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ON A CONJECTURE OF K. MURASUGI

WILLIAM S. MASSEY AND LORENZO TRALDI

K. Murasugi has conjectured that if every pair of the μ components
of a classical link L has linking number ±1, then the group G of L will
have the property that Gq/Gg+ι & Fg/Fq+ι Vq > 2, where F is free on
μ — 1 generators. (The conjecture has been verified by other authors.)
Here we show that this property is equivalent to the special case
G2/G3 = F2/F3, and also give other equivalent conditions.

1. Introduction. A (tame) link in the three-sphere S3 is the union
L = Kx U - - - UKμ of a finite number of oriented, pairwise disjoint,
polygonal simple closed curves, its components. Two such links are ambi-
ent isotopic iff there is an orientation-preserving homeomoφhism of S 3

with itself which maps one onto the other in such a way that the indexing
and orientations of the components correspond.

Among the invariants of the ambient isotopy type of a link L, one of
the most important is the group G = πx(S3 — L) of L. The lower central
series {Gq} of G is given by Gx = G and, for q > 1, Gq+1 = [G,Gq]. In
this paper we will be concerned with the various Chen groups
G"Gq/G"GqJrλ, and also the quotients Gq/Gq+ι of the lower central
series; these abelian groups are invariants of L under equivalence rela-
tions much coarser than ambient isotopy [9; 14], and are of interest only
when μ > 1.

In the simplest interesting case, μ = 2, K. Murasugi [11] has shown
that if the linking number / = l(KvK2) is nonzero, then the Chen groups
of L are all determined (up to isomorphism) by /: G"Gq/G"Gq+λ = Zf~ι

Vq > 2, where Zι is the cyclic group of order |/|. In particular, these three
statements are equivalent: / = ± 1 , G2/G3 = 0, and G"Gq/G"Gq+ι = 0
Vq > 2. (Note that if G2/G3 = 0 then G2 = G3 = Gq Vq > 2, and hence

Murasugi conjectured that analogously, a link L of μ > 2 compo-
nents with all linking numbers l(KiyKj) = ± 1 would have Gq/Gq+ι =
Fq/Fq+ι \fq > 2, where F is free on μ — 1 generators. This conjecture has
been partly verified by S. Kojima [6], and T. Maeda [8] has shown that the
hypothesis that all the linking numbers {(K^Kj) be ± 1 can be signifi-
cantly weakened.
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In this paper we completely characterize those links such that

Gq/Gq+1 = Fq/Fq+ι for all q > 2. To explain our characterization of such

links, we need to introduce the following notation. Let the μ X ( 5 ) matrix

Λ, whose rows are indexed by {1,. . . , μ} and whose columns are indexed

by {(p,q) 11 ̂  P < <7 ̂  μ}> have the entries

l{Ki9Kq)9 iΐi=p

Kp), if i = q

Let JE^-i^Λ) be the (V 1 ) th elementary ideal of Λ, that is, the ideal of Z

generated by the determinants of the various ( μ - l ) X ( μ - l ) sub-

matrices of Λ. (Another description of this ideal is given in §3.) Equiva-

lently, we may use elementary row and column operations to transform Λ

into a matrix

ID 0\

lo or
where D is a (μ - 1) X (μ — 1) diagonal matrix, and then E^-i^A) is the

ideal of Z generated by the product of the diagonal entries of D.

THEOREM 1. Let L be a tame link of μ > 2 components in S3, G the

group of L, and F the free group on μ - 1 generators. Then any two of these

statements are equivalent:

(a) G2/G3 = F2/F3;

( c ) G"Gq/G"Gq+ι = F"Fq/F"Fq+ι Vq > 2;

(d) Gq/Gq+1 = Fq/Fq+1 Vq > 2; and

(e) the cup-product pairing

H\S' -L;Z)®Z Hι(S3 - L; Z) -> H2(S3 - L; Z)

/51 epimorphic.

That (a) implies (b) follows from the theorem of K. -T. Chen [3] that

Λ is a presentation matrix of the abelian group G2/G3, for if G2/G3 ~

F2/F3 is free abelian of rank {μ

2

ι), then

,ι,(G2/G3) = E , _ ι

(See [12, Chapter 3] for a discussion of the basic properties of the

elementary ideals (or "Fitting invariants") of a finitely generated module

over a commutative ring with unity.) That (c) is equivalent to (d) has been
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proven by T. Maeda [8]. (Maeda has mentioned to us that he actually

announced the equivalence of (a), (c), and (d) at a conference held at the

University of Sussex in 1982, but that subsequently he found a gap in the

argument he'd devised to deduce (c) from (a).) Clearly (d) implies (a), so

the proof of the equivalence of (a), (b), (c), and (d) is completed by

verifying the implication (b) => (c). We do this in §3, where we also

present yet another condition equivalent to those of Theorem 1. We

discuss (e) in §4.

Let V ( L ) G Z[/, r 1 ] be the Hosokawa polynomial of L [5]. Using the

relationship between v ( £ ) ( l ) a n d the linking numbers of the components

of L with each other, we also prove

PROPOSITION 1. // v ( L ) ( l ) = ± 1 , then the equivalent conditions of

Theorem 1 hold.

2. Some commutative algebra. In this section we present some alge-

braic notions that will be useful in our proof of the implication (b) => (c).

Much of the material involving /-adic filtrations, their associated graded

modules, and /-adic completions appears in [17, Chapter VIII] and [1,

Chapter III] (in a more general context), though our presentation differs

somewhat in notation and terminology.

