
Generalized activities and reliability

Lorenzo Traldi
Department of Mathematics, Lafayette College

Easton, Pennsylvania 18042

Abstract

The analysis of the Tutte polynomial of a matroid using activi-
ties is associated with a shelling of the family of spanning sets. We
introduce an activities analysis of the reliability of a system specified
by an arbitrary clutter, associated with an S-partition rather than
a shelling. These activities are related to a method of constructing
Boolean interval partitions developed by Dawson in the early 1980s.

1. Introduction

Let C be a clutter on a finite set E, i.e., a family of subsets of E, none
of which contains any other. If X ⊆ E then the deletion C − X is {C ∈
C |C ∩X = ∅} and the contraction C/X consists of the minimal elements
of {S ⊆ E −X |S ∪X ∈ F(C)}; both are clutters on E −X. If X = {e}
then C − X and C/X are denoted C − e and C/e, respectively. Deletions
and contractions are clearly associative and commutative in the sense that
(((C−W )/X)−Y )/Z = (C−(W ∪Y ))/(X∪Z) = (C/(X∪Z))−(W ∪Y ) =
{minimal S ⊆ E − (W ∪X ∪ Y ∪ Z) |S ∪X ∪ Z ∈ F(C)} for any pairwise
disjoint W,X,Y, Z ⊆ E. A loop is an element of E which appears in no
element of C and an isthmus is an element of E which appears in every
element of C; note that when C = ∅ every element of E is both a loop and
an isthmus. We use a term from reliability theory and refer to the elements
of C as minpaths.

If F(C) is the associated filter F(C) = {S ⊆ E|S contains an element of
C} then the polynomial

rel(C) =
X

S∈F(C)
p|S|(1− p)|E−S|

represents the reliability or percolation probability of a system whose mini-
mal states are the elements of C; the indeterminate p represents the prob-
ability of successful operation of an individual element of E. Observe that



rel(C) may also be defined recursively: if e is a loop of C then rel(C) =
rel(C − e), if e is an isthmus of C then rel(C) = p · rel(C/e), if e is neither
a loop nor an isthmus of C then rel(C) = (1− p) · rel(C− e) + p · rel(C/e),
rel(∅) = 0 and rel({∅}) = 1.

If C is the clutter of bases of a matroidM then rel(C) is a specialization
of the Tutte polynomial t(M):

rel(C) = pr(E)(1− p)|E|−r(E) · t(M)(1, 1

1− p).

We refer to the literature (e.g., [20] or [21]) for an introduction to the Tutte
polynomial. The property of particular interest to us is the fact that re-
cursive calculations of t(M) give rise to interval partitions of the power-set
2E using activities [1, 3, 7, 12, 14]. (Recall that an interval of sets is of the
form [X,Y ] = {S | X ⊆ S ⊆ Y }). An activities partition of 2E has the
property that each interval intersects F(C) in a subinterval; moreover these
subintervals constitute a shelling of F(C). (See [21] for an introduction to
shellings, but note that shellings are usually defined for complexes rather
than filters, so the definition must be “turned upside down” for our pur-
poses). Such a shelling of F(C) is associated with a recursive calculation of
rel(C) in much the same way that the original activities partition of 2E is
associated with a calculation of t(M).

Dawson [8, 10, 11] investigated generalizations of these activities parti-
tions of 2E. He observed that if B is any nonempty family of subsets of
E = {e1, ..., em} then for each S ∈ 2E there is a unique B = βB(S) ∈ B
which minimizes X

ei∈B∆S
2i.

(Here B∆S is the symmetric difference (B − S) ∪ (S − B).) βB(S) is
constructed recursively: if βB(S) ∩ {ei+1, ..., em} is determined, then (1)
ei ∈ βB(S) if every B ∈ B with B∩{ei+1, ..., em} = βB(S)∩{ei+1, ..., em}
has ei ∈ B, (2) ei 6∈ βB(S) if every B ∈ B with B ∩ {ei+1, ..., em} =
βB(S) ∩ {ei+1, ..., em} has ei 6∈ B, and otherwise (3) ei ∈ βB(S) or ei 6∈
βB(S) according to whether ei ∈ S or ei 6∈ S. For each B ∈ B, β−1B ({B})
is an interval in 2E, so βB defines a partition of 2E into intervals each of
which contains precisely one element of B. Dawson gave several conditions
on βB which are equivalent to B being a matroid basis clutter; we give
another in Corollary 2.7 below.

If C is not a matroid basis clutter then Dawson’s βC might not give an
interval partition of F(C), because the intervals of Dawson’s partition of
2E might not intersect F(C) in subintervals. Consequently this partition
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might not correspond to a recursive calculation of rel(C). The purpose of
the present paper is to introduce activities partitions for arbitrary clutters
which do correspond to recursive calculations of rel(C).

We complete our introduction by assuring the skeptical reader that the
reliability of arbitrary clutters is not an instance of “abstract nonsense.”
See [17, 18] for two types of practical network reliability problems which are
universal in the sense that they provide concrete realizations of arbitrary
clutters.

