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THE DETERMINANTAL IDEALS OF
LINK MODULES. II

LORENZO TRALDI

Let H be the multiplicative free abelian group of rank m > 1.
Suppose 0-+B->A->IH^>0issί short exact sequence of Z//-mod-
ules, and the module A is finitely generated. Then B is also a finitely
generated Zi/-module, and for any k E Z the determinant^ ideals of A
and B satisfy the equality

for all sufficiently large values of p and q. Furthermore, if this exact
sequence is the link module sequence of a tame link of m components in
S\ then

whenever k>m.

1. Introduction. Let H be the multiplicative free abelian group of rank
m > 1, and ZH its integral group ring; if ε: ZH -» Z is the augmentation
map then its kernel is the augmentation ideal IH of ZH. Following [6], we
will call a short exact sequence

(1) 0-+B->A->IH ~* 0

of Z//-modules and homomorphisms an augmentation sequence, provided
that the Z//-module A is finitely generated. The module B is then also
finitely generated, and so for any k EZ there are well-defined de-
terminantal ideals Ek(A), Ek(B) C ZH.

In [6] we discussed the relationship between the product ideals
Ek(A) - (IH)P and Ek_ X(B) (IH)q for various values of k, p, and q. In the
present paper, instead, we will consider the relationship between the
various quotient ideals Ek{A): (IH)P and Ek_λ(B): (IH)q. (We recall the
definition: if U,VCZH are ideals then the quotient ideal U:V is
{xEZH\xVQ U}.)

At first glance, it may seem that if U C ZH is an ideal the quotient
ideals U:(IH)P and the various product ideals U{IH)q are, in some
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sense, "duals" of each other, but this is not so. For the descending
sequence

U=U- (IH)°D U' ( I H ) 1 D U ( I H ) 2 D •••

of ideals of ZH need not terminate, in general, while since TLH is
noetherian the ascending sequence

U= U:(IH)° Q U:(IHΫ C U:(IH)2 C •••

must, that is, there is a (unique least) p(U) such that

U:(IH)P(U)=U:(IHY \/r>p{U).

We will devote most of our attention to this terminal quotient ideal.

THEOREM (I A). If (\) is an augmentation sequence then for any k E Z

Ek(A): (IH)p{Ek{A)) = Ek_x{B):

It is of interest, then, to determine the integers ρ(Ek(A)) and
p(Ek_ι(B)). Though this seems impracticable in general, we will prove

THEOREM (1.2). //(I) is an augmentation sequence, n E Z, and εEn(A)
= Z, then p(Ek(A)) — 0 whenever k>n. Furthermore, p(Ek_ι(B)) — 0
whenever k > n + (Ύ 1 ) , tfm/ ρ(Ek_x(B)) < « + ( Ύ 1 ) — & whenever n <
k<n + (Ύ 1 ) . Consequently, p(Ek_λ(B)) < ("71) whenever k> n.

(Here(m2l) is the binomial coefficient, and in particular {\) ~ i\) — ®)

If (1) is the module sequence of a tame link L C S3 of m components
(described, e.g., in [1]) then it is known [5] that εEm(A) - Z. (Note: in [5]
the notation Ek(A) = Ek(L) is used in this case.) Combining this with
Theorems (1.1) and (1.2), we obtain

COROLLARY (1.3). //(I) is the module sequence of a tame link L C S3,
then

Ek{Λ) = Ek

whenever k > (7), and

whenever m < k < (™). Consequently,

whenever k>m.
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A special case of this is particularly pleasant: if (1) is the module
sequence of a tame two-component link L C S3 then Ek(A) = Ek_ι(B)
whenever k > 2. Since Eλ{A) = E0(B)IH, and Ek(A) = Ek_x{B) = 0
whenever k < 0, it follows that for any k E Z Ek(A) and Ek_](B) are
equivalent as invariants of L, that is, each ideal determines the other. In
this respect, the behavior of these invariants for two-component links is
analogous to their behavior for knots. (Recall that if m = 1 and (1) is any
augmentation sequence then [6] Ek(A) — Ek_x(B) for every value of k.)

