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Abstract

We re�ne a conjecture of M. O. Locks and J. M. Wilson [Reliability Engineering and System Safety
46 (1994), 283-286] regarding disjoint forms of the Abraham Reliability problem. We also present other
examples of reliability problems with the interesting property that their minimal disjoint forms do not
arise from the familiar tautologyM1+:::+Mn �M1+(M2 � �M1)+(M3 � �M2 � �M1)+:::+(Mn � �Mn�1 �:::� �M1):
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1. Introduction

A coherent binary system or coherent reliability problem on a �nite set E is given by its minpaths M1; :::;Mn,

which are subsets of E none of which contains any other. Each of the elements of E either operates or fails,

independently of the others; the system operates if at least one Mi is completely operational, and otherwise

the system fails. A (minpath-based) SDP algorithm calculates the reliability of the system by expressing

the logical disjunction M1 + ::: +Mn as an equivalent sum of disjoint products. There are two families of

SDP algorithms, distinguished by the kinds of products they produce. SDP algorithms which use single-

variable inversion (SVI) produce products which are conjunctions involving variables a; b; c; :: representing

individual elements of E and also involving negations �a;�b; �c; :: of these variables. Algorithms which use

multiple-variable inversion (MVI) produce products which also involve negations a1:::am of grouped variables;

a1:::am = �a1 + :::+ �am is satis�ed if at least one of the grouped variables fails. A variable may not appear

more than once in a single SVI or MVI product: ab�ac; abac and abac are all ineligible. See [11] for an

exposition of several SDP algorithms which appear in the literature; all of the algorithms follow this outline.

1. Choose the order in which M1; :::;Mn are to be considered.

2. AnalyzeM1+:::+Mn as a sum of disjoint eventsM1+(M2� �M1)+(M3� �M2� �M1)+:::+(Mn� �Mn�1�:::� �M1):

3. Analyze each individual disjoint event Mj � �Mj�1 � ::: � �M1 as a sum of disjoint products.

All published SDP algorithms share step 2 of the outline, but they di¤er in the way they preprocess



minpaths in step 1 (see [2, 3, 4, 7, 8, 9, 13, 14] for various preprocessing strategies) and in the way they

analyze conjunctions of negations in step 3 (negation strategies are discussed in [6, 12] for SVI-SDP and

[5, 10, 11] for MVI-SDP).

In this note the e¤ectiveness of an SDP algorithm in analyzing a system is measured using the number

of disjoint terms produced by the algorithm. In practice it is extremely di¢ cult to determine all the disjoint

product analyses of a system, so it is extremely di¢ cult to verify that a particular sum of disjoint products

is a minimal disjoint form (or m.d.f.) for a given system. In Section 2 we observe that it is much easier to

determine the possible number of disjoint terms in a sum of disjoint products if something is known about

the order in which M1; :::;Mn are listed. For instance it is often possible to determine the minimum number

of terms that appear in disjoint forms in which step 1 follows the advice of [1], with smaller minpaths listed

before larger ones. As an illustration of the technique we re�ne a conjecture stated in [9], that a disjoint

form of the best-known example in the literature, a network mentioned in [1], must have at least 55 terms for

SVI-SDP and 35 terms for MVI-SDP. We prove that an SVI disjoint form of this example in which smaller

minpaths are listed before larger ones must have at least 54 terms, and we exhibit such a disjoint form; we

also exhibit a slightly di¤erent SVI disjoint form which has only 53 terms, obtained using a preprocessing

strategy discussed in detail in [2]. In addition we prove that an MVI disjoint form of this example obtained

by listing smaller minpaths before larger ones must have at least 35 terms. We do not know whether a

53-term SVI disjoint form or a 35-term MVI disjoint form is minimal for this problem.

In Section 3 we observe that for some examples the use of M1 + (M2 � �M1) + (M3 � �M2 � �M1) + :::+ (Mn �

�Mn�1 � ::: � �M1) in step 2 is not optimal. There are other sums of disjoint events which are equivalent to

M1 + :::+Mn and produce smaller disjoint forms of these examples.

