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Abstract

Arratia, Bollobás and Sorkin introduced the interlace polynomials in [3–5]. These
invariants generalize to arbitrary graphs some special properties of the Euler circuits
of 2-in, 2-out digraphs. Among many other results, [3–5] contain explicit formulas
for the interlace polynomials of certain types of graphs, including paths; it is natural
to wonder whether or not it is possible to extend these formulas to larger classes
of graphs. We give a combinatorial description of the interlace polynomials of trees
and forests.
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1 Introduction

A problem involving counting 2-in 2-out digraphs with a fixed number of
Euler circuits (which grew out of DNA sequencing by hybridization [2]) led
Arratia, Bollobás and Sorkin to introduce a family of new graph polynomials,
the interlace polynomials [3–5]. In this paper we introduce a particular type of
independent set of vertices in a forest, and prove that the interlace polynomial
of a forest is essentially a generating function for these independent sets.

We follow [5] for general notation and terminology, though we restrict our
attention to simple graphs. If a and b are distinct vertices of a simple graph

Email addresses: jonathan.cutler@montclair.edu (J. Cutler),
aradcliffe1@math.unl.edu (A. J. Radcliffe), traldil@lafayette.edu (L.
Traldi).

URL: http://www.lafayette.edu/~traldil/ (L. Traldi).

Preprint submitted to Elsevier 17 July 2009



G then the pivot Gab [3–5,7] is obtained from G by partitioning the vertices
in NG(a) ∪NG(b) into three sets according to whether they are adjacent only
to a, only to b or to both, and then toggling all edges between these sets.

Definition 1 [3] The (vertex-nullity) interlace polynomial of a graph G, de-
noted qN , is defined recursively by

qN(G) =

qN(G− a) + qN(Gab − b), if ab ∈ E(G),

yn, if G = En.

In [5], a two-variable generalization of the vertex-nullity interlace polynomial
was introduced. If S ⊆ V (G) then G[S] is the subgraph of G induced by S;
r(G[S]) and n(G[S]) are the rank and nullity of the adjacency matrix of G[S],
considered over GF (2).

Definition 2 The (two-variable) interlace polynomial of a graph G is

q(G) =
∑

S⊆V (G)

(x− 1)r(G[S])(y − 1)n(G[S]).

Further, the following recursion was shown to be true when ab ∈ E(G).

q(G) = q(G− a) + q(Gab − b) + ((x2 − 1)− 1)q(Gab − a− b).

This reduces to the recursion in Definition 1 when x = 2.

We use standard terminology regarding trees and rooted trees. For a vertex v
in a rooted tree, let p(v) be the parent of v (for I ⊆ V (G), p(I) = ∪v∈Ip(v)),
and c(v) be the children of v. The set of children of p(v) other than v itself
is denoted s(v); its elements are the siblings of v. A rooted tree T is ordered
by assigning an order to the set of children of each parent vertex; non-root
vertices may then have earlier siblings and later siblings. If T is an ordered tree
then its underlying tree is the ordinary unrooted tree obtained by forgetting
the choices of root and child-orders in T.

A subset of V (T ) that contains no adjacent pairs is independent, and a set of
vertices dominates a vertex v if it contains v or contains some neighbor of v.

Definition 3 An earlier sibling cover (or es-cover) in an ordered tree T is
an independent set I that dominates r and has the property that for every
non-root vertex v ∈ I, every earlier sibling of v is dominated by I.

A different description of sets for which qN is a generating function was found
in [1] when the trees considered are caterpillars.
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Definition 4 For integers s and t the es-number cs,t(T ) is the number of es-
covers I in T with |I| = s and |p(I − {r})| = t; that is, cs,t(T ) is the number
of s-element es-covers in T whose non-root elements have precisely t different
parents.

In Section 2 we show that even though the es-numbers are defined for ordered
trees, they are actually independent of the choices of a root and of orders of
the children of parent vertices.

Theorem 5 If T and T ′ are ordered trees whose underlying unrooted trees are
isomorphic, then cs,t(T ) = cs,t(T

′) for all s, t ∈ Z.