2. Results

If C is a clutter on E = {e1, ..., em} then by a resolution of C we mean
a sequence C = Cm,Cm−1, ...,C0 of clutters obtained from C by removing
the elements of E in reverse order, first em, then em−1, and so on; each
element is to be removed either by contraction or by deletion. We associate
to a resolution the set S of elements contracted during that resolution, and
we denote the resolution Res(C, S). Observe that if C ∈ C and Res(C, C)
is Cm,Cm−1, ...,C0 then for i < m, C − {ei+1, ..., em} ∈ Ci; consequently
Res(C, C) never involves either the contraction of a loop or the deletion
of an isthmus. This observation actually characterizes the minpaths of
matroid basis clutters [12]. However, if C is non-matroidal there may be
other subsets of E whose associated resolutions have neither contracted
loops nor deleted isthmuses.

Definition 2.1. If B ∈ F(C), B 6∈ C and Res(C, B) involves neither
the deletion of any isthmus nor the contraction of any loop then B is a fake
minpath of C. We denote B(C) = C ∪ {fake minpaths of C}. For the sake
of contrast we sometimes refer to the elements of C as true minpaths of C.

The requirement that a fake minpath must be an element of F(C) is
generally unnecessary: except when C = ∅, it follows from the requirement
that the corresponding resolution not involve the deletion of any isthmus.
See Proposition 3.1.

For an example of the definition, consider C = {{1}, {2, 3}}. The reso-
lution of C corresponding to B = {1, 3} is the sequence C/3 = {{1}, {2}},
(C/3)−2 = {{1}}, ((C/3)−2)/1 = {∅}. No element is deleted as an isthmus
or contracted as a loop during the resolution, so B is a fake minpath of C.

If C is a clutter on a set E and S ⊆ E then we use the notation EO(S) =
{e 6∈ S | e is not deleted as a loop or an isthmus in Res(C, S)}; the elements
of EO(S) are externally ordinary with respect to S.
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Theorem 2.2. If C is a clutter on a finite set E then F(C) is partitioned
by the intervals [B,E −EO(B)], B ∈ B(C).

Theorem 2.2 immediately yields an activities formula for rel(C), ob-
tained by grouping terms in the definition of rel(C).

Corollary 2.3.

rel(C) =
X

B∈B(C)
p|B| · (1− p)|EO(B)|

If C is the basis clutter of a matroidM then the formula of Corollary 2.3
is the same as the formula for rel(C) = pr(E)(1 − p)|E|−r(E) · t(M)(1, 1

1−p)
which arises from the activities description of t(M).

It may seem that Dawson’s partition of 2E , which is defined without
reference to contractions or deletions, is fundamentally different from our
activities partition, but it turns out that there is a surprisingly strong
relationship between the two.

Theorem 2.4. If C 6= ∅ then the activities partition of F(C) is in-
duced by the Dawson partition of 2E corresponding to B(C), i.e., [B,E −
EO(B)] = F(C) ∩ β−1B(C)({B}) for B ∈ B(C).

If S ∈ F(C) then Theorem 2.4 and the definition of βB(C) make it clear
that βB(C)(S) is simply the lexicographically greatest subset of S which is
an element of B(C). It follows that if the elements of B(C) are listed in
decreasing lexicographic order as B1, ..., Bp then for each i, every S ⊇ Bi
is in some interval [Bj , E − EO(Bj)] with j ≤ i. Consequently activities
partitions of F(C) are S-partitions in the sense of Chari [6]. (Chari actually
defined S-partitions for complexes, not filters; the two notions are clearly
complementary.) In particular, if C has no fake minpath then an activities
partition of F(C) is a (possibly non-pure) shelling [2, 4, 5].

The focus of this paper is on rel(C), and consequently we focus on
partitions of F(C) rather than partitions of 2E . There is however a natural
way to extend the activities partition from F(C) to all of 2E. For S ⊆ E
let IO(S) = {s ∈ S | e is neither a loop nor an isthmus when contracted in
Res(C, S)}; the elements of IO(S) are internally ordinary with respect to
S.

Theorem 2.5. If C is a nonempty clutter on a finite set E then
the intervals [IO(B), E − EO(B)], B ∈ B(C), partition 2E. Moreover
[IO(B), E −EO(B)] = β−1B(C)({B}) for every B ∈ B(C).
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The fake minpaths provide a characterization of matroid basis clutters.

Theorem 2.6. A nonempty clutter C on a finite set E is a matroid
basis clutter if and only if there is no ordering of E which produces a fake
minpath for C.

We deduce a characterization of matroids using βC ; related characteri-
zations were given by Dawson [10].

Corollary 2.7. A nonempty clutter C on a finite set E is a matroid
basis clutter if and only if every ordering of E produces a function βC with
the property that βC(S) ⊆ S for all S ∈ F(C).