2. The Abraham Reliability problem

If steps 1 and 2 of an SDP algorithm are applied to a problem as mentioned in the introduction, then in

step 3 each event Mj � �Mj�1 � ::: � �M1 is analyzed as a sum of disjoint products. Equivalently, the relative

complementsMi�Mj = fe 2 E j e 2Mi and e 62Mjg with i < j are analyzed; only those which are minimal

with respect to inclusion must be considered.

Given in Table 1 is an SVI-SDP analysis of the Abraham Reliability problem [1], one of the most-studied
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examples in the literature. The minpaths of the problem are listed in the �rst column of the table, and to

the right of each minpath Mj are disjoint terms whose conjunctions with Mj give a disjoint sum equivalent

to Mj � �Mj�1 � ::: � �M1. This disjoint form involves 54 terms, so it contradicts a conjecture of [9]; moreover a

term may be �saved�by listing acfjl before acdh.

We claim that the disjoint form given in Table 1 is minimal among SVI disjoint forms which always list

smaller minpaths before larger ones, and we also claim that an MVI disjoint form which follows the same

kind of minpath order must involve at least 35 terms. We prove these claims by analyzing each size group

of minpaths separately.

Any listing of the minpaths in increasing size order must start with jkl. The 4-element minpaths are

discussed in the following chart.

minpath min. rel. comps. min. rel. comps. min. number of number of disjoint
(required) (possible) disjoint terms terms if last

acdh jkl bjl; fk 3 (SVI) or 1 (MVI) 5 (SVI) or 2 (MVI)
bcjl k adh 1 (SVI) or 1 (MVI) 3 (SVI) or 1 (MVI)
dfhk jl ac 2 (SVI) or 1 (MVI) 4 (SVI) or 1 (MVI)

The chart presents information about each minpath�s contributions to SVI and MVI disjoint forms. The

most di¢ cult fact to verify is that acdh requires 5 disjoint terms if it is listed last; this is veri�ed by calculating

the negation of the system of minimal relative complements jkl; bjl; fk. We use Boolean multiplication and

absorption as discussed in [6] and [12].

(jkl + bjl + fk)

= (�j + �k + �l)(�b+ �j + �l)( �f + �k)

= �j �f + �j�k + �l �f + �l �k + �k�b

There are 5 minimal negating terms, so at least 5 disjoint SVI terms are required. It happens that these 5

SVI terms can be covered with 2 disjoint MVI terms, �k bjl + k �f jl.

We see that in an SVI-SDP analysis, listing any one of these minpaths last �costs� 2 SVI terms over

the minimum; hence no list can produce an SVI-SDP analysis with fewer than 8 terms, the number of
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terms appearing in Table 1. The list acdh; bcjl; dfhk requires only 3 MVI terms. Observe that an optimal

list for MVI-SDP must start with acdh, while an optimal list for SVI-SDP cannot start with acdh. This

illustrates the fact that optimal preprocessing for SVI-SDP is generally di¤erent from optimal preprocessing

for MVI-SDP; see [2] for a more complete discussion.

The 5-element minpaths are discussed in the following chart.

minpath min. rel. comps. min. rel. comps. min. number of number of disjoint
(required) (possible) disjoint terms terms if last

acfjl k; b; dh egh; eil 2 (SVI) or 1 (MVI) 6 (SVI) or 3 (MVI)
abdhk jl; f; c gij 2 (SVI) or 1 (MVI) 3 (SVI) or 2 (MVI)
bcdfh jl; k; a 2 (SVI) or 1 (MVI) 2 (SVI) or 1 (MVI)
ghijk l; df; acd abd; ace; ef 3 (SVI) or 2 (MVI) 5 (SVI) or 4 (MVI)
acegh jkl; bjl; d fjl; ijk; il; fk; fikl 3 (SVI) or 2 (MVI) 6 (SVI) or 4 (MVI)
aceil jk; bj; dh fj; gh; fghk; fk 4 (SVI) or 2 (MVI) 6 (SVI) or 4 (MVI)
efghk jl; d ij; ac; il; acil 2 (SVI) or 1 (MVI) 6 (SVI) or 2 (MVI)
efikl j; dh acgh; ac; gh 2 (SVI) or 1 (MVI) 4 (SVI) or 2 (MVI)

To prove the claim that the 24 terms in Table 1 constitute a minimal SVI-SDP analysis of these minpaths

we must prove that every SVI-SDP analysis exceeds the total of the listed minimum numbers of disjoint

terms by at least 4.