It will be convenient for us to use P to denote a ring that may be

either the integers Z or a prime field (i.e., the rationals Q or a quotient

Zp = Z/pZ9 p a prime). For any such P9 there is a unique homomor-

phism yp: Z -> P with γ^(l) = 1. Also, if A and B are abelian groups

with subgroups C and 2), we use C ® D to denote the image of C <8> z D

in A <8>ZB (that is, the subgroup of A Θ z B generated by the various

elements c ® d with c e C and d e D).

If L is a link of μ components in £ 3 , and G is the group of L, then

by Alexander duality the abelianization H = G/G2 is the free abelian

group on certain generators tv...,tμ, the meridians of L. A group ring

PH may be identified, then, with the ring P[tl9...,tμ9t{
ι

9...,t~
1] of

Laurent polynomials in tl9...9 tμ with coefficients from P. The augmenta-

tion map ε: PH -> P is given by ε(h) = 1 \fh e H (or, equivalently,

ε(/) = / ( I , . . . , 1) for a Laurent polynomial f(tv . . . , t )); its kernel is the

augmentation ideal IH of PH. Note that yP induces an isomorphism

γ^*: P ®ZZH -> PH

under which P Θ IH is mapped onto IH.
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If B is a Piϊ-module, it is filtered by the various submodules

(IH)S B, s > 0. The associated graded module of B is the direct sum

gr(l?)= 0 (my B/(IH)S+1 5;

it is a graded module over the graded ring gr( Pif) in a natural way. We

denote by υ the order function associated to the filtration {(IH)S 2?},

that is, for b e C[S(IH)S B, υ(b) = oo, and for other elements & of 5,

b e (IH)Hh) - 5 - (IH)υ{b)+ι B. For b^B the iπftiα/ /orm in(Z>) is

in(6) = 6 + (IH)v(b)+ι 5 e grϋ ( 6 )(Λ), if ϋ(6) is finite, and in(6) = 0 if

v(b) = oo this defines a function in: B -» gr(#).

If 5 and C are Pί/-modules, and e: B -> C is a P/7-epimorphism, it

defines a gr(P//)-epimorphism gr(e): gr(5) -> gr(C) in a natural way.

The kernel of gτ(e) is the leading submodule of kere in B, which we

denote in(kere); it is the gr(P//)-submodule of gr(i?) consisting of the

initial forms of the elements of kere, that is,

in5(kere) = {(IH)S B) Π kere +(IH)S+1 B/(IH)S+1 B

for s > 0.

We say an element of PH is homogeneous of degree s (with respect to

ίx — 1, . . . , t — 1) iff it can be expressed as a sum

Σ^.. . . f l ! ι ( ί i - i Γ • • • ( ' , - ! ) ' %

the sum taken over the set of all μ-tuples (rl9...,rμ) of non-negative

integers with Σ ^ = s, for suitable arι r e P. (Note that 0 is homoge-

neous of every degree.) If Z is a free PH-module with basis {z,.}, we say

an element of Z is homogeneous of degree s (with respect to this basis) iff

it can be expressed as a sum ΣΛ/Z,., where each ht is homogeneous of

degree s, and we denote by HS(Z) the P-submodule of Z consisting of the

homogeneous elements of degree s. Clearly then

PROPOSITION (2.1). For every s > 0, the initial form function

in: Z -> gr(Z) defines an isomorphism between HS(Z) and gr^(Z).

COROLLARY (2.2). 7/ Z £y α /ra? PH-module with basis {zl9...9zn}9

then for s > 0, gr^(Z) is a free P-module of rank n (μ+s~ι).

Proof. It suffices to verify this in case n = 1.

Clearly HS(PH) is the free P-module with basis

which has (μ + s

s ~
1) elements. D
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If a submodule of a free PH-module Z is generated by homogeneous
elements of Z, then its leading submodule in Z is simple to describe, as
we see in the next two propositions.

LEMMA (2.3). Let Y and Z be free PΉ-modules with bases {yt} and
{Zj}, respectively, and let f: Y -> Z be a PH-homomorphism with the
property that for some fixed r > 0, f(yt) e Hr(Z) Vΐ. Then ins(f(Y)) = 0
for s < r, and ins(f(Y)) = f(Hs_,(Y)) + (7i5Γ)'+1 Z/(JJΪ) ' + 1 • Z for
s > r.

Proof. Clearly ins(f(Y)) = 0 for s < r.

Suppose s > r and y = Σr,^. e 7 has f(y) e (/#)* Z. If r, e
(IH)s'r V/, then f(y) + (IH)S+1 Z =/(Λ) + (///) 5 + 1 - Z, where Λ is
the homogeneous element of Y whose initial form is in(y).

On the other hand, suppose some η is not in (IH)s~r. Let s - r - t
= min{ ϋ(η)}. We proceed by induction on t, having just verified the case
t = 0. For each /, let Λ; be 0 (if v(η) > s — r — /), or the homogeneous
element of PH whose initial form is η + {IHy-r~t+ι (if [;(/•,.) = j - r -
0- Then /(ΣΛl .y/) is a homogeneous element of Z of degree j - /, clearly.
In addition, η - Λ, e (IH)s-r'ί+ι Vi. Since /(>>) e (IH)s-t+ι - Z, it
follows that /(ΣΛ^f.) e (IH)s-t+1 Z, and hence /(Lh^) = 0, by Pro-
position (2.1). Thus /( j ) = /(Σ(^ - Λ,.)̂ ,-), and since rf - Λ̂  e
(IH)s~r~ί+ι Vi, we may apply the inductive hypothesis to conclude that

1 Z for some A e i/,_ r(7). D

Generalizing Lemma (2.3) inductively, we have

PROPOSITION (2.4). Let Y and Z be free PH-modules with bases {yt}
and {z }9 respectively, and let /: Y —> Z be a PH-homomorphism with the
property that f{yt) is homogeneous Vi. For k > 0, let {yik} be the set of
those yi with v(f(yi)) = k, and Yk the submodule of Y freely generated by
{yik} {if there are noyik, Yk = 0). Then

in,(/(Γ)) « Σ f{Hs_k{Yk)) +(IHY+ι - Z/(IHY+1 - Z

for every s > 0.

