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Abstract

For integers n � 1, a � b and s let D(n; a; b; s) be the set of
all lists of integers (x1; :::; xn) with a � x1 � ::: � xn � b andP
xi = s. There is a graph G(n; a; b; s) with vertex-set D(n; a; b; s)

in which two vertices are adjacent if one is stronger than the other in
a natural dice game. In The prevalence of �paradoxical� dice [Bull.
Inst. Combin. Appl. 45 (2005), 70-76] the dice which are isolated
vertices of G(n; a; b; s) are characterized; here we prove that all the
other vertices lie in a single connected component.

1. Introduction

If n is a positive integer then an n-sided generalized die with integer labels is
a listX = (x1; :::; xn) of integers with x1 � x2 � ::: � xn. For integers a � b
and s let D(n; a; b; s) denote the collection of all n-sided dice with a � x1 �
::: � xn � b and

P
xi = s. Let p = p(n; a; b; s) = minfx1j(x1; :::; xn) 2

D(n; a; b; s)g and q = q(n; a; b; s) = maxfxnj(x1; :::; xn) 2 D(n; a; b; s)g;
then a die X = (x1; :::; xn) 2 D(n; a; b; s) has a characteristic vector v =
(vp; :::; vq) given by vj = jfijxi = jgj.

If X;Y 2 D(n; a; b; s) then it is natural to think of playing a game with
X and Y : each die is rolled (i.e., one of the n labels of each is chosen at
random with probability 1=n), and the higher roll wins. X is stronger than
Y if it is more likely that X wins than it is that Y wins; i.e., X is stronger
if jf(i; j)jxi > yjgj > jf(i; j)jxi < yjgj. If neither of X;Y is stronger than
the other then X and Y are tied. An element of D(n; a; b; s) which is tied
with all the other elements of D(n; a; b; s) is balanced. In [4] we showed that
despite the fact that every element of D(n; a; b; s) has the same average roll
s=n, there are surprisingly few balanced dice: if n � 3 and q � p � 2 then
balanced dice must have characteristic vectors of the form (v; w; v; w; :::),
and (consequently) few values of s permit any balanced dice at all. It is
natural to wonder whether the scarcity of balanced dice re�ects a general



scarcity of ties among elements of D(n; a; b; s) or whether it merely re�ects
the strictness of the requirement that balanced dice tie all other elements
of D(n; a; b; s).

Investigating this issue, we have found only one D(n; a; b; s) with n > 3
and q�p > 2 in which most pairs of elements are tied: D(4; 1; 4; 8) has four
elements, and four of the six pairs are tied. In other examples tied pairs
are relatively rare, though they are certainly more common than balanced
dice. For instance, in the various dice families D(6; 1; 6; s) with 6 � s � 36
there are 5150 pairs of distinct dice, and only 949 pairs are tied. Of the
462 dice in these families only seven are balanced, and all but four of the
455 non-balanced dice have the property that most of their contests with
other elements of D(6; 1; 6; s) are not tied. These examples suggest several
questions which we have not been able to answer.

Question 1. Is D(4; 1; 4; 8) the only example of a D(n; a; b; s) with
n > 3 and q � p > 2 in which most pairs of elements are tied? If not, how
many such examples are there?

Question 2. What is the asymptotic behavior of the relative proportion
of ties among elements of D(n; a; b; s) as n; s and q � p grow?

Question 3. What is the asymptotic behavior of the relative proportion
of elements of D(n; a; b; s) which tie most others as n; s and q � p grow?

The theorem we present here does not answer any of these questions,
but it is nevertheless a striking refutation of the �common sense�expecta-
tion that elements of D(n; a; b; s) �should�usually tie. Let G(n; a; b; s) be
the undirected graph with vertex-set D(n; a; b; s) in which two vertices are
adjacent if and only if they are not tied. Balanced dice are isolated vertices
in G(n; a; b; s), of course, but it turns out that they are the only ones not
connected to the rest: all the other vertices of G(n; a; b; s) lie in a single
component.

Theorem 1. The graph G(n; a; b; s) is connected, except for isolated
vertices.

There are many interesting questions to ask about the dice graphs
G(n; a; b; s). What is the largest possible diameter of a component of
G(n; a; b; s)? (Our proof of Theorem 1 shows that it cannot be more than
6.) Is there a G(n; a; b; s) with more than two edges whose nontrivial com-
ponent fails to be 2-connected? How highly connected are these graphs in
general? There are also many interesting questions about the directed dice
graphs �(n; a; b; s), in which each edge of G(n; a; b; s) is directed from the
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weaker to the stronger of its end-vertices. How common are sources and
sinks? How common are vertices with the same in- and out-degree? It is
well known [1, 2, 3] that �(n; a; b; s) may contain directed cycles; some di-
rected dice graphs are covered by cycles (like�(6; 1; 6; 17)), some are acyclic
(like �(6; 1; 6; 13)), and some are neither acyclic nor covered by cycles (like
�(6; 1; 6; 18)). Is it possible to characterize the 4-tuples (n; a; b; s) which
give rise to directed graphs �(n; a; b; s) which are covered by cycles?

The rest of the paper is a rather long proof of Theorem 1, with many
special cases. The special cases presented in Sections 2 and 5 are interesting,
but those discussed in Sections 3 and 4 are veri�ed through rather tedious
detailed arguments. We hope that a clever reader will �nd a more concise
proof, which might provide more insight into the properties of dice graphs.

