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ON A CONJECTURE OF K. MURASUGI

WILLIAM S. MASSEY AND LORENZO TRALDI

K. Murasugi has conjectured that if every pair of the 4 components
of a classical link L has linking number + 1, then the group G of L will
have the property that G, /G,., = F,/F,,, Vq > 2, where F is free on
1 — 1 generators. (The conjecture has been verified by other authors.)
Here we show that this property is equivalent to the special case
G,/G, = F,/F,, and also give other equivalent conditions.

1. Introduction. A (tame) link in the three-sphere S> is the union
L=K,U--- UK, of a finite number of oriented, pairwise disjoint,
polygonal simple closed curves, its components. Two such links are ambi-
ent isotopic iff there is an orientation-preserving homeomorphism of S3
with itself which maps one onto the other in such a way that the indexing
and orientations of the components correspond.

Among the invariants of the ambient isotopy type of a link L, one of
the most important is the group G = m,(S*> — L) of L. The lower central
series {G,} of G is given by G, = G and, for ¢ > 1, G,,, = [G,G,]. In
this paper we will be concerned with the various Chen groups
G"G,/G"G,,,, and also the quotients G,/G,,, of the lower central
series; these abelian groups are invariants of L under equivalence rela-
tions much coarser than ambient isotopy [9; 14], and are of interest only
when p > 1.

In the simplest interesting case, p = 2, K. Murasugi [11] has shown
that if the linking number / = /( K, K,) is nonzero, then the Chen groups
of L are all determined (up to isomorphism) by I: G"G,/G"G,,, = Z{™!
Vg > 2, where Z, is the cyclic group of order |/|. In particular, these three
statements are equivalent: / = x1, G,/G; =0, and G"G,/G"G,,, =0
Vg > 2. (Note that if G,/G; = 0 then G, = G; = G, Vq > 2, and hence
G,/Gyu1 = 0Vg > 2)

Murasugi conjectured that analogously, a link L of g > 2 compo-
nents with all linking numbers /(K;, K;) = £1 would have G /G ,, =
F,/F, ,Vq > 2, where F is free on p — 1 generators. This conjecture has
been partly verified by S. Kojima [6], and T. Maeda [8] has shown that the
hypothesis that all the linking numbers /(X;, K;) be +1 can be signifi-
cantly weakened.
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In this paper we completely characterize those links such that
G,/G,. = F,/F,, forall g > 2. To explain our characterization of such
links, we need to introduce the following notation. Let the p X (4) matrix
A, whose rows are indexed by {1,..., n} and whose columns are indexed

by {(p,q)|1 < p < g < p}, have the entries
I(K,K,), ifi=p
Al(p,q) = —l(K,, Kp)’ ifi=gq
0, ifp#i#gq.

Let E. 1 (A) be the (*; ')th elementary ideal of A, that is, the ideal of Z
generated by the determinants of the various (p — 1) X (p — 1) sub-
matrices of A. (Another description of this ideal is given in §3.) Equiva-
lently, we may use elementary row and column operations to transform A

. .
O 0 ’

where D is a (p — 1) X (p — 1) diagonal matrix, and then E.-1,(A) is the
ideal of Z generated by the product of the diagonal entries of D.

THEOREM 1. Let L be a tame link of p > 2 components in S°, G the
group of L, and F the free group on p — 1 generators. Then any two of these
statements are equivalent:

() G,/G, = F,/F;

(b) Ew-1y(A) = Z;

(©) G"G,/G"G = F'F/F"F,  ,Vq>2,

dG,/G,.,=F/F Vq=>2; and

(e) the cup-product pairing

HY(S> - L;Z)®, H(S> — L;Z) » H*(S* — L; Z)

is epimorphic.

That (a) implies (b) follows from the theorem of K. -T. Chen [3] that
A is a presentation matrix of the abelian group G,/G;, for if G,/G, =
F, /F, is free abelian of rank (*; '), then

E(;L—l)(G2/G3) = E(u—l)(A) =Z.
2 2

(See [12, Chapter 3] for a discussion of the basic properties of the
elementary ideals (or “Fitting invariants™) of a finitely generated module
over a commutative ring with unity.) That (c) is equivalent to (d) has been
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proven by T. Maeda [8]. (Maeda has mentioned to us that he actually
announced the equivalence of (a), (c), and (d) at a conference held at the
University of Sussex in 1982, but that subsequently he found a gap in the
argument he’d devised to deduce (c) from (a).) Clearly (d) implies (a), so
the proof of the equivalence of (a), (b), (c), and (d) is completed by
verifying the implication (b) = (c). We do this in §3, where we also
present yet another condition equivalent to those of Theorem 1. We
discuss (e) in §4.

Let V(L) € Z|t,t7*] be the Hosokawa polynomial of L [5]. Using the
relationship between v ( L)(1) and the linking numbers of the components
of L with each other, we also prove

PrOPOSITION 1. If V(L)1) = %1, then the equivalent conditions of
Theorem 1 hold.

2. Some commutative algebra. In this section we present some alge-
braic notions that will be useful in our proof of the implication (b) = (c).
Much of the material involving I-adic filtrations, their associated graded
modules, and I-adic completions appears in [17, Chapter VIII] and [1,
Chapter III] (in a more general context), though our presentation differs
somewhat in notation and terminology.

It will be convenient for us to use P to denote a ring that may be
either the integers Z or a prime field (i.e., the rationals Q or a quotient
Z,=17/pZ, p a prime). For any such P, there is a unique homomor-
phism y,: Z — P with y,(1) = 1. Also, if A and B are abelian groups
with subgroups C and D, we use C ® D to denote the image of C ® ;, D
in A ®, B (that is, the subgroup of 4 ® ; B generated by the various
elements ¢ ® d withc € C and d € D).