If aceil is listed after efikl then no matter what else is listed before aceil, aceil requires 6 SVI terms,

because

(jk + bj + dh+ fk)

= (�j + �k)(�b+ �j)( �d+ �h)( �f + �k)

= (�j +�b�k)( �d �f + �d �k + �h �f + �h�k)

= �j �d �f + �j �d �k + �j�h �f + �j�h�k +�b �d �k +�b�h�k

and taking one or both of fk; gh into account does not reduce the number of required terms. Similarly, if

aceil is listed before efikl then no matter what else is listed before efikl, efikl requires 4 SVI terms. That

is, it �costs�2 terms over the minimum to list either of aceil; efikl before the other.
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If acegh is listed after efghk then acegh requires at least 5 SVI terms, because

(jkl + bjl + fk)

= (�j + �k + �l)(�b+ �j + �l)( �f + �k)

= �j �f + �j�k + �l �f + �l �k +�b�k

and taking one, two or all of fjl; ijk; il into account does not reduce the number of required terms. Similarly,

if acegh is listed before efghk then no matter what else is listed before efghk, efghk requires at least 4

SVI terms. Hence listing either of acegh; efghk before the other �costs�2 terms over the minimum. This

veri�es our claim that every listing of the 5-element minpaths produces an SVI-SDP analysis with at least

24 disjoint terms, 4 more than the minimum indicated in the chart.

We claim also that an MVI-SDP analysis of these minpaths must exceed the indicated minimum number

of disjoint terms by at least 3. This claim is veri�ed by observing that there are three list decisions which

�cost�at least one term each: which of abdhk and ghijk comes �rst, which of acegh and aceil comes �rst,

and which of efghk and efikl comes �rst. We see that the 5-element minpaths require at least 14 MVI

terms.

The 6-element minpaths are discussed in the following chart.

minpath min. rel. comps. min. rel. comp. min. no. of no. of disjoint
(required) (possible) disjoint terms terms if last

abeghk jl; d; ij; c; f il 2 (SVI) or 2 (MVI) 3 (SVI) or 2 (MVI)
bcefgh jl; d; k; a il; ij 2 (SVI) or 1 (MVI) 3 (SVI) or 2 (MVI)
dehijk l; f; ac; ab; g 2 (SVI) or 2 (MVI) 2 (SVI) or 2 (MVI)
abeikl j; f; c; dh gh 2 (SVI) or 1 (MVI) 2 (SVI) or 2 (MVI)
acdgil jk; bj; fj; h; e fk 2 (SVI) or 2 (MVI) 3 (SVI) or 2 (MVI)
bcefil j; dh; a; k gh 2 (SVI) or 1 (MVI) 2 (SVI) or 2 (MVI)
bcghij l; df; ad; k; ae ef 3 (SVI) or 2 (MVI) 3 (SVI) or 3 (MVI)
dfgikl j; h; e ac 1 (SVI) or 1 (MVI) 2 (SVI) or 1 (MVI)

Table 1 lists 17 disjoint SVI terms for these minpaths, one more than the indicated minimum. Whichever

of acdgil; dfgikl comes after the other in a list cannot achieve the minimum number of SVI terms, so this

portion of Table 1 is indeed optimal. Similarly, it is not possible to achieve the indicated minimum number

of MVI terms because bcefgh and bcghij cannot both achieve the minimum, so these minpaths require at

least 13 MVI terms.
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Taking into account the fact that there are four 7-element minpaths, we see that a minpath list in which

smaller minpaths precede larger ones cannot give rise to disjoint forms with fewer than 54 SVI terms or 35

MVI terms. �

3. Non-optimality of M1 + (M2 � �M1) + (M3 � �M2 � �M1) + :::+ (Mn � �Mn�1 � ::: � �M1)

In this section we give examples of reliability problems for which it is possible to improve the performance of

an SDP algorithm by changing step 2: M1 + :::+Mn is most e¢ ciently analyzed as a sum of disjoint events

other than M1 + (M2 � �M1) + (M3 � �M2 � �M1) + :::+ (Mn � �Mn�1 � ::: � �M1). The �rst example uses the logical

equivalence between M1 +M2 +M3 and M1M2M3 + (M2 � �M1) + (M3 � �M2) + (M1 � �M3).