It is possible for a non-matroid basis clutter to be without fake minpaths
in some orderings. For example, C = {{1, 2}, {3}} has no fake minpath even
though the re-ordered version {{2, 3}, {1}} has the fake minpath {1, 3}. An
indication of the difficulty of characterizing these clutters is given in our
last theorem.

Theorem 2.8. The class of clutters which possess no fake minpath with
respect to some ordering is closed under deletion but not under contraction.

The present paper grew out of our study of a two-variable invariant
R(G,K) of a probabilistic K-terminal network G [15, 16]. Just as the
Tutte polynomial of a matroid reflects more information than rel(C), where
C is the matroid’s basis clutter, R(G,K) reflects more information about
G than the K-terminal reliability rel(C), where C is the clutter of edge-sets
of Steiner K-trees in G. Consequently the activities analysis of R(G,K)
presented in [15, 16] is more complicated than the present paper’s activi-
ties analysis of rel(C); in particular the convincing fake Steiner K-forests
discussed there correspond to the fake minpaths discussed here.

3. Proof of Theorem 2.2

Proposition 3.1. Let C be a nonempty clutter on E = {e1, ..., em}, and
suppose S ⊆ E. Then S ∈ F(C) if and only if Res(C, S) does not involve
the deletion of any isthmus.

Proof. If S ∈ F(C) then the last clutter appearing in Res(C, S) is
(C − (E − S))/S = {∅}. On the other hand, if any isthmus is deleted in
Res(C, S) then the last clutter appearing in Res(C, S) is ∅. Consequently,
if S ∈ F(C) then no isthmus is deleted in Res(C, S).
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Suppose conversely that no isthmus is deleted in Res(C, S). The last
clutter appearing in Res(C, S) is a clutter on the empty set, so it must be
either ∅ or {∅}. If it is {∅} then {∅} = (C− (E − S))/S, so S must contain
an element of C− (E − S) and hence an element of C, by the definitions of
clutter deletion and contraction. Suppose instead that this last clutter is
∅, and let Res(C, S) be C = Cm,Cm−1, ...,C0. As C itself is nonempty, there
must be an i such that Ci 6= ∅ = Ci−1; necessarily then ei is an isthmus in
Ci and Ci−1 = Ci − ei.

Note that in addition to proving the proposition, we have proven that
S ∈ F(C) if and only if {∅} = (C− (E − S))/S, and S 6∈ F(C) if and only if
∅ = (C− (E − S))/S.

Lemma 3.2. If e ∈ E then C− e = C/e if and only if e is a loop of C.

Proof. Certainly if e is a loop of C then C− e = C/e. If e is not a loop
of C then e ∈ C for some C ∈ C; C − {e} ∈ C/e and C − {e} 6∈ C − e, so
C− e 6= C/e.

If S ⊆ E then let IL(S) = {e ∈ S | e is contracted as a loop in
Res(C, S)}; we call the elements of IL(S) internal loops of S. Similarly,
the external loops of S are the elements of EL(S) = {e 6∈ S | e is deleted as
a loop in Res(C, S)}. Using this terminology we have an inductive general-
ization of Lemma 3.2.

Corollary 3.3. Suppose S, T ⊆ E and Res(C, S) = Res(C, T ). Then
S − T ⊆ EL(T ) ∩ IL(S).

Proposition 3.4. Suppose S, T ⊆ E. Then Res(C, S) = Res(C, T ) if
and only if S∆T ⊆ EL(S) ∪ IL(S).

Proof. If Res(C, S) = Res(C, T ) then S∆T ⊆ EL(S)∪ IL(S) by Corol-
lary 3.3. Suppose conversely that S∆T ⊆ EL(S) ∪ IL(S). Let Res(C, S)
be C = Cm,Cm−1, ...,C0 and let Res(C, T ) be C = C0m,C

0
m−1, ...,C

0
0; suppose

1 ≤ i ≤ m and Cj = C0j for j ≥ i. If ei ∈ S ∩ T then Ci−1 = Ci/ei =
C0i/ei = C

0
i−1. If ei 6∈ S ∪ T then Ci−1 = Ci − ei = C0i − ei = C0i−1. Other-

wise ei ∈ S∆T ⊆ EL(S)∪ IL(S) and hence ei is a loop of Ci = C0i. One of
Ci−1,C0i−1 is Ci/ei = C

0
i/ei and the other of Ci−1,C

0
i−1 is Ci − ei = C0i − ei;

either way Ci−1 = C0i−1 because ei is a loop in Ci. As Cm = C0m = C, it
follows that Res(C, S) = Res(C, T ).

Proposition 3.5. Define a relation ∼ on 2E by: S ∼ T if and only if
S∆T ⊆ EL(S) ∪ IL(S). Then ∼ is an equivalence relation, and for each
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S ⊆ E the equivalence class of S is the interval I(S) = [S − IL(S), S ∪
EL(S)]. Moreover, if S ∈ F(C) then I(S) ⊆ F(C).

Proof. That ∼ is an equivalence relation follows from the fact that
S ∼ T if and only if Res(C, S) = Res(C, T ).

