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LINKING NUMBERS AND
THE ELEMENTARY IDEALS OF LINKS
BY
LORENZO TRALDI

ABSTRACT. Let L= K, U --- UK, C S ? be a tame link of & = 2 components, and
H the abelianization of G = m(S®> — L). Let £= (£, ) be the p X p matrix with
entries in ZH given by £, =3, /(K,,K;) (t, — 1) and for i#; £ =
I(K,,K,)* (1 = 1,). Thenif 0 < k < p

k—1 k—1
S E L) - (THY + (1H) = 20 E, i () - (TH)" + (1H)™.
1=0 1=

Various consequences of this equality are derived, including its application to the
reduced elementary ideals. These results are used to give several different characteri-
zations of links in which all the linking numbers are zero.

1. Introduction. Let L = K, U --- UK, C S? be a tame link of u = 2 components,
that is, a union of p pairwise disjoint simple closed curves K,, each of which is
carried onto a polygonal curve by some autohomeomorphism of S3. If

G=m(S*—1L)
is the group of L, and H is its abelianization H = G/[G, G], then H is freely
generated (as an abelian group) by certain elements ¢,,...,¢,, the meridians of L,

and its integral group ring ZH consists of polynomials (with integer coefficients) in
Looosly 1701

In this paper we will consider the relationship between two families of invariants
of L, the linking numbers /(K;, K;) (defined for i # j € {1,...,u}), and the elemen-
tary ideals E,(L) (defined for every k € Z). The linking numbers are integers, whose
signs depend on a choice of orientations for the K,. The elementary ideals form an
ascending sequence of ideals of the ring ZH, with the property that E,(L) =0
Vk < 0. The first elementary ideal has an especially simple structure: if e: ZH — Z
is the augmentation map (i.e., the homomorphism with &(z,) = 1 Vi), and /H = ker ¢
is the augmentation ideal of ZH, then there is an element A,(L) € ZH, the
Alexander polynomial of L, such that E\(L) = A/(L)-IH. (Though this does not
uniquely describe A (L), two Alexander polynomials of L will differ only in that one
is the product of the other with some unit of ZH.)

The equality eA (K, U K,) = *I(K,, K,), valid for any tame link K, U K, of
two components, was discovered by G. Torres in [7]; this is the simplest instance of
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310 LORENZO TRALDI

the relationship between the elementary ideals and linking numbers of a link.
Subsequent results, notably those of F. Hosokawa [3, Theorem 2] and M. E. Kidwell
[4], have dealt with the reduced Alexander polynomial of L (defined in §5). These
results will be discussed in detail in §§5 and 6, respectively.

Let £ = (£, ;) be the p X'y matrix whose entries are the elements of ZH given by
L, =2 (K, K.) (t, — 1) and for i # j, L, =UK,K) (1—1).For0<k<p
let E,(£) C ZH be the ideal generated by the determinants of the (W= k)X (p—k)
submatrices of 2. We will prove the following:

THEOREM 1. If 0 < k < u, then
! 2 G 2 2k
2 E;L—k+1(L) . (IH) + (IH) = 2 E,u.—k+1(g) : (IH) l + (IH) .
1=0 1=0
(Here (IH) = 7ZH)
Clearly EI(E) C (IH)*™/ whenever 0 <j < u. As observed in [8], it is also true

that E (L) C (IH)*™ whenever 0 <j < p. Combining these observations with
Theorem 1, we obtain a simpler (but weaker) statement,

COROLLARY 1. If 0 < k < p, then

E, (L) + (IH)""" = E,_ (&) + (IH)*"",

Corollary 1 stands in contrast to the fact that E,. (L) + (IH)) = ZH for any
J» k= 0. (See [8], where the equivalent statement ¢E, (L) =1Z Vk =0 is proven.
To show that these two statements are, in fact, equivalent, note that the former
trivially implies the latter, which implies that E, (L)+IH=1Z7H. If j>1 and
E, (L) + (IH)! = ZH, then IH = I[H-7ZH = IH-(E, (L) + (IH)’) C
E, . (L)+ (IH)’*' and hence ZH = E (L) +IH=E, (L)+ (IH)'*")