Example 3.1. Let n be a positive integer, and consider a reliability problem with 3 disjoint minpaths

A = a1:::an, B = b1:::bn and C = c1:::cn. An SVI-SDP algorithm structured as described in the introduction

produces 1+n+n2 disjoint terms. However the problem has an SVI-SDP analysis with only 3n+1 disjoint

terms: �a1B, a1�a2B, ..., a1:::an�1�anB, �b1C, ..., b1:::bn�1�bnC, �c1A, ..., c1:::cn�1�cnA, and ABC. �

There are similar examples with more than three disjoint minpaths. For instance, to discuss an example

with 7 disjoint minpaths we use the following lemma, whose proof we leave to the reader.

Lemma 3.2. The disjunction M1 +M2 +M3 +M4 +M5 +M6 +M7 of seven statements is logically

equivalent to the disjunction

M1M2M3M4M5M6M7

+

7X
a=1

MaMa+1Ma+2Ma+3Ma+5
�Ma+6

+
7X
a=1

Ma
�Ma+1Ma+3

�Ma+4Ma+5

+
7X
a=1

Ma
�Ma+1

�Ma+2Ma+3Ma+4

+
7X
a=1

Ma
�Ma+1

�Ma+2
�Ma+3

of 29 disjoint statements, where all indices involving a are considered modulo 7. That is, every combination

of truth values of M1; :::;M7 which involves at least one �true� will satisfy exactly one of the 29 given

statements.

Example 3.3. Let n be a positive integer, and consider a reliability problem with 7 disjoint minpaths
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M1 = e11:::e1n, M2 = e21:::e2n, ..., M7 = e71:::e7n. An SVI-SDP algorithm structured as described in the

introduction produces 1 + n+ n2 + n3 + n4 + n5 + n6 disjoint terms. However the problem has an SVI-SDP

analysis with only 1+7n+14n2+7n3 disjoint terms, given by interpreting eachMa in Lemma 3.2 as ea1:::ean

and each �Ma as �ea1 + (ea1�ea2) + (ea1ea2�ea3) + :::+ (ea1:::ean�1�ean). �

The following lemma will be useful in discussing some reliability problems whose minimal MVI disjoint

forms do not follow the patternM1+(M2 � �M1)+(M3 � �M2 � �M1)+:::+(Mn � �Mn�1 �:::� �M1). Let n � 1, and let bn

be the number of partitions of an n-element set into subsets of cardinality � 2. The �rst few of these numbers

are b1 = 1, b2 = 2, b3 = 4, b4 = 10, b5 = 26, b6 = 76, and b7 = 232; in general bn+2 = bn+1 + (n+ 1)bn.

Lemma 3.4. If n � 1 then

bn+2 > n
nX
i=1

bi:

Proof. The inequality is clearly true for the listed values of bn. If n � 6 then

bn+2 = bn+1 + (n+ 1)bn = bn + nbn�1 + (n+ 1)bn = nbn + nbn�1 + 2bn

and hence by induction

bn+2 > nbn + nbn�1 + 2(n� 2)
n�2X
i=1

bi > nbn + nbn�1 + n
n�2X
i=1

bi:�

Example 3.5. Let E = fefi;jg j 1 � i 6= j � ng, and consider the reliability problem on E with minpaths

M1; :::;Mn given byMj = fefi;jg j i 6= jg; we also useMj to denote the conjunction of variables corresponding

to the elements of the set Mj .