In Section 3 we show that the es-numbers give a combinatorial description of
the interlace polynomials of trees.

Theorem 6 If T is a tree then the two-variable interlace polynomial of T is

q(T ) =
∑
s,t

cs,t(T ) · ys−t(y − 1 + (x− 1)2)t.

Theorem 6 implies Theorem 5, so strictly speaking the proof of Theorem 5
in Section 2 is logically unnecessary. We offer the proof anyway because it
is self-contained and lends some insight into the combinatorial significance of
earlier sibling covers, without reference to the interlace polynomial.

Theorem 6 is analogous to the spanning forest expansion of the Tutte poly-
nomial (see, e.g., [10] or [6]). Just as there the number of forests with fixed
numbers of internally and externally active edges is invariant under different
orderings of the edges of a graph, we have here that the es-numbers cs,t(T )
are invariant under different orderings of the vertices of a tree.

Further, we note that setting x = 2 in Theorem 6 implies that the vertex-
nullity polynomial is a generating function for es-covers in trees.

Corollary 7 Let T be a tree, and for each integer s let cs(T ) be the number
of s-element es-covers in T , i.e., cs(T ) =

∑
t cs,t(T ). Then

qN(T ) =
∑
s

cs(T )ys.

Although we focus our attention on trees, the definitions and results above
extend directly to forests. An es-cover in a forest F is simply a set of vertices
I such that for each component tree T of F , I∩V (T ) is an es-cover in T . (The
definition requires the components of F to be ordered individually.) As q is
multiplicative on disjoint unions, the formula of Theorem 6 extends directly
to forests.
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2 Earlier sibling covers

In this section we prove Theorem 5 by showing that the es-numbers of an
ordered tree are invariant under two operations: (a) moving the root along
an edge, and (b) switching the positions of two consecutive siblings in the
ordering. Using multiple applications of these two operations, we can obtain
any ordered tree with a given underlying tree from any other.

(a) We assume that the vertices of T are ordered v1, v2, . . . , vn, with root
r = v1. Suppose that the children of v1 are v2, v3, . . . , vj in order, and those
of v2 are vj+1, vj+2, . . . , vk in order. Let T ′ be the ordered tree obtained from
T by designating v2 as the root rather than v1, designating v1 as the earliest
child of v2, and leaving all other child-orders alone. (See Figure 1.) This is
well-defined because the fact that v1 and v2 are neighbors guarantees that all
other vertices have the same children in T ′ as in T .

v1

v2
v3 v4

. . .
vj

vj+1 vj+2 vk
. . .

v2

→ v1
vj+1 vj+2 vk

. . .

v3 v4 vj
. . .

Fig. 1. Moving the root down an edge

We claim that the earlier sibling covers in T are exactly the es-covers in T ′. To
this end, let I be an es-cover in T . Firstly, since T ′ has the same underlying
tree as T , I must be independent in T ′. Secondly, if I contains v1, then I
dominates v2. If I does not contain v1, then it must contain one of its children
and, by the ordering condition, thus must dominate v2 (the first child). In
either case, I dominates the root in T ′. Lastly, we must show that I satisfies the
ordering condition in T ′. For any vertex v other than v1 and v2, the ordering
of the children of v is the same in T and T ′; hence the ordering property
for children of v in T ′ follows immediately from the same property in T.
Since cT ′(v1) ⊆ cT (v1), the ordering property for children of v1 in T ′ is also
immediate. For the children of v2 in T ′, the ordering property in T guarantees
that if some child of v2, say vi, is in I, then vi′ is dominated by I whenever
j + 1 ≤ i′ < i. Also, v1 is dominated by I since it is the root of T . Thus, the
ordering property holds everywhere in T ′ and so I is an es-cover in T ′. But
applying this switch again we get T back, so the es-covers in T are exactly
those of T ′.