Suppose S ⊆ E and T ∈ I(S). Then T −S ⊆ (S∪EL(S))−S = EL(S)
and S−T ⊆ S−(S−IL(S)) = IL(S), so S ∼ T . Conversely, if S ∼ T then
T ⊆ S∪ (T −S) ⊆ S∪EL(S)∪ IL(S) = S∪EL(S) and T ⊇ S− (S−T ) ⊇
S − (EL(S) ∪ IL(S)) = S − IL(S), so T ∈ I(S).

If C = ∅ then there is no S ∈ F(C). Otherwise, if S ∈ F(C) then
Res(C, S) does not involve the deletion of any isthmus. If T ∈ I(S) then
Res(C, T ) = Res(C, S) also does not involve the deletion of any isthmus, so
T ∈ F(C) too.

We turn now to the proof of Theorem 2.2; the theorem is vacuously true
for C = ∅.

Suppose C 6= ∅. Proposition 3.5 implies that F(C) is partitioned by the
intervals I(S), S ∈ F(C); it follows that in order to verify Theorem 2.2
it suffices to show that for every S ∈ F(C), S − IL(S) is the unique true
or fake minpath of C in I(S). The resolutions of C corresponding to S
and S−IL(S) are identical, as they differ only in their treatment of certain
loops. If e were an internal loop of S−IL(S) then e would also be an internal
loop of S, because Res(C, S − IL(S)) = Res(C, S); but this would imply
e ∈ IL(S), contradicting the assumption that e ∈ S−IL(S). Consequently
IL(S − IL(S)) = ∅, so S − IL(S) is a true or fake minpath of C. On the
other hand, if S − IL(S) 6= T ∈ I(S) then T − (S − IL(S)) ⊆ IL(T ) by
Corollary 3.3, and consequently IL(T ) 6= ∅; hence T is not a true or fake
minpath of C.

4. Activities and Dawson’s construction

If C is a clutter onE then Dawson’s partition of 2E will be useful in analyz-
ing rel(C) if it provides an interval partition of F(C), i.e., if β−1C ({C})∩F(C)
is an interval for each C ∈ C. In general, however, this does not happen.
For instance, if E = {1, 2, 3, 4, 5} and C = {{1, 2}, {3, 4, 5}} then βC par-
titions 2E into two intervals, [∅, {1, 2, 3, 4}] and [{5}, {1, 2, 3, 4, 5}]. The
former intersects F(C) in the subinterval [{1, 2}, {1, 2, 3, 4}] but the lat-
ter intersects F(C) in the more complicated set [{3, 4, 5}, {1, 2, 3, 4, 5}] ∪
{{1, 2, 5}, {1, 2, 3, 5}, {1, 2, 4, 5}}.
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Evidently the failure of βC to provide an interval partition of F(C) is
associated with the presence of sets X ∈ F(C) such that βC(X) 6⊆ X. It is
natural to try to “repair” this failure by adjoining some of theseX to C, and
then applying Dawson’s construction to this larger family of subsets of E.
Adjoining all such X to C will result in an interval partition in which each
X gives rise to a singleton interval [{X}, {X}]; such a partition is likely to
have many more intervals than are actually required. A more reasonable
strategy is to adjoin to C only the minimal such X, obtaining the family
C1 = C ∪ {minimal sets X ∈ F(C) such that βC(X) 6⊆ X}. If βC1 does not
define an interval partition of F(C), then there must be sets X ∈ F(C) such
that βC1(X) 6⊆ X; we may then consider C2 = C1∪{minimal sets X ∈ F(C)
such that βC1(X) 6⊆ X}. Continuing in this way, we obtain a sequence
C = C0 ⊆ C1 ⊆ ... of families of subsets of E, with each Ci+1 = Ci∪{minimal
sets X ∈ F(C) such that βCi(X) 6⊆ X}. The sequence must stabilize, i.e.,
there must be a Cp such that every X ∈ F(C) has βCp(X) ⊆ X; then βCp
defines an interval partition of F(C). We call this Cp the Dawson completion
of C.

For example, consider the clutter C = {{1, 2}, {3, 4, 5}}. It has C1 =
C ∪ {{1, 2, 5}}, and βC1 provides a partition of 2

E into the three inter-
vals [∅, {1, 2, 3, 4}], [{5}, {1, 2, 3, 5}], and [{4, 5}, {1, 2, 3, 4, 5}]. There is
a unique X ∈ F(C) such that βC1(X) 6⊆ X, namely {1, 2, 4, 5}, so C2 =
C1 ∪ {{1, 2, 4, 5}}. The corresponding function βC2 partitions 2

E into the
intervals [∅, {1, 2, 3, 4}], [{5}, {1, 2, 3, 5}], [{4, 5}, {1, 2, 4, 5}], and [{3, 4, 5},
{1, 2, 3, 4, 5}], which intersect F(C) in the subintervals [{1, 2}, {1, 2, 3, 4}],
[{1, 2, 5}, {1, 2, 3, 5}], [{1, 2, 4, 5}, {1, 2, 4, 5}], and [{3, 4, 5}, {1, 2, 3, 4, 5}];
C2 is the Dawson completion of C. (For a more interesting example, consider
the clutter {{1, 4}, {2, 3, 5}}.) The reader may have noticed that {1, 2, 5}
and {1, 2, 4, 5} are the fake minpaths of C; this is not a coincidence.