For I<i<pletd =0€Z be the gcd. of the linking numbers of the other
components of L with K,. Then E,_ (L) is the ideal of ZH generated by the
elements d, - (¢, — 1), as can easily be seen, so by Corollary 1 E,_(L)+ (IH)* =
E, () + (IH)* is the ideal generated by (IH)? together with these elements
d,-(t, — 1); thus the sequence (dy,...,d,) determines the ideal E,_(L)+ (IH)?.
Conversely, if 1 <i < u then eitherp-(¢, — 1) & E,_(L)+ (IH)*Vp #0 € Z (in
which case d, = 0), or else there is a least integer p > 0 with p- (¢, — 1) € E,_ (L)

+ (IH)? (in which case d, is this least p); thus, in either case, the ideal E,_(L)+
(IH)? determines d,. Since this holds for each i, we have
COROLLARY 2. The sequence (d Ireee ,dﬂ) is equivalent, as an invariant of L, to the

ideal E, (L) + (IH )2, that is, the Sequence determines the ideal, and vice versa.

The lower central series subgroups of G are defined by: G , = G, and if ¢ = 2 then
G, 1s the subgroup of G generated by the set of all commutators [g, h]l = ghg'h!
with g € G,_, and & € G. Our proof of Theorem 1 is based on the investigation of
the quotient G /G, by K. T. Chen in [1].
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In §6 we turn our attention to a family of special links, those in which the linking
numbers are all zero. A few different characterizations of this family are set forth in

THEOREM 2. Any two of the following statements about the tame link L =
K, U - UK, C S’ are equivalent:

(@) I(K,, K;) = 0 whenever i # j € {1,...,pu};

(b) if ® is a free group on u generators then G/ G5 = ® /®5;

(c) there is an epimorphism G — ®© /®s;

(d) the Alexander modules of G /G, and ® / ®, (defined in §4) are isomorphic;

(e) there is a Z H-epimorphism of the Alexander module of G onto that of ® /®;;

(D E,_(L)C (IH)** whenever 0 < k < ;

(8) E,_ (L) C (IH)?* and

(h) E,_ (L) C J, where J is the ideal of ZH generated by the products

(t,=1)(1, = 1), i#].

In particular, we may note, without further comment, the obvious analogy
between condition (c) and the defining condition of (homology) boundary links.

Before completing this introduction, we must mention our gratitude to Jonathan
A. Hillman, whose correspondence, during the time this work was in progress, was
both informative and inspirational. Also, the referee is to be thanked for suggesting
a significant simplification of the original argument.

2. Presentations of G and G/G,. A presentation of the group G = 7(S> — L)
may be obtained from a regular projection of L in the plane, that is, a projection in
which the only singularities are double points (or “crossings”), of which there are
only finitely many. After removing a short arc on each side of the underpassing
point of each crossing, what remains is a collection of pairwise disjoint, simple, tame
arcs in the plane. We may denote these arcs by e; (1 <i<pand I <j <), in such
a way that for each i, e, U --- Ue,, is the image of K, in the projection, and
e;,-..,e;, appear consecutively around K;; also, we may orient K, so that this
direction around it (from e, to e,, and so on) is preferred. G then has the
presentation (x, ;; r;;», with a generator x,; whenever | <i<pand 1 <;j<j,and a
relator r;; = xg'c;x,. J-x;gux ,'J' +1 Whenever there is a crossing in which e, separates e,
frome, ,,; §;; = 1 or -1 according to whether e,, crosses over e,, moving from left
to right or from right to left, as seen by an observer on e, facing e, , . The index j
of e, is to be considered modulo j,.

If i#p € (l,...,p} the linking number /(K,, K,) is the sum X3, , taken over
crossings in which K, passes over K,. Though it is not immediately apparent from
this description, /(K;, K,) = I(K,, K,) [6,p. 132].