For links of three or more components in S3, the relationship between
the determinantal ideals of the modules A and B appearing in the link
module sequence is more complex; we will discuss this further in §3.

Another result, analogous to Theorem (1.2) (though seemingly of less
use in the application to the module sequences of tame links), is

THEOREM (1.4). // (1) is an augmentation sequence, « G Z , and
εEn_{(B) = Z, then p(Ek_ι(B)) — 0 whenever k>n. Furthermore,
ρ(Ek(A)) = 0 whenever k>n + m—\, and p(Ek(A)) < n + m — 1 — k
whenever n<k<n + m— 1. Consequently, p(Ek(A)) < m — 1 whenever

The author would like to express his gratitude to William S. Massey,
for his stimulating correspondence, and to Sharon Richter, for her draw-
ing.

2. Proofs.

PROPOSITION (2.1). Let U and Vbe ideals ofZH. Then U:(IH)p(υ) =
V: (IH)P(V) if, and only if, there are integers p,q>0 such that U(IH)P

C V and V(IH)q C U.

Proof. First, suppose that U: (IH)p{U) = V: (IH)p(V). Then
U(IH)PiV) C(U:(IH)p(υ))'(IH)p{V) = (V: (IH)p(V)) -(IH)p{V) C V,
and similarly V (IH)p{υ) C U.

Suppose, instead, that there are non-negative integers p and q as
described. Then (U:(IH)p(U))'(IH)p+p(U) C U(IH)P c V, and hence
U:(IH)p(υ) c V:(IH)P+P{U) c V\(IH)p{V\ Similarly, V:{IH)p{V) C
U: (IH)P(U\ so these two ideals coincide. D

Theorem (1.1) follows immediately from Proposition (2.1) and Theo-
rem (1.1) of [6].
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LEMMA (2.2). Let U and V be ideals ofZH, and suppose that ε(U) = Z.
Then U+ V= U+ V {IHf for any k>0.

Proof. Since (IH)° = ZH, certainly U + V = U + V {IHf.

Since ε(U) = Z, U + IH = ZH, and hence U+V={U+V)
{U+ IH) C U + V IHC U+ V. Thus U + V= U+ VIH.

Proceeding inductively, suppose k > 1 and U + V — U + V(IH)k.
Then U + V = U + V (IH)k - (U + V {IH)k) {U + IH) Q U +
V-{IH)k+λ C U+ V, and hence U + V- U+ V {IH)k+i. D

COROLLARY (2.3). Let U C ZH be an ideal with ε(U) = Z. Then
p{U) = 0.

Proof. By definition, (U:(IH)p(U))-(IH)p{U) C U, and hence U=U
+ (U:{IHy(U)) (IH)p(U). By the preceding lemma, then, U=U +
(U:(IH)P(U)), that is, U D U:(IH)p(U\ Since U Q U:{IH)piU\ it fol-
lows that U=U: (IH)p(υ\ and hence p{U) = 0. D

We may now proceed to the proof of Theorem (1.2); suppose (1) is an
augmentation sequence and εEn(A) — Z.

If m = 1, then by Theorem (1.1), of [6] Ek{A) = Ek_x(B) for any
value of k. Also, if k > n then Ek{A) D En{A), so ε^(^4) = Z, so by
Corollary (2.3) p{Ek{A)) = 0.

If m = 2, then by Theorem (1.1)2 of [6] Ek_λ(B)IH C Ek{A) C
Ek_λ{B) for any value of k G Z. lί k > n then ^ ( Λ ) D £n(^ί), so by
Corollary (2.3) p{Ek{A)) = 0. Furthermore, since Ek_λ{B)IH C £ A (^),
Ek{A) = Ek{A) + Ek_ι(B)IH, so by Lemma (2.2) Ek{A) = Ek{A) +
Ek_x{B), that is, Ek(A) D Ek_λ{B); since Ek{A) QEk_x{B), it follows
ίhaXEk{A) = Ek_x{B).