Theorem 4.1. If C is a nonempty clutter on a finite set, the Dawson
completion of C is Cp = B(C) = C ∪ {fake minpaths of C}. Moreover, the
activities partition of F(C) is identical to the partition defined by βCp .

Theorem 4.1 follows from Propositions 4.2 - 4.4.

Proposition 4.2. Let C be a nonempty clutter on E = {e1, ..., em},
and suppose C ⊆ D ⊆ B(C). Let X be minimal among the elements of
F(C) which have βD(X) 6⊆ X. Then X is a fake minpath of C.

Proof. Suppose not, and choose the greatest j with ej ∈ IL(X).
Res(C,X) = Res(C,X − {ej}), so Proposition 3.1 implies that X − {ej} ∈
F(C). The minimality of X guarantees that βD(X − {ej}) ⊆ X − {ej} and
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hence βD(X − {ej}) 6= βD(X). If ej 6∈ βD(X) the definition of βD(X)
clearly implies that βD(X) = βD(X − {ej}); hence ej ∈ βD(X).

Recall that βD(X) ∈ D ⊆ B(C), and hence IL(βD(X)) = ∅. It follows
that Res(C,X) and Res(C,βD(X)) differ at some point before ej is removed,
for ej is removed as a loop in the former and not in the latter. Hence
X∆βD(X) contains at least one element eq with q > j; choose the greatest
such q. If eq ∈ βD(X) − X then the definition of βD implies that every
B ∈ D with B ∩ {eq+1, ..., em} = βD(X) ∩ {eq+1, ..., em} has eq ∈ B. This
is impossible, though, for βD(X − {ej}) ⊆ X and the definition of βD(X)
clearly implies that βD(X−{ej})∩{eq+1, ..., em} = βD(X)∩{eq+1, ..., em}.
(Indeed, βD(X − {ej}) ∩ {ej+1, ..., em} = βD(X) ∩ {ej+1, ..., em}.) Conse-
quently it must be that eq ∈ X − βD(X); the definition of βD(X) then
implies that every B ∈ D with B ∩ {eq+1, ..., em} = βD(X)∩ {eq+1, ..., em}
has eq 6∈ B. It follows that βD(X) = βD(X − {eq}), and also that
eq 6∈ βD(X − {ej}).

The minimality of X guarantees that X − {eq} 6∈ F(C), for βD(X −
{eq}) = βD(X) 6⊆ X − {eq}. However, βD(X − {ej}) ⊆ X − {ej} and
eq 6∈ βD(X − {ej}), so βD(X − {ej}) ⊂ X − {eq}; this is a contradiction
because βD(X − {ej}) ∈ F(C).

Proposition 4.3. Let C be a nonempty clutter on E = {e1, ..., em},
and let C ⊆ D ⊆ B(C). Suppose there is no X ∈ F(C) with βD(X) 6⊆ X.
Then D = B(C).

Proof. Suppose not, and let X 6∈ D be a fake minpath of C. Then
βD(X) is a proper subset ofX; choose the largest q so that eq ∈ X−βD(X).
IL(X) = ∅, so eq is not a loop of (C−({eq+1, ..., em}−X))/({eq+1, ..., em}∩
X); hence there is some T ∈ C0 = (C−({eq+1, ..., em}−X))/({eq+1, ..., em}∩
X) such that eq ∈ T .

Consider Y = T ∪ ({eq+1, ..., em} ∩ X). The definition of clutter con-
traction implies that Y ∈ F(C), so by hypothesis βD(Y ) ⊆ Y . Recall that
eq ∈ X − βD(X); the definition of βD implies that every B ∈ D with
{eq+1, ..., em} ∩ X = {eq+1, ..., em} ∩ B has eq 6∈ B. As {eq+1, ..., em} ∩
X = {eq+1, ..., em} ∩ Y , the definition of βD implies that eq 6∈ βD(Y ), so
βD(Y ) ⊆ Y − {eq}. This implies that Y − {eq} contains some element of
C, and this in turn implies that Y − {eq} − {eq+1, ..., em} contains some
element of (C − ({eq+1, ..., em} − Y ))/({eq+1, ..., em} ∩ Y ) = C0. This is
impossible, though, for such an element of C0 would be a proper subset of
T .
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Proposition 4.4. Let C be a nonempty clutter on E = {e1, ..., em},
and suppose C ⊆ D ⊆ B(C). If B ∈ D then [B,B ∪EL(B)] ⊆ β−1D ({B}).

Proof. If B ⊆ X ⊆ B ∪EL(B) and βD(X) 6= B then the definition of
βD(X) is violated with respect to the element ej ∈ B∆βD(X) which has
the largest index j. We leave the details to the reader.