Suppose 2 � p � q � n� 1. We claim that if j1; :::; jq are distinct indices between 1 and n then an MVI

m.d.f. ofMjp � �Mjp�1 � ::: � �Mj1 requires exactly bp�1 terms, and an MVI m.d.f. ofMjq � ::: �Mjp � �Mjp�1 � ::: � �Mj1

requires no more than bp�1 terms. Before verifying the claim, we discuss its signi�cance. If an MVI-SDP

algorithm which follows the outline given in the introduction is applied, then according to the claim the MVI

analysis of Mn�1 � �Mn�2 � ::: � �M1 requires bn�2 terms. Consider instead an MVI disjoint form obtained by

replacing the last 7 portions of step 2, Mn�6 � �Mn�7 � ::: � �M1 throughMn � �Mn�1 � ::: � �M1, with 29 conjunctions

of the form S � �Mn�7 � ::: � �M1, where S is obtained from one of the 29 statements of Lemma 3.2 by using

Mn�7+a in place of Ma. The claim implies that each portion of the analysis has an MVI disjoint form with

no more that b� terms, where � is the number of negations appearing in the logical statement that describes
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that portion of the analysis. That is, this MVI disjoint form has no more than

1 + b1 + b2 + :::+ bn�9 + bn�8 + bn�7 + 7bn�6 + 7bn�5 + 7bn�5 + 7bn�4

< 14
n�4X
i=1

bi

terms. Lemma 3.4 tells us that
Pn�4

i=1 bi <
bn�2
n�4 . We conclude that any MVI-SDP algorithm which follows

the pattern M1 + (M2 � �M1) + (M3 � �M2 � �M1) + :::+ (Mn � �Mn�1 � ::: � �M1) in step 2 of the outline given in

the introduction produces an MVI disjoint form which has at least n�4
14 times as many terms as a minimal

MVI disjoint form has.

It remains to prove the claim that if 2 � p � q � n � 1 and j1; :::; jq are distinct indices between 1

and n then an MVI m.d.f. of Mjp � �Mjp�1 � ::: � �Mj1 requires exactly bp�1 terms, and an MVI m.d.f. of

Mjq � ::: � Mjp � �Mjp�1 � ::: � �Mj1 requires no more than bp�1 terms. Observe that it is enough to prove

that an MVI m.d.f. of Mp � �Mp�1 � ::: � �M1 requires exactly bp�1 terms. The corresponding claim about

Mjp � �Mjp�1 � ::: � �Mj1 follows directly, because the Mj are symmetric with respect to permutations of the

indices. Also, we can construct a disjoint MVI form of Mjq � ::: �Mjp � �Mjp�1 � ::: � �Mj1 with at most bp�1

MVI terms, by modifying an m.d.f. of Mjp � �Mjp�1 � ::: � �Mj1 in obvious ways: removing all the variables

corresponding to elements of Mjp+1 [ :::[Mjq from any grouped negations, conjoining all these variables to

every MVI term, and eliminating any terms which have become unsatis�able.

We order the subsets of f1; :::; p � 1g of cardinality � 2 lexicographically, i.e., if 1 � a < b < c � p � 1

then fag < fa; bg < fa; cg < fbg < fb; cg < fcg. Then we order the partitions of f1; :::; p � 1g into sets of

cardinality � 2 lexicographically, i.e., if � and �0 are partitions of f1; :::; p�1g into sets of cardinality � 2 and

a is the smallest index which appears in di¤erent sets in � and �0 then � < �0 or � > �0 according to the sets in

� and �0 which contain a. For instance, if p = 8 then ff1; 3g; f2; 5g; f4g; f6; 7gg > ff1; 3g; f2; 4g; f5; 6g; f7gg

because the smallest index which appears in di¤erent sets in the two partitions is a = 2, and f2; 5g > f2; 4g

lexicographically.

Suppose 2 � p � q � n � 1, j1; :::; jq are distinct indices between 1 and n and we are given an MVI

disjoint form of Mp � �Mp�1 � ::: � �M1. Let � be a partition of f1; :::; p� 1g into sets of cardinality � 2, and let