If L is a link of p components in S*, and G is the group of L, then
by Alexander duality the abelianization H = G/G, is the free abelian
group on certain generators #,...,t,, the meridians of L. A group ring
PH may be identified, then, with the ring P[z,...,¢,,¢%,...,¢;"] of
Laurent polynomials in ¢, ..., ¢, with coefficients from P. The augmenta-
tion map ¢. PH — P is given by &(h) =1 Vh € H (or, equivalently,
e(f) = f(1,...,1) for a Laurent polynomial f(¢,,...,1,)); its kernel is the
augmentation ideal IH of PH. Note that y, induces an isomorphism

Ype: P ®, ZH — PH

under which P ® IH is mapped onto /H.



196 WILLIAM S. MASSEY AND LORENZO TRALDI

If B is a PH-module, it is filtered by the various submodules

(IH)® - B, s = 0. The associated graded module of B is the direct sum

gi(B) = @ (IH)'- B/(IH)"" - B;
s>0

it is a graded module over the graded ring gr(PH) in a natural way. We
denote by v the order function associated to the filtration {(/H)* - B},
that is, for b € N (IH)* - B, v(b) = 0, and for other elements b of B,
be (IH)*®.-B — (IH)*®*! . B. For b € B the initial form in(b) is
in(b)=b+ (IH)*®*'. B e 87,5 (B), if v(b) is finite, and in(b) = 0 if
v(b) = oo; this defines a function in: B — gr(B).

If B and C are PH-modules, and e: B — C is a PH-epimorphism, it
defines a gr( PH)-epimorphism gr(e): gr(B) — gr(C) in a natural way.
The kernel of gr(e) is the leading submodule of kere in B, which we
denote in(kere); it is the gr( PH)-submodule of gr(B) consisting of the
initial forms of the elements of ker e, that is,

in,(kere) = (IH)* - B) Nkere +(IH)**" - B/(IH)*™" - B

for s > 0.
We say an element of PH is homogeneous of degree s (with respect to
t, — 1,...,t, — 1) iff it can be expressed as a sum

Zarl ..... A '(tl - 1)"1 o (tll - 1)’;4’

the sum taken over the set of all p-tuples (ry,...,r,) of non-negative
integers with Xr, = s, for suitable a, p € P. (Note that 0 is homoge-
neous of every degree.) If Z is a free "PH-module with basis { z;}, we say
an element of Z is homogeneous of degree s (with respect to this basis) iff
it can be expressed as a sum YLh,z;,, where each A, is homogeneous of
degree s, and we denote by H (Z) the P-submodule of Z consisting of the
homogeneous elements of degree s. Clearly then

PROPOSITION (2.1). For every s > 0, the initial form function
in: Z — gr(Z) defines an isomorphism between H (Z) and gr (Z).

COROLLARY (2.2). If Z is a free PH-module with basis {z,,...,z,},
then for s > 0, gr (Z) is a free P-module of rank n - (**571).

Proof. 1t suffices to verify this in case n = 1.

Clearly H (PH) is the free P-module with basis
{(t, =1 (o, -Dl<ip< - <i,<p},
which has (#*$7!) elements. O
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If a submodule of a free PH-module Z is generated by homogeneous
elements of Z, then its leading submodule in Z is simple to describe, as
we see in the next two propositions.

LEMMA (2.3). Let Y and Z be free PH-modules with bases {y;} and
{z,}, respectively, and let f: Y = Z be a PH-homomorphism with the
property that for some fixedr > 0, f(y;,) € H(Z) Vi. Then in,(f(Y)) =0
for s <r, and in (f(Y)) = f(H,_(Y))+ (IH)**'- Z/(IH)**' - Z for
s=r.

Proof. Clearly in (f(Y)) = O fors < r.

Suppose s>r and y=Xry, €Y has f(y)€e(IH)*-Z. If r, €
(IH)*"" Vi, then f(y)+ (IH)**'-Z = f(h) + (IH)**! - Z, where h is
the homogeneous element of Y whose initial form is in( y).

On the other hand, suppose some 7; is not in (/H)*™". Let s —r — ¢
= min{ v(r;)}. We proceed by induction on ¢, having just verified the case
t = 0. For each i, let A, be 0 (if v(r;) > s — r — t), or the homogeneous
element of PH whose initial form is r, + (IH)* """} (if o(r,))=s — r —
t). Then f(Xh,y;) is a homogeneous element of Z of degree s — ¢, clearly.
In addition, r,— h, € (IH)*"""'*! Vi. Since f(y) € (IH)*"'*1- Z, it
follows that f(Th,y;) € (IH)*"'*! - Z, and hence f(Lh,y,) = 0, by Pro-
position (2.1). Thus f(y) = f(X(r, — h,)y;), and since r, — h; €
(IH)*~"~"*1 Vi, we may apply the inductive hypothesis to conclude that
f(y)+ (UH)*' - Z = f(h) + (IH)**! - Z forsome h € H,_(Y). m]

Generalizing Lemma (2.3) inductively, we have

PROPOSITION (2.4). Let Y and Z be free PH-modules with bases { y,}
and {z,}, respectively, and let f: Y — Z be a PH-homomorphism with the
property that f(y;) is homogeneous Vi. For k > 0, let {y,.} be the set of
those y;, with v(f(y,)) = k, and Y, the submodule of Y freely generated by
{ vic} (if there are no y,,, Y, = 0). Then

in, (/) = X f(H,- () + (1) 2/(11)™ - 2
for every s > 0.