Since (x, ; r;,) is a presentation of G, if F is the free group on the set {x, |1 <
< u, 1 <j <} of generators then there is an epimorphism n: F — G whose kernel is
the least normal subgroup of F containing {r, }. If a: G - H = G/[G,G] is the
canonical map onto the quotient, then it is clear from the form of the r,, that
an(x,,) = an(x,) Vj, k € {1,...,j;}, and no other relations hold between these

generators of H, that is, H is the free abelian group with basis {f, = an(x,) |1 <i <
B}
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A finite presentation for G/G;, namely

<x’.l; r’J’ r('lv’2~'3)(.11~.lzv.13) = [[ x’l./l’ x’z/Z]’ x’&/s]>

(in which there is a relator 7 X whenever 1 <i,i,,i;<p and j, €
112, 13)(Us J25 J3)
{1,....j,} for k = 1,2, 0r 3), can be obtained directly from the presentation (x, ; r, )
of G.
K. T. Chen has shown [1] that G /G, also has the presentation

(X115 < Xu1s Pys Pi1k>»

in which there are relators p, , = [[x,;, x,,], x4 ] whenever 1 <, j, k < pand

o, = II [xps x,, %%
k1
whenever 1 <i<pu. A careful reading of his arguments yields a slightly stronger
statement, namely: if ® C F is the subgroup generated by {x, |1 <i<p}, and :
G — G/G, is the canonical map onto the quotient, then the restriction 87 |®:
® — G /G, of the composite Bn to ® is surjective, and its kernel is generated (as a
normal subgroup of ®) by the p, and p, ;.

3. Elementary ideals. If p, =1 and M is a p X ¢ matrix with entries in a
commutative ring R, then the elementary ideals of M, denoted E, (M) and indexed
by k € Z, are ideals of R defined as follows: if k <0 or k < g — p then E,(M) = 0;
if k=gq then E,(M)=R; and if 0,9 — p <k <g then E,(M) C R is the ideal
generated by the determinants of the (¢ — k) X (¢ — k) submatrices of M. Clearly
E.(M)CE,, (M)Vk €Z. Also, we note that if f: R — § is a surjective homomor-
phism of commutative rings and f(M) is the matrix whose entries are the images
under f of the entries of M, then E,(f(M)) = f(E(M)) Vk € Z.

A simple consequence of this definition follows.

LEMMA (3.1). Suppose g = 1,p, =p, =1, D C ZH is an ideal, and M = (m,,) and
N =(n,)) are p, X q and p, X q matrices, respectively, such that m, =n;, Vi€
{L....p}Vje{l,....q},and m € DVi€ {p,+ 1,....p}Vj € {1,...,q}. Then
forany k € Z

Y Ew(M)-D'= 3 E (N)D.

1=0 1=0

PrOOF. If k = ¢, E.(M)-D° = ZH = E,(N)- D°, so the equality is trivially true.

Suppose 0,9 —p, <j<gq; then E(M)CZH is the ideal generated by the
determinants of the (¢ — j) X (¢ — j) submatrices of M.

Let P be such a submatrix, involving, say, n of the last p, — p, rows of M. If
n =g —j, then det P € D"; also, E _ (N)=E(N)=1ZH, so detP €
E,(N) D" If n=0, then P is a submatrix of N, so detP € E(N)=
E, ., (N)-D". Finally, if 0 <n < g — j then expansion of det P by minors along the
last n rows of P expresses det P as a sum, in which each summand is the product of
some element of D" with the determinant of some (¢ —j — n) X (¢ —j — n)

submatrix of N; hencedet P € E, ,(N)-D".
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Since this argument applies to any (g —j) X (¢ —j) submatrix P of M, we
conclude that

E(M)C 3 E.,(N)-D"

n=0

whenever 0, ¢ — p, <j <gq.Thusif0,¢g — p, <k <gq

S B (M) D C S (2 Evrnn(N)-D")- D'

i=0 =0 " n=0
= 2 2 Ek+1+n(N)'Dn+’
=0 n=0
= 2 Ek+l(N)'D,'

=0
Suppose now that k < g — p, or k <0, and let k, = max{0, g — p,}- Then since
E(M)=0Vj<k,

Y Epy (M) D' = Drok. 2 Ek0+z(M)‘D'

1=0 i=0
C DRk S B, (N) D
=0
c 2 Ek+i(N)'DI~
=0

Thus for any k € Z

2 E. (M) D' C 2 E (N)- D"
=0 1=0
The opposite inclusion is trivially true, since N can be obtained from M simply by
deleting its last p, — p, rows, and so certainly E (M) 2 E,(N)Vj € Z. QED.
If S and T are free ZH-modules with bases {s,,...,s,} and {z,,...,2,}, respec-
tively, and f: § — T is a ZH-homomorphism, then the matrix of f (with respect to the

given bases) is the p X g matrix M = (m, ) withf(s,) 2, m, t foreachs.If Bisa

7 H-module and there is an exact sequence S > T — B — 0 then this sequence is a
(finite) presentation of B, and M is a presentation matrix of B. (Note that since ZH is
noetherian, any finitely generated ZH-module possesses a finite presentation.) In
this case we define the elementary ideals of B (also known as the Fitting invariants of
B) to be E,(B) = E,(M); these ideals do not depend on the choice of the
presentation matrix M [5,p. 58]. In particular, E,(B) = ZH whenever k = q