Proof. Suppose 5 > 0, and let / be the right-hand side of the asserted
equality. Obviously ins(f(Y)) D /, so it suffices to verify the opposite
inclusion.
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Every element of ins(f(Y)) is f(x) + (IH)s+ι Z for some x e
ΣU0Yk, say x = Σ j U * * I f »(/(**)) = * V*, then /(*) + (/Jϊ)*+ 1 . Z
= Σin(/(jc^)), and we may apply Lemma (2.3) to find, for each k e
{0,...,*}, an hk e #,_*(**) with in(/(**)) = in(/(/*J). Then f(x) +

On the other hand, suppose υ(f(xk)) < s for some k e (0, ...,s},
and let ί — / = min{ι;(/(.xΛ))}. We proceed by induction on /, having
just dealt with t = 0. For k e (0,.. ., s) let hk = 0 if υ(f(xk)) > s - t,
and otherwise let hk e Hs_t__k(Yk) have in(/(/z^)) = in(/(x^)). (Such an
Λ̂  exists by Lemma (2.3).) Since v(f(x)) = s > s — t, it must be that

) = 0, and hence Σf(hk) = 0 by Proposition (2.1). Thus f(x)
1 Z = / ( Σ l = 0 ( ^ - **)) + ( / ^ ) 5 + 1 * Z. Since ϋ ( / ( ^ - A,))

> 5 — / for every &, we may apply the inductive hypothesis to conclude
that f(Σ(xk ~ hk)) + (IH)s+ι

 Z<ΞJ. D

We will call a map / that satisfies the hypothesis of Proposition (2.4)
homogeneous', a Pif-module possesses a homogeneous presentation (or is
homogeneously presentable) iff it is isomorphic to the cokernel of some
homogeneous map.

The augmentation ideal IH is an example of a homogeneously
presentable Ziϊ-module. Recall [7, p. 189] that there is an exact sequence

f4 ^ Ϊ2 ϊl

Z4-^Z3-^Z2^Z1-^IH -> 0

of Zi/-modules, where Z 4 is free on {z ι jkl11 < / < j < k < I < μ}, Z3 is
free on {zιjk \ 1 < / < j < k < μ}, Z 2 is free on { ztj \ 1 < / < j < μ}, Zx

is free on {z711 < / < μ},

and

+ (tk-l)zlβ-(tι-l)zljk.

PROPOSITION (2.5). For s > 0, inJ(f3(Z3)) is a direct summand of
gr5(Z2) whose rank is

+ l\Jμ + s-
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Proof. If s = 1,

inJ(f3(Z3)) = S3(HO(Z3)) +(IH)2 Z2/(IH)2 Z2

is generated by the (£) elements ξ3(zijk) + (/i/)2 Z2. To verify that
these elements are linearly independent over Z, and that ins(ξ3(Z3)) is a
direct summand of gτs(Z2), note that gτs(Z2) is a free abelian group with
a basis consisting of the various elements (ti — ΐ)zJk + (IH)2 Z2, and
we can obtain a new basis by replacing (ti - l)zJk + (IH)2 Z 2 by
?3(*,y*) + (IH)2 Z2 whenever / <y.

If * > 2,

in5(f3(Z3)) = S3(Ha^(Z3)) +(IH)s+ι Z2/(IHY+1 . Z2

is generated by the various elements

Since ζ3ζ4 = 0, those

with rx > i suffice to generate ins(ξ3(Z3)). For a given / G { l , . , . , μ - 2 } ,
the number of pairs (y, /:) with 1 < i <j < k < μ is (μ^0? a n d the
number of (s — l)-tuples (rl9..., rs_x) with i < rλ < < rs_x < μ is
(μ+s

sZi~x). Thus the number of elements of this generating set of ins(ζ3( Z3))
is

and the latter sum is easily seen to be (μf+2l) To verify that this
generating set is linearly independent over Z, and that in5(f3(Z3)) is a
direct summand of gr5(Z2), note that gr5(Z2) is a free abelian group with
a basis consisting of the various elements

with / < rx < - - - < rs_l9 and we can obtain a new basis by replacing

by

whenever i < j . D
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If B is a Zi/-module then for any P, P ® z B is a P/7-module
under the action yP*(x ® h) - (y <8> b) = (xy) Θ (hb). For every
s > 0, γP*(P ® (/#) 5 ) = (/#)*, and so certainly (/#)* (P <8>z J5) =
P <g> (IH)S - B. A natural homomorphism δp: P Θ z gr(5) -» gr(P ® z 5)
may be defined by

8 p ( x ® ( b + ( l H ) s + 1 - B)) = x ® b + ( I H ) S + 1 ' ( P Θ Z 5 )

forx G ? and 6 G (IH)S - B.

PROPOSITION (2.6). For any ZH-module B, 8P is an isomorphism.