Proof. Suppose s > 0, and let J be the right-hand side of the asserted
equality. Obviously in (f(Y)) 2 J, so it suffices to verify the opposite
inclusion.
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Every element of in (f(Y)) is f(x)+ (IH)**!'- Z for some x €
Y _o Y., say x = X5 _ox.. If 0(f(x,)) = s Vk, then f(x)+ (IH)**'-Z
= Y in( f(x,)), and we may apply Lemma (2.3) to find, for each k €
{0,...,s}, an h, € H__,(Y,) with in( f(x,)) = in(f(h,)). Then f(x) +
(IH)*' - Z = Zin(f(hy)) € J.

On the other hand, suppose v(f(x,)) <s for some k € {0,...,s},
and let s — ¢t = min{v(f(x,))}. We proceed by induction on ¢, having
just dealt with ¢+ = 0. For k € {0,...,s} let h, = 0 if v(f(x,)) >s— 1,
and otherwise let h, € H,_,_,(Y,) have in( f(h,)) = in( f(x,)). (Such an
h, exists by Lemma (2.3).) Since v(f(x))=s > s — ¢, it must be that
Yin(f(h,)) = 0, and hence Lf(h,) = 0 by Proposition (2.1). Thus f(x)
+(IHY" - Z = f(Tioo(x, — hy)) + (TH)** ' - Z. Since o(f(x, — hy))
> s — t for every k, we may apply the inductive hypothesis to conclude
that f(X(x, — h,)) + (IH)**' - Z e J. m|

We will call a map f that satisfies the hypothesis of Proposition (2.4)
homogeneous; a PH-module possesses a homogeneous presentation (or is
homogeneously presentable) iff it is isomorphic to the cokernel of some
homogeneous map.

The augmentation ideal /H is an example of a homogeneously
presentable Z H-module. Recall [7, p. 189] that there is an exact sequence

$a $3 $ &
Z, 52,52, > Z, > IH -0

of ZH-modules, where Z, is freeon {z, /|1 <i<j<k<l<p}, Z;is
freeon {z, ,|1 <i<j<k<up}, Z,isfreeon {2, |1 <i<j<p}, Z
isfreeon {z,|1 <i<p},

G(z) =1, 1,8(2) = (¢, = Dz, = (1, - 1)z,
$3(zi) = (6, = Vzjp = (1, = 1)z, + (1, = 1)z,
and
Salzi) = (6, = Dz = (1, = 1)z

+(2, — 1)21,'1 — (4 - 1)Zuk-
PROPOSITION (2.5). For s > 0, in({s(Z;)) is a direct summand of

gr.(Z,) whose rank is
(s+1).(u+s—1)
2 s+2 )
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Proof. If s = 1,

in,($5(Z,)) = $(Ho(Z5)) +(IH)2 : Zz/(IH)2 " Z,
is generated by the (4) elements {s(z,;) + (IH)>- Z,. To verify that
these elements are linearly independent over Z, and that in ({;(Z;)) is a
direct summand of gr (Z,), note that gr.(Z,) is a free abelian group with
a basis consisting of the various elements (¢, — 1)z, + (IH)? - Z,, and
we can obtain a new basis by replacing (¢, — 1)z, + (IH)?- Z, by
$3(2,4) + (IH)? - Z, whenever i < j.
If s > 2,

in,($5(Z5)) = $(H,_((Z5)) +(IH)""" - Z,/(1H)"*" - Z,
is generated by the various elements
(e, = 1)+ (t,, = Vzy) +(IH) - Z,,
]"SrlS Tt _<_r_1S[l.
Since §,¢, = 0, those
Gt = 1) (1, = 1)z,,) +(IH)* - 2,

with r, > i suffice to generate in ({3(Z;)). Foragiveni € {1,...,p — 2},
the number of pairs (j,k) with 1 <i<j<k <p is (*;°), and the
number of (s — 1)-tuples (ry,...,r,_;) with i<r < --- <r_; <pis
(**$Z471). Thus the number of elements of this generating set of in ({5( Z;))

is
p—2 . . p—2 .
Z(“—l)(#+s_l—l)=(s+1)' Z(;L-Fs——z—l)
o2 s—1 2 i1 s+ 1 ’
and the latter sum is easily seen to be (*/;!). To verify that this
generating set is linearly independent over Z, and that in ({5(Z;)) is a
direct summand of gr (Z,), note that gr (Z,) is a free abelian group with
a basis consisting of the various elements
(ti - 1)(tr1 - 1) T (trs_l - 1)ij +(IH)S+1 : Z2

withi<r < -+ <r

s

(ti - 1)(tr1 - 1) (tr,_l - 1)ij +(IH)S+1 - Z,

_1, and we can obtain a new basis by replacing

by
(1, = 1)+ (¢, = Vz,) +(IH) - Z,

whenever i < j. (]



200 WILLIAM S. MASSEY AND LORENZO TRALDI

If B is a ZH-module then for any P, P ® , B is a PH-module
under the action yp(x ® h) - (y ® b) = (xy) ® (hb). For every
s >0, vp«(P ® (IH)*) = (IH)*, and so certainly (IH)'- (P ®, B) =
P ® (IH)*® - B. A natural homomorphism 6,: P ® , gr(B) — gr(P ® ; B)
may be defined by

8,(x ®(b+(IH)"" - B))=x®b+(IH)"" (P ®, B)
forx € Pand b € (IH)* - B.