This completes the proof of Theorem 4.1, which implies Theorem 2.4.
The next proposition is useful in the proof of Theorem 2.5.

Proposition 4.5. Let C be a nonempty clutter on E = {e1, ..., em},
and let B = B(C). Suppose S ⊆ E and βB(S) 6⊆ S; let j be the largest
index with ej ∈ βB(S)−S. Then βB(S) = βB(S∪{ej}), ej is deleted as an
isthmus in Res(C, S), and ej is contracted as an isthmus in Res(C,βB(S));
moreover these two resolutions of C coincide until the removal of ej .

Proof. The definition of βB implies that βB(S) = βB(S ∪ {ej}).

Let B = βB(S). Observe that B∩{ej+1, ..., em} ⊆ S∩{ej+1, ..., em} and
hence (B ∪ S)∩ {ej+1, ..., em} = S ∩ {ej+1, ..., em}; consequently Res(C, S)
and Res(C, B ∪ S) are identical until the removal of ej . B ∪ S ∈ F(C), so
Res(C, S) does not involve the deletion of any isthmus before ej is removed.
If ej is not an isthmus when it is removed then it may be deleted without
resulting in the empty clutter, and this portion of Res(C, S) may be ex-
tended to a full resolution of C which does not involve the deletion of any
isthmus. Let T be the set of elements contracted as non-loops in such a
resolution; then T ∈ B.

As B ∪ S ∈ F(C), Theorem 4.1 tells us that Res(C, B ∪ S) = Res(C,
βB(B ∪ S)). Consequently Res(C, S) and Res(C,βB(B ∪ S)) are identical
until the removal of ej , and the same for Res(C, T ) and Res(C,βB(B∪S)).
As T,βB(B ∪ S) ∈ B, Theorem 4.1 tells us that T ∩ {ej+1, ..., em} =
(βB(B ∪ S)) ∩ {ej+1, ..., em}. This contradicts the definition of βB , for
ej ∈ βB(S) − S and ej 6∈ T ; the contradiction proves that ej must be an
isthmus when it is removed.

Finally, observe that (B∪S)∩{ej+1, ..., em} = S∩{ej+1, ..., em} implies
(βB(B ∪ S)) ∩ {ej+1, ..., em} = βB(S) ∩ {ej+1, ..., em} and hence until ej
is removed Res(C, S), Res(C, B∪S), Res(C,βB(B∪S)) and Res(C,βB(S))
are all the same.

In the situation of Proposition 4.5 either S ∪ {ej} ⊇ βB(S) or we may
set j = j1 and apply the proposition to the greatest-indexed element of
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βB(S)− (S ∪ {ej1}). Repeating as many times as is necessary, we see that
βB(S)−S = {ej1 , ..., ejk} with j1 > ... > jk, where each eji is contracted as
an isthmus in Res(C,βB(S)). That is, IO(βB(S)) ⊆ S. Observe also that
in the situation of Proposition 4.5 Res(C, S) and Res(C,βB(S)) coincide
until ej is removed, so the elements of S−βB(S) with indices greater than j
are all loops in Res(C,βB(S)). Applying this observation repeatedly, we see
that S ⊆ βB(S)∪EL(βB(S)), and hence S ∈ [IO(βB(S)), E−EO(βB(S))].
This shows that β−1B ({B}) ⊆ [IO(B), E −EO(B)] for every B ∈ B.

To complete the proof of Theorem 2.5 it suffices to show that [IO(B), E−
EO(B)] ⊆ β−1B ({B}) for every B ∈ B = B(C). Suppose instead that
B ∈ B, S ∈ [IO(B), E−EO(B)] and βB(S) 6= B. Let j be the largest index
with ej ∈ B∆βB(S). Then Res(C, B) and Res(C,βB(S)) are the same until
ej is removed, and they differ in their treatment of ej . As B and βB(S) are
both in B, ej cannot be deleted as an isthmus or contracted as a loop in
either resolution; hence it cannot be removed as either an isthmus or a loop
in either resolution, because it is contracted in one resolution and deleted in
the other. If ej ∈ S then ej ∈ βB(S) by definition, and hence ej 6∈ B; but
S ∈ [IO(B), E−EO(B)] and hence S−B ⊆ E−EO(B)−IO(B), implying
that ej is deleted as a loop in Res(C, B), a contradiction. If ej 6∈ S then
ej 6∈ βB(S) by definition, so ej ∈ B − S; but S ∈ [IO(B), E −EO(B)] im-
plies that every element of B−S is contracted as an isthmus in Res(C, B),
another contradiction. This completes the proof of Theorem 2.5.

Theorem 2.5 has an interesting consequence regarding our definition of
clutter resolutions. The recursive calculation of rel(C) mentioned in the
introduction might seem to motivate a different definition of resolution,
in which isthmuses are never deleted and loops never contracted. The
latter change would not affect anything, by Lemma 3.2, but the former
would dramatically alter the resolutions corresponding to sets S 6∈ F(C);
no resolution of C 6= ∅ would ever terminate in ∅ if deletions of isthmuses
were disallowed. However Theorem 2.5 tells us that this different kind of
resolution would give rise to the same partition of 2E as our definition,
namely the partition determined by βB(C).