Proof. Suppose s > 0, and let c: (IH)S B -» gr^(P) be the canonical
map onto the quotient. Then

idp® c: P ®Z{IH)S - B -* P ®zgrs{B)

is an epimorphism whose kernel is P Θ (IH)s+ι 5, by the right exact-
ness of tensor products. Let i: (IH)S B -» 5 be the inclusion map, and
cP: (//ί)5 (P ®Z2?) -» gr5(P <δ>z5) the canonical map onto the quo-
tient. Since

(id, ® /)(P ^ z ( / i / ) 5 B) = (7//)5 . (P ® Z 5),

cP(idP 0 i): P ®Z(IH)S 5 -> gr,(P β z B)

is an epimorphism; since

+ 1 5) = (//f)5 + 1 -(P 0 Z 5 ) = kercF,

this epimoφhism induces an isomorphism

V P®zgrs{B)->grs{P®zB). D

If B is a P//-module, the order function υ defines a metric on
B/ns(IH)s - Bby

d(ά,b) = Qxp(-υ(a - b)),

where a and Ί> are the elements of B/Γ)S(IH)S B determined by a and
b. The completion B of this metric space is the IH-adic completion of J5; it
is a Pi/-module in a natural way. We denote the natural mapping B -* B
by h\ in case A is injective (i.e., if f]s(IH)s B = 0) we may suppress it,
and regard B as a subset of B. If B is finitely generated, there is an
isomorphism PH ®>PH B -> J3 under which the image ofx® b is x - h(b)
[1, III, §3.4]; consequently^ 5 is the free P/Z-module on a finite set of
generators, B is the free P//-module on the same set.
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Just as PH may be identified with the ring P[tl9...9tμ9 if1,..., t~ι] of
Laurent polynomials, its /i/-adic completion may also be identified with a
familiar ring: the imbedding of PH in the formal power series ring
P[[w l 9..., uμ]] given by tx: •-> 1 — ui extends to an isomoφhism between
PH and P[[uv..., uμ]] (see [9, §3] for the case P = Z; the general
argumenUs similar).

Let IH bejhe ideal of PH generated by IH. Then every P#-module
possesses an /if-adic filtration defined in the obvious way, and this
filtration produces an associated graded module as before. If B is a
finitely generated PH-module the natural mapping h: B -> B defines an
isomorphism gr(/ι)^gr(l?) -> gr(2?) of graded modules over the graded

We close this section with two properties of elementary ideals. Let R
be a commutative ring with unity, X and Y free iϊ-modules of finite ranks
m and «, respectively, with m < n. Let /: X -> 7 be an i?-homomor-
phism, M an m X n matrix that represents / with respect to some bases
of X and Y, and En_m(M) the ideal of R generated by the determinants
of the various m X m submatrices of M.

LEMMA (2.7). If En_m(M) is not annihilated by any nonzero element of
R, f is a monomorphism. Furthermore, f is a split monomorphism iff
En_m{M) = R.

Proof. Let M = (/wf y ) be the matrix of / with respect to the bases

{*!,...,*„} o f * a n d { Λ , . . . , Λ } of Y.
Suppose, first, that ann£ r

w_m(M) = 0, and x = JLaixi e ker/. Then
for every j e {1,...,«}, E^7m/y = 0; that is, the ai are the coefficients in
a relation between the rows of M. It follows that a^ctN = 0 for every /
and every m X m submatrix N of M, so al9..., am e ann En_m(M); thus
x = 0.

Suppose En_m(M) = i?. Then / is a monomorphism, and further-
more, coker/ is a projective iί-module [12, p. 122], so / is split. Con-
versely, suppose / is a split monomorphism, and let Y = /(X) Θ C. Then
X and /(X) are isomorphic i?-modules, so they have the same elementary
ideals, or "Fitting invariants". (See [12, Chapter 3] for an account of the
basic properties of these invariants.) It follows that R = En(Y) =
En_m(C)9 and since M is a presentation matrix for C, En_m{C) =

3 The completion of the Alexander invariant. The Alexander invariant
BL of a link L is the abelianization G'/G" = BL of the commutator
subgroup of its group, considered as an if-module with the action given
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by (gG') (cG") = gcg~ιG" for g e G and c e G'. This module has the
property that

G"Gq/G"Gq+ι = (my-2 BL/(mγx. i?L = g V 2 (i? L ),

and hence G"Gq/G"Gq+ι s g r ,_ 2 (* L ) , for 4 > 2 [9].

Let 7 = 70 be the free Z//-module on the set { JC15 . . . , JC }, and let

λ 0 : Yo -> Z 2 be the Z//-homomorphism whose matrix (with respect to the

bases {JC,} and {z^}) is the matrix Λ defined in the introduction. For

1 < r < μ, let Yr be the submodule of Yo generated by those xt other

than xr9 and λr the restriction of λ 0 to Yr. For each r, let λ,.: Ϋr -» Z 2 be

the unique continuous extension of \ r

It was proven in [16] that there is a Zi/-homomorphism v0: Ϋo -> Z 2

such that for every r e { 0 , . . . , / i } there is an exact sequence

(3.1) Ϋ^Z^Z^B^Q

where ^r is the restriction of vQ to Ϋr. It will not be necessary for us to

recall the definition of this map v09 but two properties will be useful:

vo(X;) = λoί */) (modulo IH Z 2 ) Vi; and if L happens to be the unlink

of μ components, then v0 = 0.

The second property leads directly to a well-known formula.

PROPOSITION (3.2). Let Φ be the free group on μ generators. Then for

q > 2, Φ^ΦyΦ^Φ^.^! is a free abelian group of rank (q - 1) (μ+q

q~
2).