LEMMA (3.2). Let B and C be finitely generated Z H-modules, and suppose there is a
Z H-epimorphism e: B — C. Then E,(B) C E(C)Vk € Z.

PROOF. Let S — d T %, B - 0 be a finite presentation of B. Since ZH is noetherian,

g '(ker e), a submodule of a finitely generated Z H-module, is itself finitely gener-
ated; that is, there is a f1n1tely generated free ZH-module S’ and a ZH-eplmorphlsm
[ 8 - g \(kere). Let f: S & S’ > T be the ZH-homomorphism f(s,s") = f(s) +
f(s) Vs € SVs’ € S'; then f(S ® §') = kerg + g~ '(kere) = g '(kere) = ker(eg).
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Hence
j
sesiric-o

is a presentation of C. By a felicitous choice of basis for S @ S’, we may conclude
that C has a presentation matrix M’, from which a presentation matrix M for B can
be obtained simply by deleting certain rows. Then E,(C) = E(M’) D E (M) =
E(B)VkeZ. Q.ED.

4. Proof of Theorem 1. The free derivatives are functions 3/9x,,: F — ZF, given
by the following rule: if x = II{_,x/* € F, and each ¢, is =1, then for | <i<p
and 1 <j <

3 k=1
-ax—u(x) =& ql;[]xzjjq)'yk’

the sum being taken over all values of k for which i, = i and j, = j, where y, is 1 or

x~! according to whether ¢, is 1 or —1. Free derivatives 9 /dx,,: ® — Z® are defined

LYW
in an analogous manner.
The Alexander matrix of the presentation (x, ; r;,) of G is a matrix with entries in
Z H, which has one row for each relator 7, i and one column for each generator x,,,;

the common entry of the row corresponding to ,, and the column corresponding to

X 18
or,,
an( 9x,,, ) ’

(Here a: ZG —» ZH and n: ZF — ZG are the linear extensions of the original a and g
from the groups to the group rings.) We will denote this matrix A4,. Alexander
matrices of the presentations (X, 7, 7, 1. 190 o o2 A0 (Xi15 045 ;i) of G/Gy
are defined analogously; we will denote these matrices A, and M,, respectively. We
will consider both of these as matrices with entries in ZH by identifying H = G/G,
with (G/G,;)/(G/G,), in the obvious way. Similarly, we can identify ®/®, with
H=G/G,viaan|®: ® - H, and then the Alexander matrix A of the presentation
(x,15 0,1 of ®/®; is also a matrix with entries in ZH. Note that the matrices 4 and
M, have only p columns apiece, one corresponding to each generator appearing in
the group presentations from which they are obtained.

If ZH is considered as a ZG-module via a: ZG — ZH, then the tensor product
ZH ®4; 1G is a well-defined abelian group, which may be made into a Z H-module
by performing the scalar multiplication in the factor ZH (i.e, x-(y ® z) = (xy) Q@ z
Vx, y € ZHVz € IG). This ZH-module is the Alexander module of G. Analogously,
the tensor product of ZH and the augmentation ideal /G/G, (over the integral
group ring ZG/G,) is the Alexander module of G/G;, and the Alexander module of
® /®, is the tensor product of ZH with I1®/®, (over Z® /®,). (Here we must again
identify the abelianizations of G/G; and ®/®; with H, as above.) We define the
elementary ideals of G to coincide with those of its Alexander module, and denote
them E,(G), for k € Z; similarly, the elementary ideals E,(G/G;) and E (®/®,)
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coincide with the elementary ideals of the Alexander modules of these groups. The
ideals E,(G) are also called the elementary ideals of the link L, and denoted E, (L).