The fact that T and T ′ have the same es-covers is not sufficient for Theorem 5,
because a given es-cover may be counted in different es-numbers in the two
ordered trees. For instance {v1} is counted in c1,0(T ) and c1,1(T

′), because v1
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has no parent in T but v1 is a child of v2 in T ′. The only vertices with different
parents in T and T ′ are v1 and v2, so the only es-covers that are counted in
different es-numbers in T and T ′ are those that contain one of v1, v2 and none
of v3, ..., vk. If I is such an es-cover then I∆{v1, v2} is also, and if I is counted
in cs,t(T ) and cs,t′(T

′) then I∆{v1, v2} is counted in cs,t′(T ) and cs,t(T
′). As

I ↔ I∆{v1, v2} is a one-to-one correspondence between the es-covers I with
I ∩ {v1, ..., vk} = {v1} and those with I ∩ {v1, ..., vk} = {v2}, Theorem 5 is
satisfied.

(b) Now we must show that if we interchange the ordering of two children
of some vertex in T , say vi, then the es-numbers remain unchanged. Let the
children of vi be ordered vj, vj+1, . . . , v`. Consider vk for any k ∈ {j, . . . , `−1}.
We claim that the number of es-covers remains unchanged if we order the
children of x as vj, . . . , vk+1, vk, . . . , v`, leaving all other child-orders the same,
to form an ordered tree T ′. (See Figure 2.) Let I be an es-cover in T and let

vi
...

vj vk vk+1
v`. . . . . . →

vi
...

vj
vk+1

vk v`. . . . . .

... ... ... ... ... ... ... ...
T T ′

Fig. 2. Swapping the ordering of two vertices

vm be the maximal child of vi that is in I. Note that if vm does not exist, i.e.,
c(vi) ∩ I = ∅, then I is certainly an es-cover in T ′. If m ≥ k + 1, then both
vk and vk+1 are dominated by I in both T and T ′. Thus, I is an es-cover in
T ′ (although vk may not be required to be dominated in T ′). If m < k, then
neither vk nor vk+1 is in I, and so I is an es-cover in T ′. Finally, we must deal
with the case when m = k. If vk+1 is dominated by I, then I is still an es-cover
in T ′. However, it may be the case that vk+1 is not dominated by I, and thus
I is not an es-cover in T ′. But since vk+1 is not dominated by I, none of its
neighbors is in I and thus I4{vk, vk+1} is an independent set in T ′. Moreover,
in T ′, vk+1 is the latest child of vi in I and all earlier children are dominated
in I since I is an es-cover in T . Further, I4{vk, vk+1} is not an es-cover in T
since vk+1 ∈ I but vk is not dominated by I. Hence, the number of es-covers
in T ′ is at least the number in T . Applying this switch again we get T back,
so the number of es-covers in T equals the number of es-covers in T ′.

Note further that as T and T ′ have the same root, they have the same parent-
vertex function. Consequently, if I is an es-cover in both T and T ′ then it is
counted in the same es-number in T and T ′. Also, if I is an es-cover in T but
not T ′ and I is counted in cs,t(T ) then I4{vk, vk+1} is counted in cs,t(T

′).
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3 Weighted interlace polynomials

It will be convenient to use the weighted version of the interlace polynomial
introduced in [9]. Consider a graph G with vertex weights, i.e., functions α
and β mapping V (G) into some commutative ring R.

Definition 8 If G is a vertex-weighted graph then the weighted interlace poly-
nomial of G is

qW (G) =
∑

S⊆V (G)

(
∏
v∈S

α(v))(
∏
v 6∈S

β(v))(x− 1)r(G[S])(y − 1)n(G[S]).

The weighted interlace polynomial has several useful properties. For instance,
qW is multiplicative on disjoint unions, as is the original unweighted interlace
polynomial. A more surprising property of the weighted interlace polynomial
is a novel recursive description. As we are interested in trees here, we give only
the recursion for simple graphs; a more general result appears in [9].

Proposition 9 If G is a vertex-weighted simple graph then qW (G) may be
calculated recursively using these two properties.

(1) If a and b are loopless neighbors in G then

qW (G) = β(a)qW (G− a) + α(a)qW ((Gab − b)′),

where (Gab− b)′ is obtained from Gab− b by changing the weights of a to
α′(a) = β(b) and β′(a) = α(b)(x− 1)2.