5. Clutters without fake minpaths

To prove Theorem 2.6 we must show that if C is a nonempty clutter on E,
and no order of E produces a fake minpath for C, then C is a matroid basis
clutter. This is easily proven using a characterization of matroids given by
Dawson [9]: C is a matroid basis clutter if and only if whenever S, T ∈ C
and S0 ⊆ S, there is a U ∈ C with S0 ⊆ U ⊆ S0 ∪ T .
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Dawson’s characterization is trivially satisfied if S0 = S or S0 ⊆ T .
Otherwise, consider an order of E such that S0 = {e|E|+1−|S0|, ..., e|E|}. No
element of S0 is contracted as a loop in Res(C, S0∪T ), because S0 ⊆ S ∈ C.
It follows that S0 ⊆ (S0 ∪ T ) − IL(S0 ∪ T ); as C has no fake minpath, it
must be that (S0 ∪ T )− IL(S0 ∪ T ) ∈ C.

The reader familiar with [10] will observe that in the terminology used
there, Theorem 2.6 states: no order of E produces a fake minpath for C if,
and only if, every order of E produces an increasing α for C. There is also a
striking similarity between the proof of Theorem 2.6 we have just given and
the proof of Theorem 4.3 in [10]. Moreover, our Theorem 4.1 and Theorem
4.2 of [10] together tell us that if C has an increasing α then it has no fake
minpath. Given all this, it is natural to wonder whether what we mean
by having no fake minpath is simply equivalent to what Dawson means
by having an increasing α. Consider the clutter C = {{1, 2, 3}, {1, 4, 5},
{2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}; we will show below that C has no fake
minpath with respect to the natural order on E = {1, 2, 3, 4, 5}. However,
βC({1, 4}) = {2, 3, 4} does not contain {1, 4}, so Theorem 3.2 of [10] implies
that C does not have an increasing α with respect to this order. Hence
having no fake minpath is genuinely a weaker hypothesis than having an
increasing α, and consequently our Theorem 2.6 is somewhat stronger than
Theorem 4.3 of [10]. Similarly, our Corollary 2.7 (which follows immediately
from Theorem 4.1 and Theorem 2.6) is a result about Dawson’s βC which
does not seem to follow from [8, 10, 11].

To prove the first assertion of Theorem 2.8 it suffices to prove that if
C is a clutter on E = {e1, ..., em} which has no fake minpath with respect
to this ordering of E then for every i ∈ {1, ...,m}, C − ei is a clutter
on E − {ei} = {e1, ..., ei−1, ei+1, ..., em} which has no fake minpath with
respect to this ordering of E − {ei}. The theorem is obviously valid if
C − ei = ∅, so we may as well assume that C − ei 6= ∅. Suppose that
ei 6∈ S ⊆ E, and let Res(C, S) be C = Cm,Cm−1, ...,C0. Res(C − ei, S) is
Cm − ei, ...,Ci+1 − ei,Ci−1, ...,C0. If S ∈ F(C − ei) and S 6∈ C − ei then
S ∈ F(C) and S 6∈ C. S cannot be a fake minpath of C, so there must be
some j such that ej ∈ S is a loop of Cj ; ei 6∈ S, so j 6= i. If j < i then
Cj appears in Res(C − ei, S), and ej is a loop of Cj . If j > i then Cj − ei
appears in Res(C − ei, S) and ej is a loop of Cj − ei, as it is a loop of Cj .
Either way, S cannot be a fake minpath of C− ei.

To verify the second assertion of Theorem 2.8 we give an example of
a clutter C with no fake minpath such that some minor C/ei has a fake
minpath with respect to every order of E − {ei}. Consider the clutter
C = {{1, 2, 3}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}} on E =
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{1, 2, 3, 4, 5}; E is ordered in the natural way. If S is a true or fake min-
path of C which contains both 4 and 5 then (C/5)/4 = {{1}, {2}, {3}}
appears in the resolution of C corresponding to S, and clearly then S ∈
{{1, 4, 5}, {2, 4, 5}, {3, 4, 5}}. If S is a true or fake minpath of C which con-
tains 5 but not 4 then (C/5)−4 = {{2, 3}} appears in the resolution of C cor-
responding to S, and S must be {2, 3, 5}. Finally, if S is a true or fake min-
path of C which does not contain 5 then C−5 = {{{1, 2, 3}, {2, 3, 4}} appears
in the resolution of C corresponding to S, and then either 4 ∈ S (in which
case S = {2, 3, 4}) or else 4 6∈ S (in which case S = {1, 2, 3}). This verifies
the claim that C has no fake minpath. In contrast, C/1 = {{2, 3}, {4, 5}}
has a fake minpath with respect to every order on {2, 3, 4, 5}.