Proof. Let L o be the unlink of μ components; its group is Φ. In the

exact sequence (3.1), vQ = 0, so T is a Z/ί-epimorphism whose kernel is

£j(Z 3 ). For every s > 0, then, gr5(τ) is an epimorphism of gr^(Z2) =

gr 5 (Z 2 ) onto gr,(5 / o ) = Φ " Φ J + 2 / Φ " Φ J + 3 whose kernel is ins(ζ3(Z3)) =

in J ( f 3 (Z 3 )) . By Corollary (2.2) and Proposition (2.5), it follows that

abelian of rank

l
(

5 + 2 j U / » - 2 ) ( μ - l ) l 2 J I 2
(s + 2)μ 5(μ - 2)

- 2 J Λ
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We conclude that if F is the free group on μ — 1 generators, then for

q > 2, F"Fq/F"Fq+1 is a free abelian group of rank (q - 1) - ( μ + ^ 3 ) .

For r e {0,...,μ}, let ( λ r , f 3 ) : 7 r Θ Z 3 ^ Z 2 be the obvious map,

and let BA = coker(λ r, f 3 ). (Note that since Σλoί*,.) = 0, the image of

(λ Γ , f3) is independent of r; we will generally take r = μ in this situation,

if only for definiteness' sake.) Our strategy in verifying the implication

(b) => (c) is to describe gr(5Λ) when (b) holds, and then to show that (b)

implies that gr(BA) and gτ(BL) are isomorphic.

It is convenient to give a more explicit description of the ideal

PROPOSITION (3.3). The ideal E^-i^A) of Z is generated by the

collection of all products

Π/(*,.. * A )

such thatjl9..., j μ _ 1 arepairwise distinct and ik ί {jk9..., jμ_ι] Vfc.

Proof. Let E be the ideal generated by these products.

Suppose M is a (μ - l ) X ( μ — 1) submatrix of Λ with detM Φ 0.

Note that each column of Λ either has no nonzero entries, or else has two

nonzero entries which are negatives of each other. M must have some

column with precisely one nonzero entry; that is, there must be iλ Φ j \ e

( 1 , . . . , μ} such that M involves the (iv jx) or (jv iλ) column of Λ, and

the j\th row, but not the ẑ th row. The submatrix of M obtained by

deleting this row and column must also have nonzero determinant, so it

too must have a column with precisely one nonzero entry; that is, there

must be i2 Φ j 2 e {1,. . . , μ} such that this submatrix involves the ( ι 2 , j2)

or (J2J2) column of Λ, and the y2th row, but not the /2th row. Note that

j 2 cannot be iτ or j v since this submatrix involves neither the /\th nor the

y^th row of Λ. Continuing in this vein, we conclude that there are

h> ' V-i> Jv - ' Jμ-i G {!> >V>} s u c h t h a t Jv > Jμ-ι a r e pairwise
distinct, ik ί { j k 9 . . . , jμ-λ} Vfc, M involves the jkih row of Λ V/:, and M
involves the (ik9 jk) or (jk9 ik) column of Λ V/c. It follows that

μ - l

detM= ±U Jk

Thus £ ( μ -i } (Λ) c E.
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To verify that iy- i^Λ) D E9 note that if il9..., iμ_l9 j l 9 . . . , j μ _ λ are
as described then the (μ - 1) X (μ - 1) submatrix of Λ which involves
the y'̂ th row and (ik9 j k ) or (jk9 ik) column \fk has determinant equal to

±Y\l{Klk,Kh). D

Let Γ be the graph with vertices γ 1 ? . . . , yμ9 which has an edge {yi9 γy}
whenever i Φj and l(KpKj) Φ 0. Then we may rephrase Proposition
(3.3) in the following way: E^-i^A) ¥= 0 iff Γ is connected, and if so
then Z^μ-i^Λ) is the ideal of Z generated by the set of all products

such that {γ/i? γ 7 i }, . . . , {γ, _χ9 γ,? _J are the edges of a spanning tree in Γ.

COROLLARY (3.4). If E{μ-ι}(A) = Z, then id ® (ζ2λμ): P ®zYμ^
P 0 z Zx is injectiυefor every P.

Proof. Note that Σλ^x^ = 0, and so if 1 < r < μ then

(id β & λ J l ί Σ w , «*,*,)-<>

iff

(id ® (f 2λ r))( E w, β a,xt - Σ ™r ® < I Λ ) = 0.
\rΦi<μ iΦr '

It suffices, then, to show that id ® (f2^r) ^s injective for some r. Also,
note that for each /,

f2λo(*,) = Σ ' ( ^ i , Kj)

By the proposition, there must be il9...,/μ_l9 j\9...,jμ-ι with
Λ» > Λ-i P a i r w i s e distinct, i^ £ {Λ,..., y^x} Vfc, and / ( ^ , # Λ ) # 0
(modulo charP) \/k. We claim that id ® (^2^^) ^s iπjective; by Lemma
(2.7), it suffices to show that if M is the matrix representing £ 2 λ 0 with
respect to the bases {xt} and {z,}, then the submatrix N obtained from
M by deleting its /\th row and column has γP*(l ® detN) Φ 0; or
equivalently, that if p = charP then det N ψ 0 (modulo/?).

For 2 < m < μ, let Nm be the submatrix of M obtained by deleting
its /\th row and column, and its y'̂ th row and column for k > m. (In
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particular, Nμ = N.) Note that det JV2 = l(Kh, Kjχ) (1 - th) Φ 0 (modulo
(p,tj — 1,...,fy — 1)). Proceeding inductively, suppose m > 2 and
det Nm Φ 0 (modulo (/>, tJmi - 1,..., /<4_i - 1)). Note that

det Nm+ι - ( Σ l{Kj, Kj(l - tj)) - dctNm (modulo ( ί j L - l)),

and since im & {jm9..., yμ_i}, the former factor is not congruent to zero
m o d u l o (p,tJm-l,...f tJμi - 1), so

d e t # m + 1 Φ 0 (modulo (p,tJm - 1 , . . . , / V l " l))

We conclude that N = Nμ has detiV#O (modulo ( ^ , ^ ^ - 1 ) ) , so
certainly det N Φ 0 (modulo/?).