(2) If En has no edges then

qW (En) =
∏

v∈V (En)

(α(v)(y − 1) + β(v)) .

A tree may be analyzed recursively by pruning its leaves, so for our purposes
the most valuable special case of (1) involves a vertex b of degree one. In this
special case Gab = G and the assertion of (1) is essentially a weighted version
of Proposition 4.12 of [8].

Theorem 6 may be summarized by saying that the definition of q(T ) can be
organized into sub-totals corresponding to earlier sibling covers. These sub-
totals are organized according to the total weight of an es-cover.

Definition 10 Let T be an ordered tree with vertex-weights, and let I be an
es-cover in T . Let
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Ir = {v ∈ I : either v = r or I contains a later sibling of v},
Il = {v ∈ I : v 6= r and I contains no later sibling of v}, and

I ′c = {v 6∈ I : I contains a child of v}

For each vertex v define the I-weight wI(v) as follows:

wI(v) =


β(v) + α(v)(y − 1) if v ∈ Ir
α(v) · ((y − 1)β(p(v)) + (x− 1)2α(p(v))) if v ∈ Il
1 if v ∈ I ′c
β(v) if v /∈ I and v /∈ I ′c.

The product ∏
v∈V (T )

wI(v)

is the total weight of I in T , denoted wT (I).

If T ′ is a subtree of T that contains the root then we presume that the children
of each parent vertex in T ′ are ordered by restricting the order of the children
of that vertex in T . With this convention, it is easy to verify the following.

Lemma 11 Let T be an ordered tree with a leaf ` such that p(`) 6= r 6= `, all
the siblings of ` are leaves, and ` has no later siblings. Further, let T ′ = T − `
and T ′′ = T − `− p(`)− s(`). Then

{es-covers I in T with ` 6∈ I} = {es-covers in T ′}

and

{es-covers I in T with ` ∈ I} = {{`} ∪ s(`) ∪ I with I an es-cover in T ′′}.

We use T to denote both an ordered tree and its underlying unrooted tree.

Theorem 12 If T is an ordered tree with vertex-weights then

qW (T ) =
∑

I an es−cover

wT (I).

Proof. If V (T ) = {r} then I = {r} is the only es-cover and wT (I) = β(r) +
α(r)(y − 1) = qW (T ).

If V (T ) = {r, v} then I1 = {r} and I2 = {v} are the es-covers in T . As wT (I1)
= β(v) · (β(r) +α(r)(y−1)) and wT (I2) = α(v) · ((y − 1)β(r) + (x− 1)2α(r)),
wT (I1)+wT (I2) = β(v)β(r) + β(v)α(r)(y−1) + α(v)β(r)(y−1) + α(v)α(r)(x−
1)2; this agrees with Definition 4.
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Suppose n ≥ 3 and T has only one vertex of degree ≥ 2. Let V (T ) =
{v1, ..., vn} with v1 the unique non-leaf, r ∈ {v1, v2}, and v2, ..., vn listed in
the order used in the ordered tree T . A subset S of V (T ) has rank 2 and
nullity |S| − 2 if v1 ∈ S and |S| ≥ 2; otherwise S has rank 0 and nullity |S|.
The es-covers of T are I1 = {v1} and Ik = {v2, . . . , vk} for 2 ≤ k ≤ n.

If r = v1 then

wT (I1) = (β(v1) + α(v1)(y − 1))
∏
i≥2

β(vi)

is the sum of the contributions of S = ∅ and S = {v1} to Definition 8, and

wT (I2) = α(v2)
(
(y − 1)β(v1) + (x− 1)2α(v1)

)∏
i>2

β(vi)

is the sum of the contributions of S = {v2} and S = {v1, v2} to Definition 8.
If r = v2 then

wT (I2) = (β(v2) + α(v2)(y − 1))
∏
i 6=2

β(vi)

is the sum of the contributions of S = ∅ and S = {v2} to Definition 8, and

wT (I1) = α(v1)
(
(y − 1)β(v2) + (x− 1)2α(v2)

)∏
i>2

β(vi)

is the sum of the contributions of S = {v1} and S = {v1, v2} to Definition 8.
For k > 2

wT (Ik) =

α(vk)
(
(y − 1)β(v1) + (x− 1)2α(v1)

)(k−1∏
i=2

(β(vi) + α(vi)(y − 1))

) n∏
i=k+1

β(vi)


is the sum of the contributions of those S ⊆ {v1, . . . , vk} that contain vk,
regardless of whether r is v1 or v2.