PROPOSITION (2.6). For any ZH-module B, 8, is an isomorphism.

Proof. Suppose s > 0, and let ¢: (/H)* - B — gr (B) be the canonical
map onto the quotient. Then
id,®c: P®,(IH)’-B—> P ®,gr,(B)

is an epimorphism whose kernel is P ® (IH)*** - B, by the right exact-
ness of tensor products. Let i: (IH)® - B — B be the inclusion map, and
cp: (IH)® - (P ®, B) - gr(P ®,B) the canonical map onto the quo-
tient. Since

(id, ® i)(P ®,(IH)"- B) = (IH)" -(P ®,B),
cp(idp®i): P®,(IH) - B —> gr(P®,B)
is an epimorphism; since
(id, ® i)(P®(IH)""" - B) = (IH)'"" -(P ® , B) = kerc,,
this epimorphism induces an isomorphism
8p: P®,gr(B) — gr,(P®,B). i

If B is a PH-module, the order function v defines a metric on

B/N,(IH)’ - B by
d(a,b) = exp(-v(a — b)),

where @ and b are the elements of B/N,(IH)® - B determined by a and
b. Tlle\completion B of this metric space is the IH-adic completion of B; it
is a PH-module in a natural way. We denote the natural mapping B — B
by h; in case 4 is injective (i.e., if N (/H)* - B = 0) we may suppress it,
and regard B as a subset of B. If B is finitely generated, there is an
isomorphism PH ® ,;; B — B under which the image of x ® b is x - 4(b)

[1, 111, §3.4]; consequentb_f,\ if B is the free PH-module on a finite set of
generators, B is the free PH-module on the same set.
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Just as PH may be identified with the ring P[z,,...,2,,17%,...,¢;'] of
Laurent polynomials, its 7H-adic completion may also be identified with a
familiar ring: the imbedding of PH in the formal power series ring
P[[uy,...,u,]] given by 7, = 1 — u; extends to an isomorphism between
PH and P[lu,,...,u,]] (see [9, §3] for the case P =Z; the general
argument is similar). . .

Let 7H be the ideal of PH generated by IH. Then every PH-module
possesses an IH-adic filtration defined in the obvious way, and this
filtration produces an associated graded module as before. If B is a
finitely generated PH-module the natural mapping #: B — B defines an
isomorphism gr(h): gr(B) — gr(B) of graded modules over the graded
ring gr( PH) = gr(PH).

We close this section with two properties of elementary ideals. Let R
be a commutative ring with unity, X and Y free R-modules of finite ranks
m and n, respectively, with m < n. Let f: X - Y be an R-homomor-
phism, M an m X n matrix that represents f with respect to some bases
of X and Y, and E,_, (M) the ideal of R generated by the determinants
of the various m X m submatrices of M.

LEMMA (2.7). If E,,_ (M) is not annihilated by any nonzero element of
R, f is a monomorphism. Furthermore, f is a split monomorphism iff
En—m(M) = R'

Proof. Let M = (m;;) be the matrix of f with respect to the bases
{x4,...,x,,}of Xand { y;,..., y,} of Y.

Suppose, first, that ann E,_, (M) = 0, and x = Xa,x; € kerf. Then
forevery j € {1,...,n}, Za,.mij = Q; that is, the a; are the coefficients in
a relation between the rows of M. It follows that a,det N = 0 for every i
and every m X m submatrix N of M, so a;,...,a,, € annE,_,(M); thus
x = 0.

Suppose E,_,(M) = R. Then f is a monomorphism, and further-
more, coker f is a projective R-module [12, p. 122], so f is split. Con-
versely, suppose f is a split monomorphism, and let Y = f(X) & C. Then
X and f( X) are isomorphic R-modules, so they have the same elementary
ideals, or “Fitting invariants”. (See [12, Chapter 3] for an account of the
basic properties of these invariants.) It follows that R =E (Y) =
E,_,(C), and since M is a presentation matrix for C, E,_,(C) =
E,_ . (M). a

3. The completion of the Alexander invariant. The Alexander invariant
B, of a link L is the abelianization G'/G” = B, of the commutator
subgroup of its group, considered as an H-module with the action given
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by (gG’) - (¢G”) = gcg™'G” for g € G and ¢ € G’. This module has the
property that
G"Gy/G"Gyyy = (IH)* ™" - B, /(IH)""" - B, = gr, 5(B,),

and hence G"G,/G"G,,, = gr, 5(B,), for ¢ > 2[9].

Let Y = Y, be the free ZH-module on the set { x,,..., x,}, and let
Aot Y, = Z, be the ZH-homomorphism whose matrix (with respect to the
bases {x,} and {z,}) is the matrix A defined in the introduction. For
1 <r<p,let Y be the submodule of Y, generated by those x; other
than x,, and A, the restriction of A, to Y,. For each r, let A,: ¥, > Z, be
the unique continuous extension of A,.

It was proven in [16] that there is a Zﬁ-homomorphism vo: Yy - Z,

such that for every r € {0, ..., p} there is an exact sequence
- RN
(3.1) Yo Z, - Z,->B, -0

where », is the restriction of », to ¥,. It will not be necessary for us to
recall the definition of this map »,, but two properties will be useful:
vo(x;) = Xo(x,.) (modulo IH - 22) Vi; and if L happens to be the unlink
of u components, then », = 0.

The second property leads directly to a well-known formula.

PROPOSITION (3.2). Let @ be the free group on u generators. Then for
q=20"0,/9"®, ., isa free abelian group of rank (¢ — 1) - (‘”Z“z).