Y� = E � fefi;jg j fi; jg 2 �g � fefi;ng j fig 2 �g. Then Y� contains Mp but not any other Mj with j < p,

so the combination of truth values in which all elements of Y� are true and all non-elements of Y� are false
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satis�esMp � �Mp�1 �:::� �M1; hence this combination of truth values also satis�es one of the terms in the disjoint

form. As an MVI term in a disjoint form of Mp � �Mp�1 � ::: � �M1, this term must assert that all the variables

corresponding to elements of Mp are true, and for each i < p must have at least one grouped negation of

variables all of which are elements of Mi. Suppose fi; jg 2 �. The MVI term in question must have at

least one grouped negation of variables all of which are elements of Mi and at least one grouped negation

of variables all of which are elements of Mj ; both of these grouped negations must contain efi:jg, because

efi;jg is the only element of Mi � Y� or Mj � Y�. The de�nition of MVI products requires that no variable

appear more than once in a product; consequently the grouped negations corresponding to Mi and Mj must

be the same, because both mention efi;jg. The only possible grouped negation that involves elements of

both Mi and Mj is the single-variable negation efi;jg, because efi;jg is the only common element of Mi and

Mj . Hence the term in question must include efi;jg. On the other hand, if fi; jg 62 � then efi;jg 2 Y� and

consequently the negation efi;jg could not possibly appear in this MVI term. It follows that this MVI term

satis�es the combination of truth values corresponding to Y� but not the combination corresponding to any

Y�0 with �0 6= �. This shows that there must be at least bp�1 di¤erent terms in an MVI disjoint form of

Mp � �Mp�1 � ::: � �M1.

To complete the proof of the claim we construct an MVI disjoint form of Mp � �Mp�1 � ::: � �M1 with bp�1

terms.

Suppose � is a partition of f1; :::; p � 1g into sets of cardinality � 2, and let S� be the set of all pairs

fa; bg for which there is a partition �0 of f1; :::; p � 1g into sets of cardinality � 2 such that � < �0, a is

the smallest index which appears in di¤erent sets in � and �0, and fa; bg 2 �0. That is, if we regard �

as the result of a sequence of choices made in lexicographic order then S� is the set of pairs fa; bg which

could have been chosen but were not, and would have resulted in a lexicographically greater partition. Let

X� = Mp [ fefa;bg j fa; bg 2 S�g and N� = ffefa;bgg j fa; bg 2 �g [ fMa � X� j fag 2 �g; obviously every

combination of truth values which satis�es the MVI statement

P� =

 Y
x2X�

x

! Y
N2N�

�N

!

also satis�es Mp � �Mp�1 � ::: � �M1. We assert that these statements P� constitute a disjoint MVI form of

Mp � �Mp�1 � ::: � �M1.
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If S � E contains Mp but does not contain any of M1; :::;Mp�1 then there are certainly partitions � of

f1; :::; p�1g into sets of cardinality� 2 such that efa;bg 62 S for all fa; bg 2 �, for instance ff1g; f2g; f3g; :::; fp�

1gg. Let �(S) be the lexicographically greatest partition of f1; :::; p � 1g into sets of cardinality � 2 such

that efa;bg 62 S for all fa; bg 2 �(S), and suppose there is an fa; bg 2 S�(S) with efa;bg 62 S. According to the

de�nition of S�(S), there is a partition �0 of f1; :::; p � 1g into sets of cardinality � 2 such that �(S) < �0,

a is the smallest index which appears in di¤erent sets in �(S) and �0, and fa; bg 2 �0. If �00 is obtained

from �0 by replacing every pair fc; dg 2 �0 � � � ffa; bgg with the two singletons fcg and fdg then �00 is

lexicographically greater than �(S) and fa; bg is the only pair in �00 which is not also an element of �(S).

Hence efc;dg 62 S for all fc; dg 2 �00, contradicting the choice of �(S). This contradiction shows that there is

no fa; bg 2 S�(S) with efa;bg 62 S, and hence X�(S) � S. Recalling that efa;bg 62 S for all fa; bg 2 �(S) and

that S does not contain any of M1; :::;Mp�1, we conclude that the MVI statement P�(S) is satis�ed by the

combination of truth values in which all elements of S are true and all non-elements of S are false.

It follows that every combination of truth values which satis�es Mp � �Mp�1 � ::: � �M1 must satisfy at least

one of the statements P�. The reverse is obviously true, as was noted when the P� were de�ned above; hence

Mp � �Mp�1 � ::: � �M1 is logically equivalent to the disjunction of the statements P�. To complete the proof of

our assertion, then, we must show that if � 6= �0 then P� and P�0 are logically disjoint, i.e., no combination

of truth values satis�es both.