2. q � p � 2

This is the most striking special case of Theorem 1. When q � p � 2,
it turns out that G(n; a; b; s) is either edgeless or complete � if any two
distinct elements of D(n; a; b; s) are tied then they all are tied.

Proposition 2.1. If q(n; a; b; s) � p(n; a; b; s) � 2 then the stronger
relation on D(n; a; b; s) is either trivial or a linear order.

Proof. If q � p � 1 then D(n; a; b; s) has only one element.

If q � p = 2 then for a die X 2 D(n; a; b; s) with characteristic vector
(vp; vp+1; vq) let the strength of X be

str(X) =
vq � vp

vp + 2vp+1 + vq
:

As noted in [5], str(X) > str(Y ) if and only if X is stronger than Y .
The proof is not di¢ cult: if Y = (y1; :::; yn) has characteristic vector
(wp; wp+1; wq) then

1

2
(vp + 2vp+1 + vq)(wp + 2wp+1 + wq)(str(X)� str(Y ))

=
1

2
(wp + 2wp+1 + wq)(vq � vp)� (vp + 2vp+1 + vq)(wq � wp)

= wpvq + wp+1vq + vp+1wp � wp+1vp � wqvp � vp+1wq

= jf(i; j)jxi > yjgj � jf(i; j)jxi < yjgj :
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Observe that

str(X) =
s� n(p+ 1)
n+ vp+1

:

If s = n(p+ 1) it follows that str(X) = 0 8X 2 D(n; a; b; s), and hence all
the elements of D(n; a; b; s) are tied. If s 6= n(p+ 1) then str(X) = str(Y )
if and only if vp+1 = wp+1; as vp + vp+1 + vq = n = wp + wp+1 + wq and
pvp + (p + 1)vp+1 + qvq = s = pwp + (p + 1)wp+1 + qwq, vp+1 = wp+1 if
and only if X = Y . That is, if s 6= n(p + 1) then str : D(n; a; b; s) ! Q is
injective, and consequently stronger is a linear order on D(n; a; b; s). �

3. n � 4

Proposition 3.1. If n � 2 then every element of D(n; a; b; s) is balanced.

Proof. If n = 1 then D(n; a; b; s) has only one element. If n = 2
then two distinct elements of D(n; a; b; s) are (x1; x2) and (y1; y2) with
x1 < y1 � y2 < x2; clearly they are tied. �

Proposition 3.2. If n = 3 then G(n; a; b; s) is connected, except for
isolated vertices. Moreover, every component has diameter � 4.

Proof. Suppose that s = 3k+1. Certainly 3p � s � 3q and hence p � k
and k + 1 � q; consequently (k; k; k + 1) 2 D(n; a; b; s). It turns out that
(k; k; k + 1) is not tied with any other element of D(n; a; b; s). To see why,
suppose X = (x1; x2; x3) 2 D(n; a; b; s). If x1 � k then X = (k; k; k + 1).
If x1 < k and x2 � k then X is weaker than (k; k; k + 1), because X loses
at least four rolls (all three rolls of x1 and also a roll of x2 against k + 1)
and X wins no more than three rolls (the three rolls of x3). If x1 < k < x2
then X is stronger than (k; k; k + 1).

Similarly, if s = 3k + 2 then (k; k + 1; k + 1) does not tie any other
element of D(n; a; b; s), and consequently G(n; a; b; s) has diameter � 2.

Suppose s = 3k. If p � k � 1 and q � k + 1 then D(n; a; b; s) �
f(k; k; k); (k � 1; k; k + 1)g and every element is balanced.

If p � k� 2 or q � k+2 then D(n; a; b; s) contains (k; k; k) and at least
one X 2 f(k � 1; k � 1; k + 2) , (k � 2; k + 1; k + 1)g; X is not tied with
(k; k; k), so they are adjacent in G(n; a; b; s). If Y is a vertex of G(n; a; b; s)
which is not adjacent to (k; k; k) then the die Y is tied with (k; k; k) and
hence Y = (y1; k; 2k�y1). If y1 < k�2 or y1 = k�1 then Y is weaker than
(k � 2; k + 1; k + 1) and stronger than (k � 1; k � 1; k + 2). Consequently
every vertex Y 6= (k�2; k; k+2) of G(n; a; b; s) is adjacent to an element of
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f(k; k; k); Xg. The die (k�2; k; k+2) is balanced if p � k�3 and q � k+3;
otherwise at least one of (k�4; k+2; k+2); (k�2; k�2; k+4) is a vertex of
G(n; a; b; s) adjacent to both (k� 2; k; k+ 2) and (k; k; k). As the distance
between (k; k; k) and an arbitrary non-isolated vertex of G(n; a; b; s) cannot
be more than 2, the diameter of a component of G(n; a; b; s) cannot be more
than 4. �

Proposition 3.3. If n = 4 then G(n; a; b; s) is connected, except for
isolated vertices. Moreover, every component has diameter � 4.