Proof. Let L, be the unlink of u components; its group is ®. In the
exact sequence (3.1), v, =0, so 7 is a Z_I?I-epimorphism whose kernel is
$,(Z,). For every s > 0, then, gr,(r) is an epimorphism of gr (Z,) =
gr.(Z,) onto grs(BLO) = 0”9, ,/0"®,  , whose kernel is in ({,(Z,)) =
in ({5(Z,)). By Corollary (2.2) and Proposition (2.5), it follows that
®"d /D", is free abelian of rank

IR RIS E

=(,u+s—1)' (s+1)(s+2)(p,)_(s+1)

s+ 2 (p—2)(p—1)\2 2
SRR
=(;t_}z).(#ji;1).(p+s>

=(s+1)-(g:;). 0
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We conclude that if F is the free group on p — 1 generators, then for
q =2, F"F,/F"F,,, is a free abelian group of rank (g — 1) - (**47%).

For r € {0,...,pn}, let (A,,{3): Y, ® Z; > Z, be the obvious map,
and let B, = coker{A,,{;). (Note that since XA (x;) = 0, the image of
(A,, ;) is independent of r; we will generally take r = p in this situation,
if only for definiteness’ sake.) Our strategy in verifying the implication
(b) = (¢) is to describe gr(B,) when (b) holds, and then to show that (b)
implies that gr( B, ) and gr( B, ) are isomorphic.

It is convenient to give a more explicit description of the ideal
Eu-1(A).

PROPOSITION (3.3). The ideal Eu_1(A) of Z is generated by the
collection of all products

p—1
H [ (Kik’ K jk)
k=1
such that jy, ..., j,_, are pairwise distinct and i), & { ji,---, j,_1} Vk.
Proof. Let E be the ideal generated by these products.

Suppose M is a (p — 1) X (u — 1) submatrix of A with det M # 0.
Note that each column of A either has no nonzero entries, or else has two
nonzero entries which are negatives of each other. M must have some
column with precisely one nonzero entry; that is, there must be i, # j, €
{1,...,u} such that M involves the (i,, j;) or (j;, ;) column of A, and
the jth row, but not the ijth row. The submatrix of M obtained by
deleting this row and column must also have nonzero determinant, so it
too must have a column with precisely one nonzero entry; that is, there
must be i, # j, € {1,..., u} such that this submatrix involves the (i,, j,)
or ( j,,i,) column of A, and the j,th row, but not the i,th row. Note that
J, cannot be i, or j,, since this submatrix involves neither the i,th nor the
Jith row of A. Continuing in this vein, we conclude that there are
iseeesdy 15 Jioeeos Jy-1 € {1,...,p} such that j,..., j,_, are pairwise
distinet, iy & { jys---s Ju—1) VK, M involves the j,th row of A Vk, and M
involves the (i,, j,) or (J, i,) column of A Vk. It follows that

pn—1
detM =+ []I(K,,K,)€E.
k=1

Thus E .- (A) C E.
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To verify that E-1)(A) 2 E, note that if i},...,i,_1, ji,---, j,— are
as described then the (p — 1) X (p — 1) submatrix of A which involves
the j,th row and (i, j,) or (ji, i,) column Vk has determinant equal to

-1

I
ikI;[ll(K’k’ K,). i

Let T' be the graph with vertices v,, ..., Yo which has an edge { v,, yj}
whenever i #j and /(K,, K;) # 0. Then we may rephrase Proposition
(3.3) in the following way: E._.(A) # 0 iff ' is connected, and if so
then E .1 (A) is the ideal of Z generated by the set of all products

p—1
JINKP&)
such that {v,,v,},...,{v,_,,v,_,} are the edges of a spanning tree in T.

COROLLARY (3.4). If Epv)(A) =1Z, then id ® ({,A,): P®, Y, —
P ® , Z, is injective for every P.

Proof. Note that YA (x;) = 0, and so if 1 < r < p then

(M@QﬁJKZm®a%)=O

i<p

iff

(id ®(§2}‘r))( Y wi®ax,— ) w® arxi) = 0.
r¥i<p i*r
It suffices, then, to show that id ® ({,A,) is injective for some r. Also,
note that for each i,
§2}\0(xi) = Z I(Kn K_/) '((’i - 1)Zj _(tj - 1)25)‘
Jj#*i
By the proposition, there must be iy,...,i, 1, Ji...,J,—; With
Jis+ -~ Jy—q pairwise distinct, i, & {ji,..., j,—1} Vk, and /(K,,K ) #0
(modulo char P) Vk. We claim that id ® ({,A,) is injective; by Lemma
(2.7), it suffices to show that if M is the matrix representing {,A, with
respect to the bases { x;} and {z;}, then the submatrix N obtained from
M by deleting its ijth row and column has yp.(1 ® det N) # 0; or
equivalently, that if p = char P then det N # 0 (modulo p).
For 2 < m < p, let N,, be the submatrix of M obtained by deleting
its i;th row and column, and its jth row and column for & > m. (In
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particular, N, = N.) Note that det N, = I(K,, K ;) - (1 — ¢;) # 0 (modulo
(pst;, —1,...,t, — 1)). Proceeding inductively, suppose m > 2 and

detN,#0 (mod'ﬁlo(p, t, .~ L...,t,  —1)).Note that

detN, ., = ( Y UK, K, )1 - tj)) - det N,, (modulo (¢, — 1)),
J#jm
and since i,, & { .- -, J,-1), the former factor is not congruent to zero
modulo ( p, t, —1,..., o~ 1), so
detN,,,, # 0 (modulo (p,z, —1,...,t,  — 1)).