As discussed in [2, pp. 216-220], the matrix A is a presentation matrix for the
Alexander module of G. Similarly, A is a presentation matrix for the Alexander
module of ®/®,, and 4; and M, are both presentation matrices for the Alexander
module of G/G;. Thus E, (L) = E(G) = E,(Ag), E(G/Gy) = E(A;) = E (M),
and E(®/®,) = E,(A) Vk € Z.

LEMMA (4.1). Let d: F — ZF be a derivation, that is, a function with the property
that d(xy) = d(x) + xd(y) Vx, y € F. Then an(d(([x, y], z])) € UH)*V x, y, z €
F.

PrOOF. Note that d(1) = d(1-1) = d(1) + d(1), so d(1) = 0. Hence d(x 'x) =
d(x™") + x7'd(x) = 0 Vx € F, that is, d(x~') = -x"'d(x) Vx € F. Suppose x, y, z
€ F. Then by expanding

an(d([[x. y]. 21)) = an(d(xpx'y 2 (opxy ™) '271)),
we conclude that an(d([[x, y], z])) = (1 — an(z))an(d(x, y])). Also,
an(d([x, y])) = an(d(xpx~'y™))
= (an(x) = Dam(d(y)) + (1 — an(y))en(d(x)) € IH.
Hence an(d(([x, y}, z])) = (1 — an(2))an(d([x, y])) € (1 — an(z))-IH C (IH)?,

as claimed. Q.E.D.
Noting that the free derivatives are derivations, we obtain

PROPOSITION (4.2). For any k € L
2 E.(G) - (IH)" = 3 E,.(G/Gy) - (IH)™.

=0 1=0
ProoF. Recall that E,(G) = E,(A;), E(G/Gy) = E,(A;) Vk € Z. The matrix
A is, in fact, the submatrix of 4, consisting of those rows which correspond to the
relators 7, . The remaining rows of A, are those corresponding to the relators
Tt i) jr - BY Lemma (4.1), any entry of one of these rows is an element of
(IH)?. Applying Lemma (3.1) (with D = (IH)?) completes the proof. Q.E.D.
Before proceeding, we may note that Proposition (4.2) is valid for any finitely
presented group G, with no change in the proof. Furthermore, given such a group G
2 Ek+1(G) (IH)q’ 2 Ek+1(G/Gq+l) : (IH)q’
=0 1=0
for any k € Z and ¢ = 1. (This statement can be proven with an argument closely
paralleling the proof of Proposition (4.2).)
Consider the matrix M;. If 1 < i, j <y, then its ijth entry is

[ 2] {0

J1 k1

= 3 UK, Kp): om( 3 (T ,ll))

k1
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Thus if i # j the ijth entry of M; is I(K, K;)-(1 —t)), while if i = j the ijth entry of
Myis 3, (K, K,) (¢, — 1.

PROPOSITION (4.3). If £ is the matrix mentioned in the introduction, then for any
kel

S E.(G/Gy) - (IH)" = T E, (R) - (IH)™.

=0 1=0

Proor. Recall that E(G/G;) =E (M;) Vj€Z. As we have just noted, if
1 <i, j < p the ijth entries of M; and £ coincide. By Lemma (4.1), each entry of any
of the remaining rows of M, lies in (/H)?. The result now follows from Lemma 3.D.
Q.E.D.

Combining Propositions (4.2) and (4.3), and recalling that E,(L) = E,(G) Vk € Z,
we conclude that

S E. (L) - (IH)" = J E(8)- (IH)" VkEL

=0 i=0

In particular,

S E. (L) -(IH)"=3YE, () (IH)=ZH.

i=0 i=0

Thusif 0 < k <

S ByiedL) - (Y + ()™= 3 B, (L) - (1H)

= 2 E’L—k+i(B) : (IH)L

=0

= kilEy—k-H(B) -(IH )" +(1H)™.
1=0

This completes the proof of Theorem 1.

5. The reduced elementary ideals. Let Z[¢, ~'] be the ring of integral Laurent
polynomials in the single variable ¢, and let m: ZH — Z[t, t”'] be the (unique) ring
homomorphism with 7(z,) =t Vi € {1,...,u}. The ideals 7E, (L) C Z[t, t"] are the
reduced elementary ideals of L, and A (L) is the reduced Alexander polynomial of L.

Recall that if R is a commutative ring with unity and D, E C R are ideals then
their quotient D : E is the ideal D: E = {x € R|xE C D}.