Alternatively, an inductive argument using Torres' second relation
[15] can be used to show that the Alexander polynomial Δ of L has
υ{yP*{\ ® Δ)) = μ - 2. Since

Δ IH+(lH)μ = Eλ(M) +(IH)μ,

and this equation remains true if the i{th row of M is deleted [16,
Corollary (4.3), with q = 2], the matrix representing f2λ, must have some
(μ - 1) X (μ - 1) submatrix N' with u(γP*(l ® detN')) = μ - 1 < oo,
and so by Lemma (2.7), id Θ ( £ 2 \ ) m u s t be injective. D

It is worth noting that for a particular P, the proof of Corollary (3.4)
only requires the hypothesis JE^-i^Λ) Φ 0 (modulo charP). The same is
true of

COROLLARY (3.5). IfE^-i^A) = Z, then

in,((id 0 ?3)(P 0 ZZ3)) Π ins((id 0

= 0 c g r , ( P ® z Z 2 )

> 0.

. If s = 0, in,((id 0 f 3χP 0 z Z3)) = 0.
If s > 1, recall that by Lemma (2.3)

in s((id®£ 3)(P® zZ 3))
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and

ins({id®λμ){P®zYμ))

= (id®λμ)(Hs{P®zYμ))

+ (IH)S+1 -(P ®ZZ2)/(IH)S+1 -(P ®ZZ2).

Suppose z e Hs_λ(P ®ZZ3) and y e HS(P <8>z 7μ) have

Since (id ® f3)(z) and (id 0 λμ)(j>) are homogeneous elements of
P <8>z Z 2, it follows from Proposition (2.1) that (id ® £3)(z) =
(id <8> λμ)(^), and hence that (id <8> (f2λμ))(j;) = 0. By Corollary (3.4),
then, y = 0. D

Recall that BA is the cokernel of the map (λμ9 f3): Yμ<$ Z3 -> Z2.

PROPOSITION (3.6). IfE^-i^A) = Z, then for every P and every s > 0,
P <8) z gr5(5Λ) w 0 yra? P-module of rank (s + ΐ) (μ^21)-

Proof. Suppose s > 0. Note that gr5(2?Λ) is a finitely generated
abelian group (it is isomorphic to grJ(Z2)/in iS((λ/ι, ζ3)(Yμ θ Z3))), and so
it suffices to verify the assertion for P Φ Z.

Suppose, then, that P Φ Z. By Proposition (2.6), P ®zgrs(BA) =
gτs(P ® z BA). By the right exactness of tensor products, P®ZBK is
isomorphic to the cokernel of id ® <λμ,£3): P 0 z ( 7 μ θ Z3) - > P 0 z Z 2 ,
so P Θ z gr5(5Λ) is isomorphic to

By Proposition (2.4),

= (id β λj(ff,(p ® z yj) +(id ® ζ,){Hs_x{p ® z z 3))

+ (///) s + 1 ( P ® z Z 2 ) / ( / i / ) ί + 1 ( P ® z Z 2 )

Q(P ® z Z3)),

and by Corollary (3.5), the latter sum is direct. Thus P ® z gr5(5Λ) is a
vector space of dimension d — d1 — d2 over P, where ί/, ί/l5 and d2

are the dimensions of grs(P ® Z Z 2 ) , inf((id ® λμ)(P ® z ί^)), and

By Corollary (2.2), rf = (§)
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Since the sum of the rows of Λ is 0, its elementary ideals are
unchanged by the removal of any one of its rows. The matrix representing
λμ (that is, the matrix obtained from Λ by removing its last row) must
then be a matrix of integers with E^-\^ = Z, so considering it as a matrix
with entries from ZH, it has E^-^ = Z/J. By Lemma (2.7), then, λμ is a
split monomorphism of Z/f-modules, and hence id <8> X̂  is a split mono-
morphism of Pϋ-modules. It follows that gr(id Θ λ ): gr(P <£>z Yμ) ->
gr(P<8>zZ2) is a split monomorphism of graded gr(Pi/)-modules, so
gr5(id <8> λμ)(grs(P ® z 7μ)) = gr5(P <8>z 3̂ ) is a vector space of dimen-
sion (μ - l ) ( μ + Γ 1 ) o v e r P % Lemma (2.3),

= (id 9 λμ){H,(P 9zYμ))

+ (IH)S+1 (P ®ZZ2)/{IH)S+1 .(P 0 Z Z2)

= gr 5(id0λμ)(gr 5(PΘ z7μ)),

SO £/! = (/! - l ) -^;- 1 ) -

By Proposition (2.5), gr5(cokerf3) = gr ί(Z2)/in J(f3(Z3)) is a free
abelian group of rank d - (5

2

+1) (V+'i"1)- By Proposition (2.6),

gr,(coker(id β f3)) = gr,(P ® z Z2)/in,((id β f3)(P 0 Z Z3))

must then be a vector space over P of dimension d — (S2l) *
necessarily then J 2 = (5

2

+1) (V^"1).
Thus P ® z gr s(5Λ) is a vector space over P of dimension

D

Recalling Proposition (3.2), we conclude that if F is a free group on
μ — 1 generators then condition (b) of Theorem 1 implies that gτs(BA) —
F"Fs+2/F"Fs+3 Vs > 0. Since G"Gq/G"Gq+λ = gr,_2(5L) s gr^_2(ΛL)



208 WILLIAM S. MASSEY AND LORENZO TRALDI

for q > 2 (as we noted at the beginning of this section), to complete the
proof of (b) => (c) it suffices to show that when (b) holds, gr(Z?Λ) = gr(5L).
This isomorphism actually exists under a slightly weaker hypothesis, as we
shall see in Proposition (3.8).