We conclude that N =N, has detN # 0 (modulo (p,z, —1)), so
certainly det N # 0 (modulo p).

Alternatively, an inductive argument using Torres’ second relation
[15] can be used to show that the Alexander polynomial A of L has
v(vp«(1 ® A)) = p — 2. Since

A-IH +(IH)" = E(M) +(IH)",

and this equation remains true if the ijth row of M is deleted [16,
Corollary (4.3), with g = 2], the matrix representing {,A; must have some
(p— 1) X (pn — 1) submatrix N’ with v(yp.(1 ® detN’)) =p — 1 < o0,
and so by Lemma (2.7), id ® ({,A; ) must be injective. 0O

It is worth noting that for a particular P, the proof of Corollary (3.4)
only requires the hypothesis E 1) (A) # 0 (modulo char P). The same is
true of

COROLLARY (3.5). If Eju_1)(A) = Z, then
in,((id ® {3)(P ®2Z,)) Nin,((id ® A, )(P ®,Y,))
= 0 - grs(P ®ZZ2)
for every s > 0.

Proof. If s = 0,in ((id ® {;)(P ® ; Z;)) = 0.
If s > 1, recall that by Lemma (2.3)

ins((id ® §)(P @y Za))
= (id ® §)(H,_,(P 4 Z;))
+(IH)S+1 '(P ®y Zz)/(IH)S+1 '(P ®y Zz),
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and
in,((id ® A,)(P ®, 7))

n
= ([d®A,)(H(P®,Y,)
+(IH)" (P ®,2,)/(IH)"" (P ®, Z,).

Suppose z € H,_(P ® 5 Z;) and y € H(P ®4 Y,) have

in((id ® {5)(z)) = in((id ® A, )(»)).

Since (id ® {;)(z) and (id ® A,)(y) are homogeneous elements of
P ®, Z, it follows from Proposition (2.1) that (id ® {;)(z) =
(id ® A, )(y), and hence that (id ® ({,A,))(y) = 0. By Corollary (3.4),
then, y = 0. a

Recall that B, is the cokernel of the map (A, {;): Y, ® Z; - Z,.

PROPOSITION (3.6). If E .1\ (A) = Z, then for every P and every s > 0,
P ®, gr(B,) is a free P-module of rank (s + 1) - (*}551).

Proof. Suppose s > 0. Note that gr(B,) is a finitely generated
abelian group (it is isomorphic to gr,(Z,)/in ({(A,, {;)(¥, ® Z5))), and so
it suffices to verify the assertion for P # Z.

Suppose, then, that P # Z. By Proposition (2.6), P ® , gr.(B,) =
gr.(P ®, B,). By the right exactness of tensor products, P ® ,B, is
isomorphic to the cokernel of id ® (A, $3): P ®4(Y, © Z;) > P ® 4 Z,,
so P ® , gr (B,) is isomorphic to

gr (P ®, 2,)/in,((id ® (A,.5))(P ®, (Y, ® Z,))).
By Proposition (2.4),

in,((id ® (A,,$3)))(P ® (Y, @ Z3))
= (id @ \,)(H,(P ®,Y,)) +(id @ &) (H, 1(P €, Zy))
+(IH)" (P ®,2,)/(IH)""" (P ®, Z,)

=in,((ild®A,)(P ®,Y,)) +in,((id ® &) (P ®, Z,)),
and by Corollary (3.5), the latter sum is direct. Thus P ® ; gr (B, ) is a
vector space of dimension d — d; — d, over P, where d, d,, and d,

are the dimensions of gr (P ®,Z,), in((id ® A, )(P ®, Y,)), and
in ((id ® {)(P ® 4 Z3)).

By Corollary (2.2), d = (4) - (**$71).
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Since the sum of the rows of A is 0, its elementary ideals are
unchanged by the removal of any one of its rows. The matrix representing
A, (that is, the matrix obtained from A by removing its last row) must
then be a matrix of integers with E._.) = Z, so considering it as a matrix
with entries from ZH, it has E .1, = ZH. By Lemma (2.7), then, A, is a
split monomorphism of Z H-modules, and hence id ® A, is a split mono-
morphism of PH-modules. It follows that gr(id ® A)): gr(P ®, Y,) —
gr(P ® , Z,) is a split monomorphism of graded gr(PH )-modules, so
gr,(id ® A )gr(P ®, Y,)) = gr(P ®, Y,) is a vector space of dimen-
sion (p — 1)(***7 1) over P. By Lemma (2.3),

in ((id® A,)(P ®,7,))

"
=(id®A,)(H(P®,Y,))
+(IH)""" (P ®,2,)/(IH)""" (P ®, Z,)
= grs(ld ® Ap.)(grs(}) ®Z Y;L))’
sod, =(p—1-(*"7H.
By Proposition (2.5), gr.(coker{,) = gr(Z,)/in($5(Z;)) is a free
abelian group of rank d — (*;!) - (*};'1). By Proposition (2.6),
gr (coker(id ® {3)) = gr,(P ® , Z,)/in ((id ® {3)(P ® 5 Z;))
must then be a vector space over P of dimension d — (%;!) - (*151);
necessarily then d, = (5;1) - (%755 1).
Thus P ® , gr(B,) is a vector space over P of dimension

d—d, —d,

=(;)'(“+j_l)—(u—l)-(’”j“l)

SRR

s+
() e )
=(u+§—1).(u;1).(1_si2)
=(#+§—1).(“‘Sll(’;“2)=(”ji;1)-(s+1). o

Recalling Proposition (3.2), we conclude that if F is a free group on
p — 1 generators then condition (b) of Theorem 1 implies that gr (B,) =
F"F,  ,/F"F 3 Vs 2 0. Since G"G,/G"G,,, = gr,_,(B;) = gr,_,(B;)
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for g > 2 (as we noted at the beginning of this section), to complete the
proof of (b) = (c) it suffices to show that when (b) holds, gr( B,) = gr(B,).
This isomorphism actually exists under a slightly weaker hypothesis, as we
shall see in Proposition (3.8).