Proof. Suppose �rst that s = 4k + 1; then 4p � s � 4q and hence
necessarily p � k < q. We claim that the distance between (k; k; k; k + 1)
and an arbitrary vertex of G(n; a; b; s) cannot be more than 2. If p � k� 2
and q � k + 3 then the claim is veri�ed exhaustively. First, note that
(k; k; k; k + 1) is adjacent to (k � 1; k; k + 1; k + 1), (k � 1; k; k; k + 2),
(k� 1; k� 1; k+1; k+2), (k� 2; k+1; k+1; k+1), (k� 2; k; k+1; k+2),
and (k � 1; k � 1; k; k + 3). There are only four other possible elements
of D(n; a; b; s). One of them, (k � 2; k � 1; k + 2; k + 2), is weaker than
(k�1; k; k; k+2). The other three, (k�2; k; k; k+3), (k�2; k�1; k+1; k+3)
and (k � 2; k � 2; k + 2; k + 3), are all neighbors of (k � 1; k � 1; k; k + 3).

Suppose now that p < k� 2 or q > k+3, and let X = (x1; x2; x3; x4) 2
D(n; a; b; s). If x1 > p or x4 < q then we may assume inductively that the
distance between X and (k; k; k; k + 1) is not more than 2. If x3 � k and
p � k � 2 then X is weaker than (k � 2; k + 1; k + 1; k + 1). If x3 � k
and p � k � 1 then the assumption that x4 = q > k + 3 implies that
X = (k � 1; k � 1; k � 1; k + 4). In any case, if x3 � k then the claim is
satis�ed.

If x3 > k and x2 � k then X is stronger than (k; k; k; k + 1). If x3 > k
and x2 = k � 1 then either x3 > k + 1, in which case p = x1 � k � 2 and
X is stronger than (k � 2; k + 1; k + 1; k + 1), or x3 = k + 1, in which case
X is weaker than (k; k; k; k + 1).

Suppose x3 > k and x2 < k � 1. If k � x2 > x3 � k then it must be
that x4 > x3; it follows that Y = (x1 + 1; x2 + x3 � k; k � 1; x4) is weaker
than (k; k; k; k + 1) and stronger than X. If k � x2 � x3 � k then consider
Y = (x1; k; x3 � k + x2 + 1; x4 � 1). Y is stronger than (k; k; k; k + 1),
because it cannot lose more than 5 rolls (the four rolls of x1 and a roll of
k against k + 1) and it must win at least 6 rolls (those of x3 � k + x2 + 1
or x4 � 1 against k). If x1 < x2 then X is stronger than Y , because X
wins at least 8 of the 16 rolls (all four rolls of x4, at least three rolls of
x3, and the roll of x2 against x1) and at least one roll is tied. If x1 = x2
then k � x1 = k � x2 � x3 � k � x4 � k and s = 4k + 1 imply that
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x3 � k = k � x2 � 2 and x4 = x3 + 1, so Y = (x1; k; k + 1; x3). Once again
X is stronger than Y , because X wins at least 7 rolls (four of x4 and three
of x3) and at least three rolls are tied (two of x1 = x2 and one of x3).

This completes the proof when s = 4k + 1. If s = 4k + 3 then note
that (x1; x2; x3; x4) 7! (�x4;�x3;�x2;�x1) de�nes a stronger -reversing
bijection between D(n; a; b; s) and D(n;�b;�a;�s), which gives an isomor-
phism between G(n; a; b; s) and G(n;�b;�a;�s); as �s = 4(�k � 1) + 1,
the argument given above applies to G(n;�b;�a;�s).

Suppose now that s = 4k + 2. We claim that the distance between
(k; k; k + 1; k + 1) and a vertex of G(n; a; b; s) representing a non-balanced
die cannot be more than 2. If p � k � 2 and q � k + 2 then the claim is
veri�ed by �rst noting that (k; k; k+1; k+1) is adjacent to (k; k; k; k+2),
(k�1; k+1; k+1; k+1), (k�2; k+1; k+1; k+2) and (k�2; k; k+2; k+2).
The only other dice which might appear are (k�1; k�1; k+2; k+2), which
is adjacent to (k; k; k; k + 2), and (k � 1; k; k + 1; k + 2), which is balanced
unless p = k � 2, in which case it is adjacent to (k � 2; k; k + 2; k + 2).

Suppose now that p < k� 2 or q > k+2, and let X = (x1; x2; x3; x4) 2
D(n; a; b; s). If x2 > k then X is stronger than (k; k; k; k+2), and if x3 � k
then X is weaker than (k � 1; k + 1; k + 1; k + 1).

Suppose x2 � k < x3. If x2 = k and x3 > k+1 then X is stronger than
(k; k; k + 1; k + 1). If x2 = k, x3 = k + 1 andx1 � k � 2 then X is weaker
than (k�1; k+1; k+1; k+1). If x2 = k, x3 = k+1 and x1 � k�1 then X
is either (k; k; k+1; k+1) or (k�1; k; k+1; k+2). As p < k�2 or q > k+2,
G(n; a; b; s) has at least one vertex adjacent to both (k � 1; k; k + 1; k + 2)
and (k; k; k+1; k+1), namely (k�3; k+1; k+2; k+2) or (k�1; k; k; k+3).

Suppose x2 < k < x3. If x3 � k+2 then (k; k; k; k+2) is stronger than
X. If x3 � k+3 and x2 � k�2 thenX is stronger than (k�2; k; k+2; k+2).