LEMMA (3.7). IfE^-i^A) Φ 0, then

m(vμ{Ϋμ)) = in(λμ(7μ)) c gr(Z2) = gr(Z2).

Proof. Note that we are identifying gr(Z2) and gr(Z2) via the isomor-
phism induced by the inclusion Z2 c Z2.

By Lemma (2.3),

i*,(K(Yμ)) = \(Hs(Yμ))+(IHY+1 • Z2/{IH)s+ι • Z2

for every s > 0. Since vμ(y)^= λμ(y) (modulo IH Z2) Vy G Ϋμ, certainly

Vμ(h) = λμ(h) (modulo (IH)s+ι Z2) for all h e Hs(Yμ) for every s > 0,
and so in5(λμ(7μ)) c in s (^(ί;)) for every s > 0. _

On the other hand, suppose y = Efl/X,- ^ Ϋμ and ^(7) G (/ϋ)5 Z2;
let s - t = minliKα,)}. If ί = 0, then in{vμ(y)) = inίλ^j;)) G
in 5(λμ(l^)). Suppose instead that t > 0. For each / < μ, let hi G
Hs_t(ZH)be the homogeneous element with in^,) = in(£j (if y(α7) = 5
- 0 or Λz = 0 (if jjίέi,.) > s - t). Then at- *,. e=J/#) J - ' + 1 V/, so

« α , . ) ^ e (/fl)'-'+1 - Z2; since ^(^) e {IH)st+Jj Z2, then,
^ ) e (IH)sί+1 Z 2 ^ince ^(JC,) = λμ(x7) (modulo / # Z2) V/, it
follows that λμ(ΣA,.*,.) G (IH)s~t+ι Z2. But λ^ΣA^,-) is homogeneous
of degree s — f, so λμ(ΣΛ/x/) = 0, by Proposition (2.1). By Corollary
(3.4), applied with P = Z (see the comment preceding Corollary (3.5)), λμ

is injective; necessarily then hx = 0 Vz. This is impossible, though, for by
the definition of t, ^(tf,) = v(ht) = s — t < 00 for some i. Thus it must
be that t = 0. D

PROPOSITION (3.8). IfE^i^A) Φ 0,

in((,μ,f 3)(7μ Θ Z3)) = in((λ μ ,f 3 )(r μ θ Z3))

Cgr(Z 2 ) = gr(Z2),

and consequently gr(5L) = gr(5Λ).

Proof. We assert that m « v f 3 > ( 7 μ θ Z3)) = in(^μ(7μ)) + in(f3(Z3)).
Obviously the former contains the latter, so to verify this equality it
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suffices to show that whenever y e Y^ and z e Z3 have v{vμ(y) + f3(z))
= s, there are vμ(y')J3(z') e (IH)° • Z2 with^ in(vμ(y) + f3(z)) =
i n ( ^ ( / ) + f3(z')) If either of yμ(y), ξ3(z) is in (/#)* Z 2, then both are,
and we may take y = y' and z = z'. If neither is, then we must have
v = v(vμ(y)) = u(f3(z)) < ί and in(^( j)) = -in(f3(z)). By Lemma (3.7),
then, in(£3(z}) e i n ^ X ^ ) ) . By Corollary (3.5) (with P = Z), this im-
plies that in(^3(z)) = 0, an impossibility since υ(f3(z)) < oo.

Having verified our assertion, we may cite Lemma (2.3), Proposition
(2.4), and Lemma (3.7) to verify that for every s > 0,

m,((,μ,ξ3)(Ϋβ 9 Z3)) = ins(vμ(Ϋμ)) + in,(f 3(± 3))

= λμ(Hs(Yμ)) + ζ3(H._ι(Z3)) +(IH)S+1 • Z2/(IHY+1 • Z2

The isomoφhism of the statement follows immediately, since

g r ( 5 j = gr(Z 2)/in((^,? 3)(yμ Φ Z3)) and

gr(2?Λ) = gr(Z 2)/in((λμ,f 3)(7 t ι Φ Z3)). D

Proposition (3.8) completes our proof of the fact that condition (b) of
Theorem 1 implies condition (c). As we noted in the introduction, the
implication (a) =* (b) and the equivalence (c) <=> (d) follow from the work
of K.-T. Chen [3] and T. Maeda [8]; since (a) is simply a special case of
(d), we may now conclude that each of (a), (b), (c), and (d) is equivalent to
any other.

Before proceeding to consider (e), we present another condition
equivalent to those of Theorem 1. To motivate this condition, note that by
[16, Corollary (4.5)] the completion BL of the Alexander invariant has the
property that its elementary ideal JE

f

(M-i)_1(JβL) is contained in IH. Since a
Z/f-module generated by some k of its elements must have Ek = ZH [12,
Theorem 3.2], this implies that no set of fewer than (Ύ 1) elements could
possibly generate BL.

THEOREM (3.9). The conditions of Theorem 1 hold if, and only if, BL

can be generated {as a ZH-module) by some (μ2l) of its elements.

Proof. (We actually prove that this condition is equivalent to (b).)
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First, suppose that BL can be generated by some i^1) of its elements.