6. Closing comments

It is natural to seek interval partitions of F(C) which involve as few intervals
as possible. A fake minpath is the union of a true minpath with terminal
segments of other true minpaths, so it seems reasonable to guess that if we
are given a clutter C on a set E and we wish to order E so that relatively few
fake minpaths are created, then we should concentrate the true minpaths
at the upper end of the order. Examples 6.1 and 6.2 illustrate this guess.

Example 6.1. Let E = {e1, ..., em} and C = {C1, C2}, where C1∪C2 =
E, C1 ∩ C2 = ∅, e1 ∈ C1, and s is the least index with es ∈ C2. A fake
minpath of C must properly contain either C1 or C2 and must have no
element which is a loop in the corresponding resolution, so it is either the
union of C1 and a proper terminal segment of C2 or the union of C2 and a
proper terminal segment of C1 which does not include es−1. It follows that
there are |C2|−1 fake minpaths which contain C1 and |C1 ∩ {es, ..., em}| =
|C1|− (s− 1) which contain C2. Altogether there are m− s fake minpaths,
a number between min{|C1| , |C2|}− 1 and m− 2.

Example 6.2. Let E = {e1, ..., e2m} and suppose C consists of m pair-
wise disjoint 2-element subsets of E. We call ei ∈ E a bottom or top element
according to whether {ei, ej} ∈ C has i < j or i > j; e.g., e1 is a bottom
element and e2m is a top element. A fake minpath of C is the union of a
true minpath and a nonempty set of additional top elements which have
greater indices than the bottom element of the true minpath. Hence each
bottom element ei appears in 2

p−1−1 fake minpaths, where p is the number
of top elements ej with j > i, so the number of fake minpaths is betweenPm
k=1 2

k−1 −m = 2m − 1−m and m2m−1 −m. The smallest number oc-
curs when C = {{e1, e2}, {e3, e4}, ..., {e2m−1, e2m}}, and the largest number
occurs when C = {{e1, em+1}, {e2, em+2}, ..., {em, e2m}}.
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By the way, Ball and Nemhauser [1] have shown that in Example 6.2 no
interval partition of F(C) involves fewer than 2m− 1 intervals. We think of
this exponential lower bound as a signal of the intractability of reliability
calculations for planar networks [13].

We observe that even though it’s traditional to follow a linear order of E
when using activities to analyze reliability or the Tutte polynomial, it’s not
actually necessary. Instead one may use a rooted binary tree to determine
which element of E is to be eliminated after each possible sequence of
deletions and contractions. Each resolution which follows that binary tree
corresponds to a subset of E in the usual way: the elements of the subset
are the elements which are contracted in the resolution. Activities are
defined just as in Sections 2 and 3 above. There are clutters for which
appropriately chosen binary trees produce partitions with fewer intervals
than any linear orders, but we do not trouble to present such an example in
detail. Similarly, Dawson’s β may be defined with respect to a rooted binary
tree rather than a linear order. All of our results generalize immediately to
these “unordered” constructions, with essentially the same proofs.

In our last two examples, the optimal interval partitions of F(C) are not
S-partitions and hence cannot be found using activities, whether ordered
or unordered. See [19] for a more complete discussion.

Example 6.3. The clutter C = {{e1, e2, e3}, {e1, e4, e5}, {e2, e4, e5},
{e3, e4, e5}} on E = {e1, e2, e3, e4, e5} has a fake minpath {e1, e2, e3, e5}. It
is not difficult to verify that C has a similar four-element fake minpath (a
true minpath with the greatest element of E adjoined) with respect to any
other order of E, and hence no activities partition of F(C) involves only four
intervals. However F(C) can be partitioned into four intervals: [{e1, e2, e3},
{e1, e2, e3, e4, e5}], [{e1, e4, e5}, {e1, e2, e4, e5}], [{e2, e4, e5}, {e2, e3, e4, e5}],
and [{e3, e4, e5}, {e1, e3, e4, e5}]. This is essentially Example 4.1 of Chari
[6]; as we work with filters rather than complexes, our version involves the
complements of the elements of Chari’s.

Example 6.4. Let E = {e1, ..., e3m} and suppose C has three pair-
wise disjoint m-element minpaths A = {a1, ..., am}, B = {b1, ..., bm} and
C = {c1, ..., cm}. The minpath containing e1 will give rise to m2 − 1 fake
minpaths, unions of this minpath with terminal segments of the other two.
(Neither of the terminal segments may include the entire other minpath,
and at least one of the terminal segments must be nonempty.) However F(C)
may be partitioned into 3m+1 intervals: [A,E−{b1}], [A∪{b1}, E−{b2}],
[A ∪ {b1, b2}, E − {b3}], ..., [A ∪ {b1, ..., bm−1}, E − {bm}], [B,E − {c1}],
[B∪{c1}, E−{c2}], ..., [B∪{c1, ..., cm−1}, E−{cm}], [C,E−{a1}], [C∪{a1},
E − {a2}], ..., [C ∪ {a1, ..., am−1}, E − {am}], and {E}.
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