Suppose x3 � k + 3 and x2 � k � 3. If x3 � k > k � x2 then let
Y = (x1; k; x3+x2� k+1; x4� 1); Y is stronger than (k; k; k+1; k+1). If
x4� 1 6= x3 then X and Y share exactly one label, so one must be stronger
than the other (they cannot share 15 decisive rolls evenly). If x4 � 1 = x3
then X is stronger than Y , as Y cannot win more than 6 rolls against X
(x1 cannot win at all, and no label of Y is greater than x3 or x4) and X
wins at least 7 rolls against Y (x4 wins four rolls and x3 wins three). If
x3 � k � k � x2 then let Z = (x1 + 1; x2 + x3 � k � 1; k; x4); Z is weaker
than (k; k; k + 1; k + 1). If x1 + 1 6= x2 then X and Z share exactly one
label and hence cannot tie. If x1 + 1 = x2 then Z loses 6 rolls against X
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(three against x4 and three against x3) and wins at least 7 (four against
x1, three against x2 and perhaps x4 against x3), so Z is stronger than X.

Finally, suppose s = 4k. We claim that the distance from (k; k; k; k)
to a vertex of G(n; a; b; s) representing a non-balanced die cannot be more
than 2. If p � k � 1 and q � k + 1 the claim is vacuous �all the elements
of G(n; a; b; s) are balanced. If p � k� 2 and q � k+2 the claim is veri�ed
by observing that (k � 1; k � 1; k + 1; k + 1) is balanced, that (k; k; k; k)
is adjacent to (k � 1; k � 1; k; k + 2) and (k � 2; k; k + 1; k + 1), and that
both of the latter are adjacent to (k � 1; k; k; k + 1), (k � 2; k; k; k + 2),
(k � 2; k � 1; k + 1; k + 2) and (k � 2; k � 2; k + 2; k + 2).

Suppose p < k � 2 or q > k + 2, and let X = (x1; x2; x3; x4) 2
D(n; a; b; s). X is adjacent to (k; k; k; k) if x2 > k, or x3 < k, or precisely
one of x2; x3 is equal to k. If x2 = k = x3 and X 6= (k; k; k; k) then X is
stronger than (k� 1; k� 1; k; k+2) and weaker than (k� 2; k; k+1; k+1).
It remains to consider X with x2 < k < x3.

Suppose x2 = k�1 and k < x3. If p � k�2 then q > k+2 implies that
Y = (k � 1; k � 1; k � 1; k + 3) 2 D(n; a; b; s); Y is weaker than (k; k; k; k)
and either weaker than X (if x1 = k�1) or stronger than X (if x1 = k�2).
Suppose p < k � 2. Then Z = (k � 3; k + 1; k + 1; k + 1) 2 D(n; a; b; s);
Z is stronger than (k; k; k; k). If x3 > k + 1 then X is stronger than Z. If
x3 = k + 1 and x4 > k + 3 then X is stronger than Y ; if x3 = k + 1 = x4
then X is weaker than Z; if x3 = k + 1 and x4 = k + 2 then X is stronger
than Z. If x3 = k+1 and x4 = k+3 then X = (k� 3; k� 1; k+1; k+3) is
balanced for p � k�4 and q � k+4, stronger than (k�2; k�2; k�1; k+5)
for q � k + 5, and weaker than (k � 5; k + 1; k + 2; k + 2) for p � k � 5.

If x2 < k and x3 = k+ 1 then very similar arguments show that if X is
not balanced then the distance between X and (k; k; k; k) in G(n; a; b; s) is
no more than 2.

It remains to considerX with x2 < k�1 and x3 > k+1. If k�x2 � x3�k
then let Y = (x1; k; x3 � k + x2 + 1; x4 � 1); Y is stronger than (k; k; k; k).
If x1 < x2 then Y is weaker than X because it loses at least 8 rolls (four
against x4, at least three against x3, and x1 against x2) and cannot win
more than 7. If x1 = x2 then it must be that x3 = x4; it follows again
that X is stronger than Y . Similarly, if k� x2 > x3� k then X is adjacent
to (x1 + 1; x2 � k + x3 � 1; k; x4) and hence the distance between X and
(k; k; k; k) in G(n; a; b; s) is no more than 2. �
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4. s � (n� 3)p+ 3q

Proposition 4.1. If n � 5, q�p � 3 and s � (n�2)p+2q then G(n; a; b; s)
is connected, except for isolated vertices. Moreover, every component has
diameter � 4.

Proof. The de�nitions of p and q imply that s � (n � 1)p + q. If
s = (n � 1)p + q then (p; p; :::; p; q) is weaker than every other element of
D(n; a; b; s).

Suppose (n� 1)p+ q < s � (n� 2)p+2q and n � 7. If X = (x1; :::; xn)
and Y = (y1; :::; yn) have xn�2 = p and yn�2 > p then X loses at least
3(n� 2) rolls against Y , and wins no more than 2n; 3(n� 2) > 2n, so X is
weaker than Y . Every element of D(n; a; b; s) is either such an X or such
a Y , and there are dice of both types; hence G(n; a; b; s) is connected and
its diameter is no more than 2.

Suppose (n � 1)p + q < s � (n � 2)p + 2q and n 2 f5; 6g. If X =
(x1; :::; xn) and Y = (y1; :::; yn) have xn�2 = p and yn�3 > p then X loses
at least 4(n� 2) rolls against Y , and wins no more than 2n; 4(n� 2) > 2n,
so X is weaker than Y . Such Y exist because s � (n�1)p+ q+1 � np+4,
and such X exist because s � (n�2)p+2q. To complete the proof it su¢ ces
to show that an arbitrary non-balanced Z = (z1; :::; zn) 2 D(n; a; b; s) with
zn�3 = p < zn�2 is adjacent to at least one such Y or X.