If m > 3 and /t > n then Z = εEn{A) = εEk(A), so by Corollary (2.3)
p(Ek( A)) — 0. As shown in §3 of [6],

where X is a Z//-module with Em_2(X) = 0, £.(Jf) = {IH)™~J for
m - 1 <7 < (?), and E(?)(X) = Z/ί.

I n p a r t i c u l a r , i f k > n + ( Ύ 1 ) t h e n £ ^ , ( 5 ) D £ ' ( ? ) r )

= Ek_r-i}{A) D En(A), so εEk_x{B) = εEn{A) = Z, so by Corollary (2.3)
p{Ek_l{B)) = 0.
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If n<k<n + (m

2~
1), then

Ek_x(B) D Ek_n_x+m(X)En(A) + Em_x(X)Ek(A)

+(lH)k-" Ek(A)).

Since εEn(A) - Z, it follows from Lemma (2.2) that £n(
{IHf~n • Ek(A) = En{A) + Ek(A), so since En(A) c £Λ(Λ) (and hence
En(A) - En(A) + £fc(Λ)) we conclude that

m— 1., til \ _1_

Ek_x(B)D(lH)( 2 ) + "

Since p(Ek(A)) = 0 (as noted earlier), it follows from this and Theorem
(1.1) that

Ek_x(B) D (IH)(m2 )+"~k- [Ek

and hence

hk-\\B) Λ1H) QEk_]

That p(Ek_x(B)) < ( w

2 " 1 ) + « — k follows immediately.

This completes the proof of Theorem (1.2).

Turning to Theorem (1.4), suppose (1) is an augmentation sequence
dLnάεEn__λ{B) = Z.

If m = 1, then by Theorem (1.1), of [6] Ek(A) = Ek__x(B) for any
value of k. If k >n then Ek_λ{B) D En_λ(B), and so εEk_x(B) = Z; by
Corollary (2.3), then, p(Ek_x(B)) = 0.

If m > 2 and & > « then Z = εEn_x(B) = εEk_x(B), so by Corollary
(2.3) p(Ek_x(B)) = 0. Also, by Lemma (2.1) of [6]

In [2] it is shown that E0(IH) = E0(N2(m)) = 0, Ej(IH) = Ej(N2(m)) =
(Z//)"1^ for 1 <> < m, and £M(ΛΪ) = Em(N2(m)) = Zi/. (iV2(w) is a
presentation matrix for 7i7, studied in [2].)

In particular, if k > n + m - 1 then Ek(A) D Ek_m{B)Em(IH) -
Ek_JB)D En_x(B), so εEk(A) = Z, and hence by Corollary (2.3)
p(Ek(A)) = 0.
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If n<k<n + m- 1, then

Ek(A) D Eπ_λ(B)Ek_π+ι(IH) + Ek

~k+n^x-En^{B) + (lH)m~x-Ek_λ{B)

) m - k + " - ι {En_λ{B) + (IH)k-"-Ek.λ(B)).

Since εEn_x(B) — Z, it follows from Lemma (2.2) that

En_λ{B) + {lH)k~nEk^(B) = En_λ{B) + Ek__x(B) = Ek_λ(B);

hence

Ek{A)Ώ{lH)n+m~χ-k-Ek_x{B).

Since p(Ek_x(B)) = 0, it follows from this and Theorem (1.1) that

Ek{A) D (lH)n+m~l~k- (Ek(A) : (IH)P{EΛA))).

We may conclude from this that p(Ek(A)) < n + m — 1 — k.

This completes the proof of Theorem (1.4).

We may note here, without going into detail, that Theorems (1.1),
.(1.2), and (1.4) hold in a broader context, with ZH replaced by an
arbitrary noetherian commutative ring with unity R, and IH replaced by
the ideal of R generated by the elements of some i?-sequence {ru... , r m ) .
(The hypotheses εEn(A) — Z and εEn__ι(B) — Z of Theorems (1.2) and
(1.4) should be replaced by the equivalent hypotheses ZH — En(A) + IH
and ZH = En_λ(B) + IH, respectively, prior to any such generalization.)
An analogous generalization is discussed, in greater depth, in §5 of [6].