Suppose S � E contains Mp but does not contain any of M1; :::;Mp�1, and suppose �0 6= �(S). If

�0 < �(S) then there must be a pair fa; bg 2 �(S) \ P�0 . Then efa;bg 62 S, so X�0 6� S. If �0 > �(S) then

there must be a pair fa; bg 2 �0 such that efa;bg 2 S; then fefa;bgg 2 N�0 . Either way, P�0 is not satis�ed by

the combination of truth values in which all elements of S are true and all non-elements of S are false. This

veri�es our assertion. �

It is not di¢ cult to rationalize the inability of SDP algorithms which use the logical pattern M1 + (M2 �

�M1) + (M3 � �M2 � �M1) + :::+ (Mn � �Mn�1 � ::: � �M1) to �nd minimal disjoint forms for Examples 3.1, 3.3 and

3.5. The examples are symmetrical, and the pattern is not; consequently the pattern is not well suited to

the examples, and in particular the event Mn � �Mn�1 � ::: � �M1 is quite complicated and requires many terms.

The disjoint disjunction of Lemma 3.2 gives rise to a disjoint disjunction of n statements which is symmetric
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with respect to cyclic permutations of the last seven statements and has no term involving more than n� 4

negations. It is this upper bound on the maximum number of negations per term which produces disjoint

forms with fewer terms. The reader might guess that disjoint disjunctions which are more highly symmetric

may have still fewer negations per term, and hence produce disjoint forms of these examples with even fewer

terms than the ones discussed above. After much work we have been able to verify this guess, using the

following limited generalization of Lemma 3.2.

Proposition 3.6. For every odd prime p � 23 there are disjoint disjunctions which are equivalent to M1

+::: +Mp, symmetric with respect to cyclic permutations of M1; :::;Mp, and have no term involving more

than p�1
2 negations.

These cyclically symmetric disjoint disjunctions are quite large: the one mentioned in Lemma 3.2 involves

only 29 terms, but the other examples we have found involve hundreds of terms (p = 11 or 13), thousands of

terms (p = 17 or 19), even hundreds of thousands of terms (p = 23). Nevertheless for large values of n these

disjunctions may be used to show that all MVI-SDP algorithms which follow the pattern M1 + (M2 � �M1) +

(M3 � �M2 � �M1)+ :::+(Mn � �Mn�1 � ::: � �M1) produce MVI disjoint forms of the reliability problems in Example

3.5 with up to O(n9) times as many terms as appear in minimal MVI disjoint forms. We conjecture that

such disjoint disjunctions exist for all odd primes but we do not know how to try to prove this conjecture.
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jkl
bcjl �k
acdh �j j�l jl�b�k
dfhk �c�j �cj�l c�a�j c�aj�l
acfjl �b�k �d �b�kd�h
bcdfh �a�k�j �a�kj�l
abdhk �c �f �j �c �fj�l
ghijk �l �d �ld �f�a �ld �fa�b�c
efghk �d �j �dj�{�l
acegh �d �j �f �d �jf�k �dj�l �k �dj�l k �f �{ �djlk�b �f
efikl �j�h �jh �d�g
aceil �h�k�j �h�kj�b �f �hk �f �j h�g �d �j �f h�g �d �jf�k h�g �d j�b �f �k
dehijk �f�g�l�a �f�g�la�b�c
abeghk �c �d �f �j �c �d �fj�{�l
bcefgh �a �d �k�j �a �d �kj�l
bcghij �k�l�a �f �k�l�af �d�e �k�la �d�e
abeikl �c �f �j�h �c �f �jh �d�g
bcefil �a�j�k�h �a�j�kh �d�g
dfgikl �e�h�j
acdgil �e�h�j �f �e�h�jf�k �e�hj�k�b �f
acfghij �b �d�e�k�l
bcdehij �a �f�g�k�l
bcdfgil �a�e�h�j�k
abdgikl �c�e �f �h�j

Table 1
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