Suppose n = 6; then Z = (p; p; p; z4; z5; z6) with z4 > p. If z6 � p + 3
then Z is weaker than Y = (p + 1; p + 1; p + 1; z4; z5; z6 � 3); the labels
of Y should be reordered as (p + 1; p + 1; p + 1; z4; z6 � 3; z5), (p + 1; p +
1; p+ 1; z6 � 3; z4; z5) or (z6 � 3; p+ 1; p+ 1; p+ 1; z4; z5) if necessary. It�s
impossible for z6 to be less than p + 2, because s > np + 3; the only
remaining possibility is that z6 = p+ 2. If z5 = p+ 1 and z4 = p+ 1 then
X = (p; p; p; p; p+2; p+2) is weaker than Z, and if z5 = p+2 and z4 = p+1
then X = (p; p; p; p; p+2; p+3) is weaker than Z. Finally, if z5 = p+2 and
z4 = p + 2 then Z = (p; p; p; p + 2; p + 2; p + 2) is balanced for q � p = 3,
and stronger than X = (p; p; p; p; p+ 2; p+ 4) for q � p � 4:

Suppose now that n = 5; then Z = (p; p; z3; z4; z5) with z3 > p. If
z5 � 1 > z4 then Z is weaker than Y = (p; p + 1; z3; z4; z5 � 1). If z5 =
z4 > z3 + 1 then Y = (p + 1; p + 1; z3; z4 � 2; z5) is stronger than Z. If
z5 = z4 � z3 + 1 then Y = (p+ 1; p+ 1; z3; z4 � 1; z5 � 1) is weaker than Z
unless z5 = z4 = z3+1 = p+2, in which case Z = (p; p; p+1; p+2; p+2) is
stronger than X = (p; p; p; p+2; p+3). (The labels of Y should be reordered
if necessary.) If z5�1 = z4 = z3 then Y = (p; p+1; z3; z4; z4) is adjacent to
Z. Suppose z5�1 = z4 > z3. If z3 > p+2 then Y = (p+1; p+1; z3�2; z4; z5)
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is stronger than Z; if z3 = p+2 then Y = (p+1; p+1; p+1; z4; z4) is stronger
than Z; and if z3 = p+ 1 then X = (p; p; p; z5; z5) is weaker than Z. �

If X = (x1; :::; xn) 2 D(n; a; b; s) and p � k � q then let fX(k) give the
win-loss di¤erence of a roll of k against X:

fX(k) = jfijxi < kgj � jfijxi > kgj :

For Y = (y1; :::; yn) 2 D(n; a; b; s) let fX(Y ) =
Pn

i=1 fX(yi). Then fX(Y )
is positive, negative or 0 according to whether X is weaker than Y , stronger
than Y , or tied with Y .

Lemma 4.2. Suppose n � 5, q � p � 3 and (n � 2)p + 2q < s �
(n � 3)p + 3q. Suppose Z 2 D(n; a; b; s) ties all the non-balanced dice
X = (x1; :::; xn) 2 D(n; a; b; s) such that xn�3 = p and xn � q � 1, and Z
also ties all the non-balanced dice Y = (y1; :::; yn�1; q) 2 D(n; a; b; s) such
that yn�4 = p < yn�3 and yn�1 � q � 1. Then Z is balanced.

Proof. Let � = s � 2q � (n � 3)p; then p < � � q. We claim that
if Z ties all the dice X described in the statement of the lemma then
fZ(� +1)� fZ(�) = fZ(q)� fZ(q� 1) for all � with � � � < q; if � � q� 1
then there is nothing to prove. If � < q � 1 then for � � � � q � 1 let
X0
� = (p; :::; p; � ; q + � � � ; q) and X1

� = (p; :::; p; � + 1; q + � � � ; q � 1) 2
D(n; a; b; s), with labels reordered if necessary. As Z ties both X0

� and X
1
� ,

fZ(X
0
� ) = 0 = fZ(X

1
� ) and hence fZ(�) + fZ(q) = fZ(� + 1) + fZ(q � 1).

We claim that similarly, if Z ties X0
� and all the dice Y described in the

statement of the lemma then fZ(� + 1)� fZ(�) = fZ(q)� fZ(q� 1) for all
� with p � � < �. If p � � < � then let Y 0� = (p; :::; p; � ; p+�� � ; q; q) and
Y 1� = (p; :::; p; � +1; p+ �� � ; q� 1; q) 2 D(n; a; b; s), with labels reordered
if necessary. Note that Y 0p = (p; :::; p; �; q; q) = X0

� is not one of the Y
described in the statement, but every other Y i� is. As Z ties both Y

0
� and

Y 1� , fZ(Y
0
� ) = 0 = fZ(Y

1
� ) and hence fZ(�)+fZ(q) = fZ(�+1)+fZ(q�1).

Combining the two claims, we see that fZ(� + 1) � fZ(�) = fZ(q) �
fZ(q � 1) whenever p � � � q � 1. Theorem 2 of [4] implies that Z is
balanced. �

Proposition 4.3. If n � 5, q � p � 3 and (n � 2)p + 2q < s �
(n � 3)p + 3q then G(n; a; b; s) is connected, except for isolated vertices.
Moreover, every component has diameter � 6.

