0)
— Xeg(XegYeo + XegYeg — XegYeg) W" (M1/e0) W (M2 /eg).

3. The tension and flow polynomials

In this section we show that Corollary 1 implies the crucial formulas (3.31) and (3.32)
of [16].
If M is a matroid orE then itstension polynomiails

NM)y=Y g B (]‘[(ﬂe - 1)) ,

SCE eeS

whereq is an indeterminate angl= (f3,) is a vector of indeterminates indexed By(We
usep rather than thg of [16] to avoid confusion.) Formulas (2.3) and (3.7)[8] imply
that this is a direct generalization of the definition given ther€&:ig a graph with no loops
or coloops andM is its circuit matroid, then the tension polynomiél(G, ¢, p) defined in
[16] coincides withV (M). If we considemM as a doubly weighted matroid with the natural
weights in the polynomial ring[{X, Y} U {x., y.}], then clearlyN (M) is obtained from
T (M) by evaluating every, — f5,—1, everyy, — 1,X — g+1andY — 2.(Bytheway,
this implies that the tension polynomial is closely related to the sheaf polyn@@ial]:
(-1 IN(@G,q, P) is Sh(G) after the changes of variablgs=1— w andfj, =a.) Observe
that if eis neither a loop nor a coloop ™ thenN (M) =N(M —e) + (B, — DN (M/e).
We proceed to derive formula (3.31) f6] from Corollary 1. Supposédf; and M
are matroids which share an elemegtwhich is neither a loop nor a coloop in either,
andM is their parallel connection. The deletion—contraction propertiN afnplies that
N(M1) = N (M1 — eo) + (B,, — LN (M1/eo). Consequently if we evaluate

(1—q)N(M2/eo)
N(Mz/eo) — N(M3z — eo)

Peo =

then the image oN (M1) is

—gqN(M2z/e0) + N (M2 — ep)
N(M3z/eq) — N (M2 — eo)

N(M1—60)+< )N(Ml/eo)-
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Corollary 1 directly implies that

(1—q)N(M — eq) = N(M1 — eq)(N(Mz/eg) — N(Mz — eg))
+ N(M1/e0)(N(Mp — eg) — qN(M>/eq))

and hence the image oN (M2/eq) — N(M2 — eg)) N(My) is (1 — g)N(M — eg). Aside
from changes of notatiorg(, for y(G, ¢'), etc.), this is precisely the matroid generalization
of formula (3.31) of16].

We turn now to formula (3.32) dfiL6]. If M is a matroid orE then itsflow polynomiais

F(My=)_ ¢"¥~® (H (ote — 1)) :

SCE ¢S

whereq is an indeterminate and = (o,) is a vector of indeterminates indexed By
Formulas (2.4) and (3.8) ¢16] imply that if G is a graph with no loops or coloops aktd
is its circuit matroid therF (M) coincides with the flow polynomial (G, ¢, ) as defined
in [16]. Observe that if we consid&i as a doubly weighted matroid with weights in the
polynomial ringZ[{X, Y} U {x., y.}], then F(M) is obtained froml'(M) by evaluating
everyx, — 1, everyy, — o, — 1, X — 2 andY — ¢ + 1. This implies also that
F(G, q, ) is equal to the Read—Whitehead chain polynori8#l 1] after the changes of
variablesy =1 — w, o, = a.

Theorem 3.1 of16] relates the tension and flow polynomials

F(M) = (H G 1)) g PN M)

ecE

It may be deduced from the above descriptiong a#7) andN (M) as sums indexed by the
subsets oE, using the fact thatz, — 1)(f, — 1) = ¢. Formula (3.32) of16] follows from
formula (3.31) and this relationship betweEM) and N (M).

Theorem 3.1 of16] is an interesting duality connecting the tension and flow polynomials,
but it is not the only type of duality that connects them. Recall thattled of M is the
matroid M* on E with rank function*(S) = |S| — r(E) + r(E — S). A direct calculation
shows thatv (M*) = F (M) except for the appearance pin N (M*) ande in F(M). In
[16] the tension polynomial of a gragghis defined in terms af-tensionswhich are related
to the circuits ofG, and the flow polynomial is defined in termsmpflows which are related
to the cocircuits of5. The equationV(M*) = F (M) reflects the duality between circuits
and cocircuits.
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