Proceeding inductively, suppose n ≥ 3 and T has more than one vertex of
degree ≥ 2. T has a vertex ` that satisfies the hypotheses of Lemma 11. Let
p(`) = vp, let c(`) = {vi1 , . . . , vik} with i1 < · · · < ik and vik = `, and let

T̂ = T − {vp, vi1 , . . . , vik}. If I is an es-cover in T and ` 6∈ I then ` 6∈ I ′c so
wT (I) = β(`)wT−vn(I). If I is an es-cover in T and ` ∈ I then vi1 , . . . , vik ∈ I,

with vi1 , . . . , vik−1
∈ Ir and vik = ` ∈ Il; also vp ∈ I ′c. Î = I − {vi1 , . . . , vik} is

an es-cover in T̂ and wT (I) is

α(`)
(
(y − 1)β(vp) + (x− 1)2α(vp)

)k−1∏
j=1

(
β(vij ) + α(vij )(y − 1)

)wT̂ (Î).
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Lemma 11 and the inductive hypothesis then imply that∑
wT (I) = β(`)qW (T − `)+

α(`)
(
(y − 1)β(vp) + (x− 1)2α(vp)

)k−1∏
j=1

(
β(vij ) + α(vij )(y − 1)

) qW (T̂ )

= β(`)qW (T − vn) + α(`)qW (T̂ )qW ({`}′)

k−1∏
j=1

qW ({vij})



where {`}′ is the graph with one unlooped vertex ` that has weights α′(`) =
β(vp) and β′(`) = α(vp)(x − 1)2. As qW is multiplicative on disjoint unions

and T vp` − vp is the disjoint union of T̂ and the isolated vertices vi1 , . . . , vik ,
part (a) of Proposition 9 tells us that

∑
wT (I) = qW (T ).

Setting α ≡ 1 and β ≡ 1 we obtain Theorem 6.

Corollary 13 If T is a tree then the (unweighted) interlace polynomial of T
is

q(T ) =
∑

I an es−cover

y|Ir| ·
(
y − 1 + (x− 1)2

)|Il|
.

4 Discussion

The ideas presented in this paper were developed in three discrete steps over
a period of several years. For caterpillars, a different description of qN(T ) as
a generating function was given in [1]. Then the first three authors developed
the definition of earlier sibling covers in general rooted trees; they proved
Corollary 7 and the isomorphism invariance of cs(T ). Later, as the fourth
author studied the weighted version of the interlace polynomial discussed in
[9] he realized that it provided algorithmic techniques that could be used to
improve Corollary 7 to Theorem 6. The invariance proof for cs(T ) needed little
modification to provide the invariance proof for cs,t(T ) given in Section 2.

One question that remains open is whether there is a combinatorial description
of the interlace polynomials of arbitrary graphs. Circuit partitions of 2-in, 2-
out digraphs give the fundamental combinatorial description of the interlace
polynomials of circle graphs [3,4] but for those circle graphs that happen to be
forests the connection between circuit partitions and earlier sibling covers is
not immediate. It is possible to give an algorithmic description of the interlace
polynomials of arbitrary graphs inspired by the ideas of this paper, but its
combinatorial significance is not clear; see [9].

As discussed in [5], it is not generally true that qN is a generating function
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Fig. 3. Two graphs with the same qN polynomial

for independent sets of any kind. For example, consider the two graphs in
Figure 3. On the left is a tree with c4(T ) = 1; it follows that y4 appears in
qN(T ). On the right is the pivot T ab, where a and b are the vertices of degree
3 in T . Remark 18 of [4] tells us that qN(T ) = qN(T ab), even though T ab does
not have four independent vertices.
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