Proof. Every non-balanced die is adjacent to at least one of the dice
X;Y described in Lemma 4.2, so to prove this proposition it su¢ ces to

9



show that there are W;W 0 2 D(n; a; b; s) such that every die X or Y of
Lemma 4.2 is adjacent to at least one of W;W 0 and some die is adjacent
to both W and W 0. In most cases we show that there is a single die W
adjacent to all the X and Y of Lemma 4.2.

We begin the proof with an initial observation. Consider any die W =
(w1; :::; wn) 2 D(n; a; b; s) with wn�6 > p; as s � np+2(q�p)+1 � np+7,
such dice W exist for n � 7. Against a die X = (x1; :::; xn) with xn�3 = p,
such a W wins at least 7(n � 3) rolls and loses no more than 3n; if n � 7
then 7(n� 3) > 3n so W is stronger than X. Against a die Y = (y1; :::; yn)
with yn�4 = p, such a W wins at least 7(n�4) rolls and loses no more than
4n; if n � 10 then 7(n � 4) > 4n so W is stronger than Y . If n � 10 this
observation completes the proof.

Suppose n = 9. If s � np > 7 then there is a die W = (w1; :::; w9)
with w2 > p. Against a die Y = (y1; :::; y9) with y5 = p, W wins at
least 40 of the 81 possible rolls; moreover Y cannot win any of the rolls
of y1 = y2 = y3 = y4 = y5 = p against w1, so Y cannot win more than
36 rolls; hence W is stronger than Y . If s � np = 7 then consider W =
(p; p; p + 1; :::; p + 1); against a die Y = (y1; :::; y9) with y5 = p, W wins
precisely 35 of the 81 possible rolls, so if W and Y are tied then Y also
wins 35 rolls. Consequently, if W and Y are tied then there are precisely
11 tied rolls. There cannot be an odd number of tied rolls involving the
label p, as W has precisely two labels equal to p, so if W and Y are tied
then Y must have at least one label equal to p + 1. But there are 8 tied
rolls involving the label p, which occurs twice on W and four times on Y ,
and there cannot be fewer than 7 tied rolls involving the label p+1, which
appears 7 times on W . Hence there cannot be precisely 11 tied rolls, so W
is adjacent to Y .

Suppose n = 8 and s�np � 8. Then there is a dieW = (w1; :::; w8) with
w1 > p; as s � (n� 3)p+ 3q we may choose such a W so that w1 = p+ 1.
Against a die Y = (y1; :::; y7; q) with y4 = p, W wins every roll involving
a label p of Y , so Y can only tie W if w8 < y5. Consequently if there is
any Y as described in Lemma 4.2 which ties W then w8 < q, and hence
W 0 = (p; w2; :::; w7; w8 + 1) 2 D(n; a; b; s). If Y ties both W and W 0 then
0 = 0�0 = fY (W )�fY (W 0) = fY (p+1)+fY (w8)�fY (p)�fY (w8+1) =
fY (p+1)�fY (p)+fY (w8)�fY (w8+1). As y4 = p, fY (p+1)�fY (p) � 4;
hence fY (w8 + 1) � fY (w8) � 4 too. Y has no label equal to w8, so
fY (w8 + 1)� fY (w8) � 4 implies that Y must have at least 4 labels equal
to w8 + 1. Y has four labels equal to p and at least one label equal to
q; w8 + 1 > p so Y must have four labels equal to q, an impossibility as
s < 4q+(n�4)p. Consequently every Y described in Lemma 4.2 is adjacent
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to at least one of W;W 0. As noted in the initial observation of the proof,
W and W 0 are both stronger than X0

� = (p; p; p; p; p; �; q; q).

Suppose instead that n = 8 and s� np = 7; as q � p � 3 and s� np >
2(q � p) it must be that q � p = 3. A die Y = (y1; :::; y7; q) as described
in Lemma 4.2 has y7 � q � 1 = p+ 2, and hence can only be (p; p; p; p; p+
1; p+ 1; p+ 2; p+ 3). This die is weaker than W = (p; p+ 1; :::; p+ 1).

Suppose n = 7, and let W 0 = X0
� = (p; p; p; p; �; q; q). A die Y =

(p; p; p; y4; y5; q; q) as described in Lemma 4.2 is stronger thanW 0. Consider
a die Y = (p; p; p; y4; y5; q�1; q) as described in Lemma 4.2. If � < q�1 then
W 0 is weaker than Y , and if � = q then W 0 is stronger than Y . Suppose
� = q � 1. If q � p = 3 then Y = (p; p; p; p+ 1; p+ 2; p+ 2; p+ 3) is weaker
than W = (p + 1; p + 1; p + 1; p + 1; p + 1; p + 1; p + 2). If q � p = 4 then
Y 2 f(p; p; p; p+1; p+3; p+3; p+4); (p; p; p; p+2; p+2; p+3; p+4)g; Y is
weaker than W = (p+ 1; p+ 1; p+ 1; p+ 1; p+ 1; p+ 2; p+ 4). If q � p � 5
then W = (p + 1; p + 1; p + 1; p + 1; q � 4; q � 1; q) is stronger than Y . As
W is stronger than W 0 in each case, this su¢ ces.

If n � 6 then we do not rely on the initial observation given in the
second paragraph of the proof. We prove instead that the distance between
X0
� and any other die X or Y of Lemma 4.2 is no more than 2.