PROPOSITION (5.1). Let &: Z[t,t™'] - Z be the homomorphism given by e(t) = 1.
Let I be the . X . integral matrix | = () with entries |, = -, I(K,, K}), and for
i#j,1, =K, K)); define elementary ideals E,(I) C Z, k € Z, as in §3. Then

s(wEM_k(L) (= l)k) =E,_(l) whenever0 <k <p.
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ProoF. First, we may note that sincee(z — 1) = 0
e(7E, (L):(t— 1)) =e((r = 1) + (7E,_(L): (r — 1)*))
=e(((t— 1) +7E,_(L)): (: — 1))
=e(n((1H) + E,_ (L)) : (: — 1)").
By Corollary 1, (IH)**' + E,_,(L) = (IH)**' + E,_,(£); hence
e(7E, (L) :(t = 1)) = e(a((TH)"" + E,_,(2)): (1 — 1))
=e(((t =D+ E,_(n(R)): (r — D).

Here we have used the equality 7E, _ (B) = E, 7(£)) mentioned in §3.
Clearly () = (1 — )], s0 E,_,(m(R)) = (1 — t)"-E,L_k(l) =(t— l)k-E#,,k(l).
Hence

e(7E,_(L):(t—1)")

(=D ((r= 1)+ E,_ (D)) : (1 = 1))
= sEﬂ_k(l) = E’L_k(s(l)) = Eﬂ_k(l). Q.E.D.
COROLLARY (5.2). Let m be any (u — 1) X (u — 1) submatrix of l. Then
( aA,(L)
el —m——
(r—1)"?

PrROOF. Note that since the sum of the rows of / is zero, and the sum of the
columns of / is zero, any two (p — 1) X (p — 1) submatrices of / have (up to sign)
the same determinant. Thus E (/) = (det m) C Z. By Proposition (5.1),

= *=det m.

e(mE(L):(t — 1)*~ 1) = E\(I) = (det m).
Since E(L) = A(L)-IH,

7E(L): (1= 1) = (aA(L) - (1= 1)) (e — 1)
= (mA,(L)): (1= 1)*?

is the principal ideal of Z[z, '] generated by #A (L) /(¢ — 1)*"2. Q.E.D.
Corollary (5.2) was originally proven by F. Hosokawa in [3]; the quotient
aA(L)/(t — 1)*~2 is the Hosokawa polynomial of L, often denoted v (L).

6. Theorem 2. The implications (b) = (c) = (e) and (b) = (d) = (e) of Theorem 2
are clear. That (a) = (b) follows from the existence of the presentation (x,;; p,, p, 4
of G/G;, for if the linking number of every pair of components of L is zero then the
p, are trivial relators, and can be deleted from the presentation.

By Lemma (4.1), each entry of the Alexander matrix 4 of the presentation
(x,1; P,y of ®/®, is an element of (IH)?, from which it follows that E,_(A)=
E, (®/®;) C (IH)* whenever 0 < k < p. By Lemma (3.2), it follows that (e) = (f).

That (g) = (a) follows immediately from Corollary 1, and clearly (f) = (g). Thus
any two of the statements (a), (b), (c), (d), (), (f), and (g) are equivalent.
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Finally, recall the inclusion E, (L) CJ + C of [8], where C is the ideal of ZH
generated by the elements 7,"»* — 1, p = ¢q. From this we may conclude that
(a) = (h); since (h) = (g) trivially, this completes the proof of Theorem 2.

We note the following consequence of Theorem 2.

COROLLARY (6.1). Suppose I(K;, K ))=0 Vi#j€ {1,...,p}. Then A(L)€E
(IH)* 3,

PrOOF. For by (f) E(L) = A(L)-IH C (IH)* 2. Q.E.D.

M. E. Kidwell has shown, in [4], that if /(K,, K,) =0 whenever i 7 then
7A,(L) = x(t — 1)®*73 for some x € Z[t, t™']. Furthermore, if u is even then this
element x is divisible by 1 — 1 (i.e.,, &(x) = 0), while if u is odd then |&(x)| is a
perfect square. Whether or not Corollary (6.1) can be strengthened enough to imply
this result is, at present, unknown. ( Added in proof. Kidwell’s result can be deduced
from the comment following Proposition (4.2) in the text (with ¢ = 3), and the
theory of the Milnor invariants of links.)
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