3. Links of three or more components. A simple consequence of
Corollary (1.3) is: if (1) is the module sequence of a tame link of m
components in S3, then for k>m the ideal Ek(A) is determined by
Ek_x{B). A natural question to ask, especially in view of the cases m — 1
and m — 2 (discussed in §1) is: does Ek(A), in turn, determine Ek_λ(B),
for k>nfl That the answer to this question is " n o " may be seen by
considering the three-component links 6\ and 8| (as they are named in
Appendix C of [4]). As W. S. Massey has shown, if (1) is the link module
sequence of the former then E3(A) = ZH and E2(B) — IH [3, Example
1], while if (1) is the link module sequence of the latter then £"3(̂ 4) — ZH
= E2(B) [3, Example 2].

Another natural question is: can the result of Theorem (1.1) be made
more definitive for 1 < k < m, as it can for k > m (Corollary (1.3)) and
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k — 1 [2]? Though we shall not answer this question, we will consider an
example of a three-component link for which the relationship between
E2(A) and EX(B) is particularly complex.

FIGURE 1

Pictured in Figure 1 is the link 8 0̂ [4, Appendix C]. The Wirtinger
presentation [4, p. 56] of the fundamental group G of the complement of
this link in S3 is

( * , , x 2 , x 3 9 x 4 9 y l 9 y 2 , zl9 z 2 ; χλzx = zxx2, y2x2 = x3y2,

x4y2 — , zxx4 = x4z2, z2x2 = x2zx

Since any one of the relations in this presentation is redundant, we may
simply delete the seventh. Also, we may remove the fourth relation and
the generator xλ9 replacing any occurrence of xx in another relation by an
occurrence of yxx4y^x\ similarly, we may remove the third relation and
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the generator x3, replacing x3 by z2x4z2

 ι in the remaining relations. What
results, after some simple rewriting of relations, is the presentation

( χ29χ49

= l> Z l = X2

After deleting the first relation and the generator JC4, and replacing x4 by
y1~

ιz1x2z1~Vi i n Λe remaining relations, we may delete the second and
fifth relations and the generators yx and z1? substituting x2

ιy2x2 ϊ°τy\
x2

ιz2x2 for Zj, and obtain the presentation

29

The Alexander matrix M of this presentation [1, §3] is the transpose
of the matrix

'ΓV'3 "

(Here tu t2, and t3 are the elements of G/G' = H determined by the
elements of G represented by x2, y2, and z2, respectively.) If (1) is the
module sequence of the link 8^0, then M is a presentation matrix for the
Z//-module A [I, §3], and hence, in particular, the ideal of ZH generated
by the entries of M is

E2(A) = (1 + + (r, + 1, t2 - 1) (/, - 1).

The matrix M can be factored as a product M = M'' iV2(3), where

\-t2

1 - ί ,

0 \

and
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(Here N2(3) is a matrix discussed by Crowell and Strauss [2], with columns
corresponding to the integers 1, 2, and 3 (in order), and rows correspond-
ing to the pairs 12, 13, and 23 (in order).) It follows [2, p. 106] that the
module B of the link module sequence of 8 0̂ has the presentation matrix

p - ί M>

\

Hi

' 3

+ Ί

- 1 1

l + frV
0

- ' 2

'a) 0

—

1
1)

/

(N3(3) is another matrix discussed in [2]; its columns correspond to the
pairs 12, 13, and 23 (in order).) Thus the ideal of ZH generated by the
determinants of the two-by-two submatrices of P is

In particular, the Z//-modules A and B of the link module sequence
of S3

lQ have the property that

(E2(A): IH)IH = (EX(B): IH)lH

C E2(A) C Eλ{B) C E2(A): //ί = Eλ{B): ///,

in which all three indicated inclusions are strict. The relationship between
E2(A) and EX(B) does not, then, seem to fall into the pattern of the
simple relationships between Ek(A) and Ek_λ{B) for k ψ 2 (namely,
Ek{A) = Ek_x(B) IH for k < 2, and £Λ(4) = ^ _ Ϊ ( 5 ) : /// for ik > 2).
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