Suppose n = 6; then X0
� = (p; p; p; �; q; q). If X = (p; p; p; x4; x5; x6)

then either x5 = q, in which case X = X0
�, or x5 < q, in which case X

is weaker than X0
�. Suppose Y = (p; p; y3; y4; q; q) has y3 > p; then Y is

stronger than X0
� unless � = q. If � = q then (p+1; p+1; p+1; q�2; q�1; q)

is stronger than both X0
� and Y unless y3 = y4 = p+ 2, in which case Y is

balanced. Suppose now that Y = (p; p; y3; y4; q � 1; q) has y3 > p. If � = q
then Y is weaker than X0

�. If � = q � 1 > y4 then Y is weaker than X0
�; if

� = q� 1 � y4 then Y = (p; p; p+1; q� 1; q� 1; q) and X0
� are both weaker

than (p+ 1; p+ 1; p+ 1; q � 2; q � 1; q � 1) unless q � p = 3, in which case
Y is balanced. If � < q � 1 and � � y4 then Y is stronger than X0

�, and if
y4 < � < q � 1 then (p+ 1; p+ 1; y3; y4; q � 3; q) is stronger than both X0

�

and Y .

Finally, suppose n = 5; then X0
� = (p; p; �; q; q). If X = (p; p; x3; x4; x5)

then either x4 = q, in which case X = X0
�, or x4 < q, in which case X is

weaker than X0
�. If Y = (p; y2; y3; q; q) has y2 > p then Y is weaker than

X0
� if � = q and stronger than X

0
� if � < q. Suppose Y = (p; y2; y3; q� 1; q)

has y2 > p. Y is weaker than X0
� if � � q � 1, and if � < q � 2 then both

Y and X0
� are stronger than (p; p; � + 1; q � 1; q). If � = q � 2 6= y3 then

X0
� is stronger than Y or weaker than Y according to whether � > y3 or

� < y3. If � = q � 2 = y3 = y2 then Y is stronger than X0
�. Suppose
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� = q � 2 = y3 > y2. Then y2 = p + 1, so Y = (p; p + 1; q � 2; q � 1; q); if
q � 2 = p + 2 then Y is balanced. If q � 2 > p + 2 then (p + 2; p + 2; q �
2; q � 2; q � 2) is weaker than both X0

� and Y , and if q � 2 = p + 1 then
X0
� = (p; p; p+1; p+3; p+3) and Y = (p; p+1; p+1; p+2; p+3) are both

weaker than (p+ 1; p+ 1; p+ 1; p+ 2; p+ 2). �

5. The general case

So far we have veri�ed Theorem 1 for n � 4, for q � p � 2, and for
greater values of n and q � p when s � (n � 3)p + 3q. Observe that if
s > n

2 (p + q) then the map (x1; :::; xn) 7! (p + q � xn; :::; p + q � x1)
de�nes a stronger -reversing bijection between D(n; a; b; s) = D(n; p; q; s)
and D(n; p; q; n(p + q) � s). This bijection gives an isomorphism between
G(n; a; b; s) and G(n; p; q; n(p + q) � s), so it su¢ ces to prove Theorem
1 under the hypothesis that s � n

2 (p + q). In particular, having veri�ed
Theorem 1 for s � (n� 3)p+ 3q we need not concern ourselves any longer
with n 2 f5; 6g.

It remains to prove Theorem 1 when n � 7, q�p � 3 and (n�3)p+3q <
s � n

2 (p + q). The proof consists of three lemmas, two of which are valid
in greater generality.

Lemma 5.1. Suppose that X 2 D(n; a; b; s) has characteristic vector
(vp; :::; vq), and suppose there is a j 2 fp+1; :::; q�1g such that vj�1 6= vj+1
and vj � 2. Then X has a neighbor X 0 in G(n; a; b; s) such that every
Y 2 D(n; a; b; s) with di¤erent numbers of labels equal to j � 1 and j +1 is
adjacent to X or X 0.

Proof. Let X 0 be the die obtained from X by replacing two labels equal
to vj with a pair of labels, one equal to vj�1 and the other equal to vj+1.
The characteristic vector of X 0 is then (v0p; :::; v

0
q) = (v1; :::; vj�2; vj�1 +

1; vj � 2; vj+1 + 1; vj+2; :::; vq).

Suppose Y 2 D(n; a; b; s) has characteristic vector (w1; :::; wq), and re-
call that fY (k) gives the win-loss di¤erence of a roll of k against Y :

fY (k) = jfijyi < kgj � jfijyi > kgj

=
k�1X
i=p

wi �
qX

i=k+1

wi:

12



Then

fY (X)� fY (X 0) =

qX
k=p

vkfY (k)�
qX

k=p

v0kfY (k)

= 2fY (j)� fY (j � 1)� fY (j + 1)

= wj�1 � wj+1:

Consequently if wj�1 6= wj+1 then fY (X) 6= fY (X 0) and hence at least one
of fY (X); fY (X 0) is nonzero, so Y cannot tie both X and X 0. In particular,
if we take Y = X 0 and note that (like every die) X 0 ties itself, we conclude
that X and X 0 are not tied.

In sum, X and X 0 are adjacent vertices in G(n; a; b; s), and every Y 2
D(n; a; b; s) with di¤erent numbers of labels equal to j � 1 and j + 1 is
adjacent to at least one of them. �

Lemma 5.2. Suppose n � 7, q�p � 3 and (n�3)p+3q < s � n
2 (p+q).