Then E^-i^Bj) = ZH, so certainly eE^-i^B^ = Z. Let JT be the

matrix representing the map v0: Ϋo -> Z 2 that appears in the exact

sequence (3.1). Then by [16, Theorem (4.4)] (with q = 1),

as ε(jV) is precisely the matrix Λ, this shows that (b) holds.

Conversely, suppose (b) holds. Let Λ^ and Jfμ be the matrices

obtained from Λ and Jf by deleting the last row of each. Since the sum

of the rows of Λ is zero, (b) implies that is^-i^A^) = Z too. Since

ε{JT) = j \ ^ ε(Λp = Λ^ and so εE^-i^JQ = Z\ thus E^-i^JΓ) is an

ideal of ZH which contains some element whose image under ε is 1. If we

identify ZH with the power series ring Z[[uv..., uμ]] (as discussed in §2),

this element will be a power series whose constant term is 1; a well-known

property of the power series ring is that such an element must be a unit.

Thus 2s(μ-i)(Λ/p must be all of ZH, so by Lemma (2.7), the map v :

Ϋ -> Z 2 must be a split monomorphism, since it is represented by the

matrix Jfμ. It follows immediately from this and the exactness of (3.1)

that BL can be generated by (£) - (μ - 1) = C*^1) of its elements. D

When μ is two or three and the equivalent conditions of Theorem 1

hold, this additional condition allows us to determine the structure of the

Zi/-module BL. If μ = 2, BL can be generated by (\) = 0 of its elements;

that is, BL = 0. If μ = 3, BL can be generated by (\) = 1 element, so it is

isomorphic to ZH/E0(BL) [12, Theorem 3.5]; by [16, Theorem (4.1)],

E0(BL) is the principal ideal of ZH generated by the Alexander poly-

nomial of L.

4. Proof that (e) <=> (a). We will re-phrase the assertion that statements

(e) and (a) of Theorem 1 are equivalent as follows:

PROPOSITION (4.1). Let L be a tame link of μ components in S3 with

group G and complementary space X = S3 — L. Then G2/G3 is a free

abelian group of rank (/i^1) if and only if the cup product pairing (with

integer coefficients)

(4.1) Hι(X) ®XH\X) -> H2(X)

is epimorphic.
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Proof. First of all, we assert that if G2/G3 is free abelian of rank
{μ2l)> ^en the link L is unsplittable. For, it is readily verified that if the
link L is splittable, then E^-i^A) = 0. Since conditions (a) and (b) are
equivalent, the assertion follows.

Similarly, we assert that if the cup product pairing (4.1) is epimorphic,
then the link L is unsplittable. To prove this assertion, one proves that if
the link L is splittable, then the image of the cup product pairing (4.1) is a
subgroup of H2(X) which has rank at most μ — 2 (the proof uses the
Mayer-Vietoris cohomology exact sequence, the naturality of cup prod-
ucts, and the fact that (by Alexander duality) H2{X) is free abelian of
rank μ — 1).

In view of these two assertions, we see that we may assume that the
link L is unsplittable. As a consequence, the complementary space X is
an Eilenberg-MacLane complex, K(Gyl) [13, p. 19], and Ht{X) = Hέ(G)
for all i.

To prove the proposition, we will use the following five-term exact
sequence:

H2(G) * H2(G/G2) -> G2/G3 -> HX(G) Λ HX{G/G2) -> 0

(cf. p. 205 of [4]). In this exact sequence, arrow number 1 is obviously an
isomorphism, hence the sequence simplifies to the following:

H2{G) ^ H2(G/G2) -> G2/G3 -> 0.

Now G/G2 is a free abelian group of rank μ, hence

the cartesian product of μ copies of the circle Sι. Therefore H2(G/G2) is
a free abelian group of rank (£). Since H2(G) = H2{X) is free abelian of
rank μ — 1, we see that G2/G3 is free abelian of rank (μ

2

ι) if and only if
p* is a split monomorphism. Next, recall that the integral homology
groups of G and G/G2 are all free abelian of finite rank. From this and
the universal coefficient theorem [4, p. 222] it follows that p* is a split
monomorphism if and only if the dual homomorphism in integral
cohomology,

is a split epimorphism. Now observe that

p*:H\G/G2)->H\G)
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is an isomorphism, and that the following diagram is commutative:

H\G/G2) ®zH
ι(G/G2) Z H2(G/G2)

^ H2(G)

(the horizontal arrows denote cup product homomorphisms). Since the
cup product in the top line of this diagram is epimorphic (this follows
readily from a cohomological version of the Kunneth theorem [10,
§VIII.ll]), we conclude that

p*:H2(G/G2)-*H2(G)

is epimorphic if and only if the cup product in the bottom line is
epimorphic. This completes the proof.

5. The Hosokawa polynomial. Let L be a tame link of μ components
in S3, and / the μ X μ matrix with entries given by lu = -ΣkΦil(Kι, Kk)9

and for / Φj\ ltj = l(Ki9 Kj). Then / = AM for an appropriate (£) X μ
integral matrix M, and so (by the functoriality of the exterior algebra), the
determinant of a square submatrix of / can be expressed as an integral
linear combination of the determinants of the various square submatrices
of Λ of the same size; that is, Eμ_m(l) c E(^_m(A) Vm.

In particular, Eλ(l) c ϋ^μ-i^Λ). The Hosokawa polynomial V(L)
has the property that v(£)(l) generates the ideal Ex(l); in fact, every
(μ — 1) X (μ — 1) submatrix of / has determinant ± v(L)(l) [5]. Thus
we conclude

PROPOSITION (5.1). V(L)(1) e ^ - ^

Consequently, if V(L)(1) = ± 1 then ^ - ^ ( Λ ) = Z.
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