LEMMA (3.7). If E1(A) # 0, then
in(,(¥,)) = in(A,(Y,)) € 81(Z,) = &x(Z,).

Proof. Note that we are identifying gr(Z,) and gr( 22) via the isomor-
phism induced by the inclusion Z, C Z,.

By Lemma (2.3),
in (A, (Y,)) = A (H,(Y,)) +(IH)" - Z,/(IH)

for every s > 0. Since »,(y) = A »(») (modulo IH - Z,)Vy e Y , certainly
v,(h) = A, (h) (modulo (I s+1. 7 )forall he H (Y,) for every s > 0,
and so in (}\ (Y,)) Ciny(y, (Y)) for every s > 0.

On the other hand, suppose y = ¥Xa,x; € Y and »,(y) € (IH)S 22,
let s — ¢t = min{v(a)}. If t=0, then m(v (y)) = m(}\ ()
ins(A“(Y;)). Suppose instead that 7> 0. For each i < p, let h; €

H,_,(ZH) be the homogeneous element with in(4,) = in(a,) (if v(a;) = s
—t) or h,=0 (if_v(a;)>s—1). Then a,— h, e(IH)S 1 vi, so
v,(X(h, —a)x) € (IH)S “+1. 7. since » (y) € (I sl Zz, then,
v (Zh ) E (IH)S 1.7, - Since 7,(x,) = >\ ,(x;) (modulo IH - Z ,) Vi, it
follows that A (Zh,x,) € (TH)*~ o - Z,. But A, (Zh;x,) is homogeneous
of degree s — ¢, so A, (XLh,x,) =0, by Proposmon (2.1). By Corollary
(3.4), applied with P = Z (see the comment preceding Corollary (3.5)), A,
is injective; necessarily then s, = 0 Vi. This is impossible, though, for by
the definition of ¢, v(a,) = v(h;) =s — t < oo for some i. Thus it must
be that r = 0. O

s+1

PROPOSITION (3.8). If Eu1)(A) # 0, then
i (5. 8)(1, ® 2,)) = in{ (.53, © 2,)
c g1(Z,) = gr(Z,),
and consequently gr( B L) = gr(B,).

Proof. We assert that in((,, §3>(f’“ ® 23)) = n(7,( f’#)) + in(§3(23)).
Obviously the former contains the latter, so to verify this equality it
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suffices to show that whenever y € Y and z € Z, have v(v,(y) + $:(2))
= 5, there are »,(y"), f3(z ) € (IH)S Z W1th m(v (y) + f3(z)) =
in(»,(y") + {‘3(2 ). If either of »,(y), f3(z) is in (IH)’ Z,, then both are,
and we may take y = y’ and z = z’. If neither is, then we must have
v = v(5,()) = v(§5(2)) < s and in(y,(y)) = -in({s(2)). By Lemma (3.7),
then, 1n(§‘3(z)) € in,(A(Y))). By Corollary (3.5) (with P = Z), this im-
plies that in({ 4(2))=0,an 1mposs1b1hty since v(§3(z)) < 0.

Having verified our assertion, we may cite Lemma (2.3), Proposition
(2.4), and Lemma (3.7) to verify that for every s > 0,

ins(<vy,f3>(f’“ & 23)) = ins(yp.(ffp.)) + ins(f3(23))
=in(A,(Y,)) +in,(5(Z,))
=M(H(Y)) + &(H,_(2) +(IH)™ - 2,/(IH)*™ - Z

= in, (A, 82)(Y, @ Z,)).

The isomorphism of the statement follows immediately, since
gr(B,) = gr(2,)/in((»,,$,)(¥, ® Z;)) and

gi(B,) = gr(Z,)/in((A,, &)(Y, ® Z,)). O

Proposition (3.8) completes our proof of the fact that condition (b) of
Theorem 1 implies condition (c). As we noted in the introduction, the
implication (a) = (b) and the equivalence (c) < (d) follow from the work
of K.-T. Chen [3] and T. Maeda [8]; since (a) is simply a special case of
(d), we may now conclude that each of (a), (b), (c), and (d) is equivalent to
any other.

Before proceeding to consider (e), we present another condition
equivalent to those of Theorem 1. To motivate this condition, note that by
[16, Corollary (4.5)] the completion B, of the Alexander invariant has the
property that its elementary ideal E 1, _ L(B,) is contained in TH. Since a
Z H-module generated by some k of its elements must have E, = ZH (12,
Theorem 3.2, this implies that no set of fewer than (*;') elements could
possibly generate f?L.

THEOREM (3.9). The conditions of Theorem 1 hold if, and only if, B,
can be generated (as a ZH-module) by some (*;*) of its elements.

Proof. (We actually prove that this condition is equivalent to (b).)
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First, suppose that B can be generated by some (*; ) of its elements.
Then E .- 1)(BL) =ZH, so certamly eE 1)(BL) =1Z. Let A& be the
matrix representing the map »,: Y, — Z, that appears in the exact
sequence (3.1). Then by [16, Theorem (4.4)] (with ¢ = 1),

eEu-1)(B,) = eEpr)(N') = Epory(e(A));

as g(A") is precisely the matrix A, this shows that (b) holds.