Then for every j 2 fp + 1; :::; q � 1g there is an Xj 2 D(n; a; b; s) whose
characteristic vector (vp; :::; vq) has vj�1 6= vj+1 and vj � 2.

Proof. Suppose p < j < q. Then (n� 3)p+ 3j < (n� 3)p+ 3q < s �
n
2 (p+ q) <

n
2 (j + q) < (n� 3)q + 3j, so there is a unique k 2 fp; :::; q � 1g

with (n � 3)k + 3j < s � (n � 3)(k + 1) + 3j. Then (n � 3)k + 3j + 1 �
s � (n� 4)(k + 1) + k + 3j + 1, so there is a die X 2 D(n; a; b; s) with two
labels equal to j, one label equal to j + 1, and every other label equal to
either k or k + 1. If X has distinct numbers of labels equal to j � 1 and
j + 1 then it satis�es the lemma.

If not, it must be that j � 1 2 fk; k + 1g and X has precisely one label
equal to j � 1. If k + 1 = j � 1 then X has n� 4 labels equal to j � 2, one
equal to j�1, two equal to j, and one equal to j+1; the lemma is satis�ed
by the Xj 2 D(n; a; b; s) which has n� 5 labels equal to j� 2, two equal to
j�1, and three equal to j. If k = j�1 then X has one label equal to j�1,
n � 2 equal to j, and one equal to j + 1. If p < j � 1 then the lemma is
satis�ed by the Xj 2 D(n; a; b; s) which has one label equal to j � 2, n� 3
equal to j, and two equal to j + 1. If p = j � 1 then q � p+ 3 = j + 2 and
the lemma is satis�ed by the Xj 2 D(n; a; b; s) which has two labels equal
to j � 1, n� 3 equal to j, and one equal to j + 2. �

Lemma 5.3. Suppose n � 5; q � p � 3 and (n � 2)p + 2q � s �
(n�2)q+2p. Then for every choice of j 6= j0 2 fp+1; :::; q�1g there is an
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Xj;j0 2 D(n; a; b; s) whose characteristic vector (vp; :::; vq) has vj�1 6= vj+1
and vj0�1 6= vj0+1.

Proof. Suppose p < j < j0 < q. Then (n�2)p+j+j0 < (n�2)p+2q �
s � (n� 2)q + 2p < (n� 2)q + j + j0, so there is a unique k 2 fp; :::; q � 1g
with (n � 2)k + j + j0 < s � (n � 2)(k + 1) + j + j0. Consequently there
is a die X 2 D(n; a; b; s) with one label equal to j � 1, one label equal to
j0+1, and every other label equal to either k or k+1; X satis�es the lemma
unless the labels equal to k or k + 1 include precisely one equal to j + 1 or
precisely one equal to j0 � 1.

If the labels equal to k or k+1 include precisely one equal to j+1 then
either s = j� 1+ j0+1+ j+1+(n� 3)j or else s = j� 1+ j0+1+ j+1+
(n � 3)(j + 2). In the former case s = j0 + 1 + (n � 1)j and the lemma is
satis�ed by Xj;j0 with n� 3 labels equal to j, two labels equal to j+1 and
one label equal to j0�1. In the latter case s = 2j+2+j0�1+(n�3)(j+2)
and the lemma is satis�ed by Xj;j0 with two labels equal to j + 1, n � 3
labels equal to j + 2 and one label equal to j0 � 1.

If the labels equal to k or k+1 include precisely one equal to j0�1 then
either s = j � 1+ j0 +1+ j0 � 1+ (n� 3)j0 or else s = j � 1+ j0 +1+ j0 �
1+(n�3)(j0�2). In the former case s = 2j0�2+ j+1+(n�3)j0 and the
lemma is satis�ed by Xj;j0 with n� 3 labels equal to j0, two labels equal to
j0�1 and one label equal to j+1. In the latter case s = j+3+(n�1)(j0�2)
and the lemma is satis�ed by Xj;j0 with one label equal to j+1, n�3 labels
equal to j0 � 2 and two labels equal to j0 � 1. �

Proposition 5.4. If n � 7, q� p � 3 and (n� 3)p+3q < s � n
2 (p+ q)

then the distance between two arbitrary non-isolated vertices of G(n; a; b; s)
is not more than 6.

Proof. Suppose X and X 0 are non-isolated vertices of G(n; a; b; s),
i.e., non-balanced dice in D(n; a; b; s). Let their characteristic vectors be
(vp; :::; vq) and (v0p; :::; v

0
q) respectively. As they are not balanced, Theorem

2 of [4] implies that there are j; j0 2 fp+1; :::; q� 1g with vj�1 6= vj+1 and
v0j0�1 6= v0j0+1.

Suppose Xj ; Xj0 are dice described in Lemma 5.2, and let X 0
j ; X

0
j0 be

their neighbors discussed in Lemma 5.1. Then X is adjacent to at least one
of Xj ; X 0

j and X
0 is adjacent to at least one of Xj0 ; X 0

j0 . If j = j
0 then the

distance between X and X 0 cannot be more than 3. If j 6= j0 then the die
Xj;j0 of Lemma 5.3 is adjacent to at least one of Xj ; X 0

j and also adjacent
to at least one of Xj0 ; X 0

j0 , so the distance between X and X 0 is no more
than 6. �
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