Conversely, suppose (b) holds. Let A, and 4, be the matrices
obtained from A and A" by deleting the last row of each. Since the sum
of the rows of A is zero, (b) implies that E,1(A,) =Z too. Since
e(AN) = A, e(AH,)=A,, and 50 eE -1y (AN}) = Z; thus E,1(A,) is an
ideal of Z H which contains some element whose image under ¢ is 1. If we
identify ZH with the power series ring Z[[u,, ..., u,]] (as discussed in §2),
this element will be a power series whose constant term is 1; a well-known
property of the power series ring is that such an element must be a unit.
’l:hus F(u{x)(%) must be all of ZH, so by Lemma (2.7), the map »,:
Y, — Z, must be a split monomorphism, since it is represented by the
matrlx ./V It follows immediately from this and the exactness of (3.1)
that B, can be generated by (5) — (u — 1) = (*5'1) of its elements. O

When p is two or three and the equivalent conditions of Theorem 1
hold, this additional condition allows us to determine the structure of the
Z H-module B, Ifp=2, f?L can be generated by (2) = 0 of its elements;
that is, B =0.1Ifp=3 B, can be generated by (3) = 1 element, so it is
1somorphlc to ZH /EO(BL) [12, Theorem 3.5]; by [16, Theorem (4.1)],
E,(B,) is the principal ideal of ZH generated by the Alexander poly-
nomial of L.

4. Proof that (¢) « (a). We will re-phrase the assertion that statements
(e) and (a) of Theorem 1 are equivalent as follows:

PROPOSITION (4.1). Let L be a tame link of u components in S* with
group G and complementary space X = S* — L. Then G,/G, is a free
abelian group of rank (*;') if and only if the cup product pairing (with
integer coefficients)

(4.1) H'(X) ® , H\(X) > HX(X)

is epimorphic.
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Proof. First of all, we assert that if G,/G, is free abelian of rank
(*;1), then the link L is unsplittable. For, it is readily verified that if the
link L is splittable, then E_:)(A) = 0. Since conditions (a) and (b) are
equivalent, the assertion follows.

Similarly, we assert that if the cup product pairing (4.1) is epimorphic,
then the link L is unsplittable. To prove this assertion, one proves that if
the link L is splittable, then the image of the cup product pairing (4.1) is a
subgroup of H?(X) which has rank at most p — 2 (the proof uses the
Mayer-Vietoris cohomology exact sequence, the naturality of cup prod-
ucts, and the fact that (by Alexander duality) H?(X) is free abelian of
rank p — 1).

In view of these two assertions, we see that we may assume that the
link L is unsplittable. As a consequence, the complementary space X is
an Eilenberg-MacLane complex, K(G,1) [13, p. 19], and H,(X) = H,(G)
for all i.

To prove the proposition, we will use the following five-term exact
sequence:

H,(G) 5 H,(G/G,) > G,/G, - H\(G) - H,(G/G,) - 0

(cf. p. 205 of [4]). In this exact sequence, arrow number 1 is obviously an
isomorphism, hence the sequence simplifies to the following:

D+
H,(G) > H)(G/G,) > G,/G; - 0.

Now G /G, is a free abelian group of rank p, hence
K(G/G27 1) = (Sl)p"

the cartesian product of u copies of the circle S*. Therefore H,(G/G,) is
a free abelian group of rank (4). Since H,(G) = H,( X) is free abelian of
rank p — 1, we see that G,/G, is free abelian of rank (*; ') if and only if
Ps 1s a split monomorphism. Next, recall that the integral homology
groups of G and G/G, are all free abelian of finite rank. From this and
the universal coefficient theorem [4, p. 222] it follows that p, is a split
monomorphism if and only if the dual homomorphism in integral
cohomology,

p*: H(G/G,) » H*(G),
is a split epimorphism. Now observe that

p*: H(G/G,) » H'(G)
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is an isomorphism, and that the following diagram is commutative:

HYG/G,) 8, H'(G/G,) = H(G/G,)
| p*®p* ! p*

H'(G) ® , HY(G) 5> HXG)

(the horizontal arrows denote cup product homomorphisms). Since the
cup product in the top line of this diagram is epimorphic (this follows
readily from a cohomological version of the Kiunneth theorem [10,
§VIII.11]), we conclude that

p*: H*(G/G,) - H*(G)

is epimorphic if and only if the cup product in the bottom line is
epimorphic. This completes the proof.

5. The Hosokawa polynomial. Let L be a tame link of p components
in $3, and / the p X p matrix with entries given by /,, = -X, , . /(K,, K}),
and for i # j, I;; = I(K,;, K;). Then / = AM for an appropriate (%) X p
integral matrix M, and so (by the functoriality of the exterior algebra), the
determinant of a square submatrix of / can be expressed as an integral
linear combination of the determinants of the various square submatrices
of A of the same size; thatis, E,_, (/) C Eu,_,(A) Vm.

In particular, E,(/) C E:1,(A). The Hosokawa polynomial V(L)
has the property that v(L)(1) generates the ideal E,(/); in fact, every
(p — 1) X (. — 1) submatrix of / has determinant +v(L)(1) [S]. Thus
we conclude

PROPOSITION (5.1). V(L)1) € Eury(A).

Consequently, if V(L)(1) = £1 then E,_.(A) = Z.
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